期刊文献+
共找到39,878篇文章
< 1 2 250 >
每页显示 20 50 100
Working condition recognition of sucker rod pumping system based on 4-segment time-frequency signature matrix and deep learning
1
作者 Yun-Peng He Hai-Bo Cheng +4 位作者 Peng Zeng Chuan-Zhi Zang Qing-Wei Dong Guang-Xi Wan Xiao-Ting Dong 《Petroleum Science》 SCIE EI CAS CSCD 2024年第1期641-653,共13页
High-precision and real-time diagnosis of sucker rod pumping system(SRPS)is important for quickly mastering oil well operations.Deep learning-based method for classifying the dynamometer card(DC)of oil wells is an eff... High-precision and real-time diagnosis of sucker rod pumping system(SRPS)is important for quickly mastering oil well operations.Deep learning-based method for classifying the dynamometer card(DC)of oil wells is an efficient diagnosis method.However,the input of the DC as a two-dimensional image into the deep learning framework suffers from low feature utilization and high computational effort.Additionally,different SRPSs in an oil field have various system parameters,and the same SRPS generates different DCs at different moments.Thus,there is heterogeneity in field data,which can dramatically impair the diagnostic accuracy.To solve the above problems,a working condition recognition method based on 4-segment time-frequency signature matrix(4S-TFSM)and deep learning is presented in this paper.First,the 4-segment time-frequency signature(4S-TFS)method that can reduce the computing power requirements is proposed for feature extraction of DC data.Subsequently,the 4S-TFSM is constructed by relative normalization and matrix calculation to synthesize the features of multiple data and solve the problem of data heterogeneity.Finally,a convolutional neural network(CNN),one of the deep learning frameworks,is used to determine the functioning conditions based on the 4S-TFSM.Experiments on field data verify that the proposed diagnostic method based on 4S-TFSM and CNN(4S-TFSM-CNN)can significantly improve the accuracy of working condition recognition with lower computational cost.To the best of our knowledge,this is the first work to discuss the effect of data heterogeneity on the working condition recognition performance of SRPS. 展开更多
关键词 Sucker-rod pumping system Dynamometer card Working condition recognition Deep learning time-frequency signature time-frequency signature matrix
下载PDF
The W transform and its improved methods for time-frequency analysis of seismic data
2
作者 WANG Yanghua RAO Ying ZHAO Zhencong 《Petroleum Exploration and Development》 SCIE 2024年第4期886-896,共11页
The conventional linear time-frequency analysis method cannot achieve high resolution and energy focusing in the time and frequency dimensions at the same time,especially in the low frequency region.In order to improv... The conventional linear time-frequency analysis method cannot achieve high resolution and energy focusing in the time and frequency dimensions at the same time,especially in the low frequency region.In order to improve the resolution of the linear time-frequency analysis method in the low-frequency region,we have proposed a W transform method,in which the instantaneous frequency is introduced as a parameter into the linear transformation,and the analysis time window is constructed which matches the instantaneous frequency of the seismic data.In this paper,the W transform method is compared with the Wigner-Ville distribution(WVD),a typical nonlinear time-frequency analysis method.The WVD method that shows the energy distribution in the time-frequency domain clearly indicates the gravitational center of time and the gravitational center of frequency of a wavelet,while the time-frequency spectrum of the W transform also has a clear gravitational center of energy focusing,because the instantaneous frequency corresponding to any time position is introduced as the transformation parameter.Therefore,the W transform can be benchmarked directly by the WVD method.We summarize the development of the W transform and three improved methods in recent years,and elaborate on the evolution of the standard W transform,the chirp-modulated W transform,the fractional-order W transform,and the linear canonical W transform.Through three application examples of W transform in fluvial sand body identification and reservoir prediction,it is verified that W transform can improve the resolution and energy focusing of time-frequency spectra. 展开更多
关键词 time-frequency analysis W transform Wigner-Ville distribution matching pursuit energy focusing RESOLUTION
下载PDF
Graph Transformers研究进展综述 被引量:1
3
作者 周诚辰 于千城 +2 位作者 张丽丝 胡智勇 赵明智 《计算机工程与应用》 CSCD 北大核心 2024年第14期37-49,共13页
随着图结构数据在各种实际场景中的广泛应用,对其进行有效建模和处理的需求日益增加。Graph Transformers(GTs)作为一类使用Transformers处理图数据的模型,能够有效缓解传统图神经网络(GNN)中存在的过平滑和过挤压等问题,因此可以学习... 随着图结构数据在各种实际场景中的广泛应用,对其进行有效建模和处理的需求日益增加。Graph Transformers(GTs)作为一类使用Transformers处理图数据的模型,能够有效缓解传统图神经网络(GNN)中存在的过平滑和过挤压等问题,因此可以学习到更好的特征表示。根据对近年来GTs相关文献的研究,将现有的模型架构分为两类:第一类通过绝对编码和相对编码向Transformers中加入图的位置和结构信息,以增强Transformers对图结构数据的理解和处理能力;第二类根据不同的方式(串行、交替、并行)将GNN与Transformers进行结合,以充分利用两者的优势。介绍了GTs在信息安全、药物发现和知识图谱等领域的应用,对比总结了不同用途的模型及其优缺点。最后,从可扩展性、复杂图、更好的结合方式等方面分析了GTs未来研究面临的挑战。 展开更多
关键词 graph Transformers(GTs) 图神经网络 图表示学习 异构图
下载PDF
基于Graph Transformer的半监督异配图表示学习模型
4
作者 黎施彬 龚俊 汤圣君 《计算机应用》 CSCD 北大核心 2024年第6期1816-1823,共8页
现有的图卷积网络(GCN)模型基于同配性假设,无法直接应用于异配图的表示学习,且许多异配图表示学习的研究工作受消息传递机制的限制,导致节点特征混淆和特征过度挤压而出现过平滑问题。针对这些问题,提出一种基于Graph Transformer的半... 现有的图卷积网络(GCN)模型基于同配性假设,无法直接应用于异配图的表示学习,且许多异配图表示学习的研究工作受消息传递机制的限制,导致节点特征混淆和特征过度挤压而出现过平滑问题。针对这些问题,提出一种基于Graph Transformer的半监督异配图表示学习模型HPGT(HeteroPhilic Graph Transformer)。首先,使用度连接概率矩阵采样节点的路径邻域,再通过自注意力机制自适应地聚合路径上的节点异配连接模式,编码得到节点的结构信息,用节点的原始属性信息和结构信息构建Transformer层的自注意力模块;其次,将每个节点自身的隐层表示与它的邻域节点的隐层表示分离更新以避免节点通过自注意力模块聚合过量的自身信息,再把每个节点表示与它的邻域表示连接,得到单个Transformer层的输出,另外,将所有的Transformer层的输出跳连到最终的节点隐层表示以防止中间层信息丢失;最后,使用线性层和Softmax层将节点的隐层表示映射到节点的预测标签。实验结果表明,与无结构编码(SE)的模型相比,基于度连接概率的SE能为Transformer层的自注意力模块提供有效的偏差信息,HPGT平均准确率提升0.99%~11.98%;与对比模型相比,在异配数据集(Texas、Cornell、Wisconsin和Actor)上,模型节点分类准确率提升0.21%~1.69%,在同配数据集(Cora、CiteSeer和PubMed)上,节点分类准确率分别达到了0.8379、0.7467和0.8862。以上结果验证了HPGT具有较强的异配图表示学习能力,尤其适用于强异配图节点分类任务。 展开更多
关键词 图卷积网络 异配图 图表示学习 graph Transformer 节点分类
下载PDF
A reliability-oriented genetic algorithm-levenberg marquardt model for leak risk assessment based on time-frequency features
5
作者 Ying-Ying Wang Hai-Bo Sun +4 位作者 Jin Yang Shi-De Wu Wen-Ming Wang Yu-Qi Li Ze-Qing Lin 《Petroleum Science》 SCIE EI CSCD 2023年第5期3194-3209,共16页
Since leaks in high-pressure pipelines transporting crude oil can cause severe economic losses,a reliable leak risk assessment can assist in developing an effective pipeline maintenance plan and avoiding unexpected in... Since leaks in high-pressure pipelines transporting crude oil can cause severe economic losses,a reliable leak risk assessment can assist in developing an effective pipeline maintenance plan and avoiding unexpected incidents.The fast and accurate leak detection methods are essential for maintaining pipeline safety in pipeline reliability engineering.Current oil pipeline leakage signals are insufficient for feature extraction,while the training time for traditional leakage prediction models is too long.A new leak detection method is proposed based on time-frequency features and the Genetic Algorithm-Levenberg Marquardt(GA-LM)classification model for predicting the leakage status of oil pipelines.The signal that has been processed is transformed to the time and frequency domain,allowing full expression of the original signal.The traditional Back Propagation(BP)neural network is optimized by the Genetic Algorithm(GA)and Levenberg Marquardt(LM)algorithms.The results show that the recognition effect of a combined feature parameter is superior to that of a single feature parameter.The Accuracy,Precision,Recall,and F1score of the GA-LM model is 95%,93.5%,96.7%,and 95.1%,respectively,which proves that the GA-LM model has a good predictive effect and excellent stability for positive and negative samples.The proposed GA-LM model can obviously reduce training time and improve recognition efficiency.In addition,considering that a large number of samples are required for model training,a wavelet threshold method is proposed to generate sample data with higher reliability.The research results can provide an effective theoretical and technical reference for the leakage risk assessment of the actual oil pipelines. 展开更多
关键词 Leak risk assessment Oil pipeline GA-LM model Data derivation time-frequency features
下载PDF
Research on Low Voltage Series Arc Fault Prediction Method Based on Multidimensional Time-Frequency Domain Characteristics
6
作者 Feiyan Zhou HuiYin +4 位作者 Chen Luo Haixin Tong KunYu Zewen Li Xiangjun Zeng 《Energy Engineering》 EI 2023年第9期1979-1990,共12页
The load types in low-voltage distribution systems are diverse.Some loads have current signals that are similar to series fault arcs,making it difficult to effectively detect fault arcs during their occurrence and sus... The load types in low-voltage distribution systems are diverse.Some loads have current signals that are similar to series fault arcs,making it difficult to effectively detect fault arcs during their occurrence and sustained combustion,which can easily lead to serious electrical fire accidents.To address this issue,this paper establishes a fault arc prototype experimental platform,selects multiple commonly used loads for fault arc experiments,and collects data in both normal and fault states.By analyzing waveform characteristics and selecting fault discrimination feature indicators,corresponding feature values are extracted for qualitative analysis to explore changes in timefrequency characteristics of current before and after faults.Multiple features are then selected to form a multidimensional feature vector space to effectively reduce arc misjudgments and construct a fault discrimination feature database.Based on this,a fault arc hazard prediction model is built using random forests.The model’s multiple hyperparameters are simultaneously optimized through grid search,aiming tominimize node information entropy and complete model training,thereby enhancing model robustness and generalization ability.Through experimental verification,the proposed method accurately predicts and classifies fault arcs of different load types,with an average accuracy at least 1%higher than that of the commonly used fault predictionmethods compared in the paper. 展开更多
关键词 Low voltage distribution systems series fault arcing grid search time-frequency characteristics
下载PDF
GraphMLP-Mixer:基于图-多层感知机架构的高效多行为序列推荐方法
7
作者 卢晓凯 封军 +2 位作者 韩永强 王皓 陈恩红 《计算机研究与发展》 EI CSCD 北大核心 2024年第8期1917-1929,共13页
在多行为序列推荐领域,图神经网络(GNNs)虽被广泛应用,但存在局限性,如对序列间协同信号建模不足和处理长距离依赖性等问题.针对这些问题,提出了一种新的解决框架GraphMLP-Mixer.该框架首先构造全局物品图来增强模型对序列间协同信号的... 在多行为序列推荐领域,图神经网络(GNNs)虽被广泛应用,但存在局限性,如对序列间协同信号建模不足和处理长距离依赖性等问题.针对这些问题,提出了一种新的解决框架GraphMLP-Mixer.该框架首先构造全局物品图来增强模型对序列间协同信号的建模,然后将感知机-混合器架构与图神经网络结合,得到图-感知机混合器模型对用户兴趣进行充分挖掘.GraphMLP-Mixer具有2个显著优势:一是能够有效捕捉用户行为的全局依赖性,同时减轻信息过压缩问题;二是其时间与空间效率显著提高,其复杂度与用户交互行为的数量成线性关系,优于现有基于GNN多行为序列推荐模型.在3个真实的公开数据集上进行实验,大量的实验结果验证了GraphMLP-Mixer在处理多行为序列推荐问题时的有效性和高效性. 展开更多
关键词 多行为建模 序列推荐 图神经网络 MLP架构 全局物品图
下载PDF
Construction of time-frequency codes based on protograph LDPC codes in OFDM communication systems 被引量:2
8
作者 Kaiyao Wang Yang Xiao Kiseon Kim 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2012年第3期335-341,共7页
This paper proposes a scheme to construct time- frequency codes based on protograph low density parity check (LDPC) codes in orthogonal frequency division multiplexing (OFDM) communication systems. This approach s... This paper proposes a scheme to construct time- frequency codes based on protograph low density parity check (LDPC) codes in orthogonal frequency division multiplexing (OFDM) communication systems. This approach synthesizes two techniques: protograph LDPC codes and OFDM. One symbol of encoded information by protograph LDPC codes corresponds to one sub-carrier, namely the length of encoded information equals to the number of sub-carriers. The design of good protograph LDPC codes with short lengths is given, and the proposed proto- graph LDPC codes can be of fast encoding, which can reduce the encoding complexity and simplify encoder hardware implementa- tion. The proposed approach provides a higher coding gain in the Rayleigh fading channel. The simulation results in the Rayleigh fading channel show that the bit error rate (BER) performance of the proposed time-frequency codes is as good as random LDPC- OFDM codes and is better than Tanner LDPC-OFDM codes under the condition of different fading coefficients. 展开更多
关键词 time-frequency code protograph low density parity check (LDPC) code orthogonal frequency division multiplexing (OFDM) fast encoding algorithm.
下载PDF
基于GraphSAGE网络的藏文短文本分类研究
9
作者 敬容 杨逸民 +3 位作者 万福成 国旗 于洪志 马宁 《中文信息学报》 CSCD 北大核心 2024年第9期58-65,共8页
文本分类是自然语言处理领域的重要研究方向,由于藏文数据的稀缺性、语言学特征抽取的复杂性、篇章结构的多样性等因素导致藏文文本分类任务进展缓慢。因此,该文以图神经作为基础模型进行改进。首先,在“音节-音节”“音节-文档”建模... 文本分类是自然语言处理领域的重要研究方向,由于藏文数据的稀缺性、语言学特征抽取的复杂性、篇章结构的多样性等因素导致藏文文本分类任务进展缓慢。因此,该文以图神经作为基础模型进行改进。首先,在“音节-音节”“音节-文档”建模的基础上,融合文档特征,采用二元分类模型动态网络构建“文档-文档”边,以充分挖掘短文本的全局特征,增加滑动窗口,减少模型的计算复杂度并寻找最优窗口取值。其次,针对藏文短文本的音节稀疏性,首次引入GraphSAGE作为基础模型,并探究不同聚合方式在藏文短文本分类上的性能差异。最后,为捕获节点间关系的异质性,对邻居节点进行特征加权再平均池化以增强模型的特征提取能力。在TNCC标题文本数据集上,该文模型的分类准确率达到了62.50%,与传统GCN、原始GraphSAGE和预训练语言模型CINO相比,该方法在分类准确率上分别提高了2.56%、1%和2.4%。 展开更多
关键词 图神经网络 藏文文本分类 TNCC数据集
下载PDF
A STABILITY RESULT FOR TRANSLATINGSPACELIKE GRAPHS IN LORENTZ MANIFOLDS
10
作者 高雅 毛井 吴传喜 《Acta Mathematica Scientia》 SCIE CSCD 2024年第2期474-483,共10页
In this paper,we investigate spacelike graphs defined over a domain Ω⊂M^(n) in the Lorentz manifold M^(n)×ℝ with the metric−ds^(2)+σ,where M^(n) is a complete Riemannian n-manifold with the metricσ,Ωhas piece... In this paper,we investigate spacelike graphs defined over a domain Ω⊂M^(n) in the Lorentz manifold M^(n)×ℝ with the metric−ds^(2)+σ,where M^(n) is a complete Riemannian n-manifold with the metricσ,Ωhas piecewise smooth boundary,and ℝ denotes the Euclidean 1-space.We prove an interesting stability result for translating spacelike graphs in M^(n)×ℝ under a conformal transformation. 展开更多
关键词 mean curvature flow spacelike graphs translating spacelike graphs maximal spacelike graphs constant mean curvature Lorentz manifolds
下载PDF
A Value for Games Defined on Graphs
11
作者 Néstor Bravo 《Applied Mathematics》 2024年第5期331-348,共18页
Given a graph g=( V,A ) , we define a space of subgraphs M with the binary operation of union and the unique decomposition property into blocks. This space allows us to discuss a notion of minimal subgraphs (minimal c... Given a graph g=( V,A ) , we define a space of subgraphs M with the binary operation of union and the unique decomposition property into blocks. This space allows us to discuss a notion of minimal subgraphs (minimal coalitions) that are of interest for the game. Additionally, a partition of the game is defined in terms of the gain of each block, and subsequently, a solution to the game is defined based on distributing to each player (node and edge) present in each block a payment proportional to their contribution to the coalition. 展开更多
关键词 graph Theory Values for graphs Cooperation Games Potential Function
下载PDF
Heterophilic Graph Neural Network Based on Spatial and Frequency Domain Adaptive Embedding Mechanism
12
作者 Lanze Zhang Yijun Gu Jingjie Peng 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第5期1701-1731,共31页
Graph Neural Networks(GNNs)play a significant role in tasks related to homophilic graphs.Traditional GNNs,based on the assumption of homophily,employ low-pass filters for neighboring nodes to achieve information aggre... Graph Neural Networks(GNNs)play a significant role in tasks related to homophilic graphs.Traditional GNNs,based on the assumption of homophily,employ low-pass filters for neighboring nodes to achieve information aggregation and embedding.However,in heterophilic graphs,nodes from different categories often establish connections,while nodes of the same category are located further apart in the graph topology.This characteristic poses challenges to traditional GNNs,leading to issues of“distant node modeling deficiency”and“failure of the homophily assumption”.In response,this paper introduces the Spatial-Frequency domain Adaptive Heterophilic Graph Neural Networks(SFA-HGNN),which integrates adaptive embedding mechanisms for both spatial and frequency domains to address the aforementioned issues.Specifically,for the first problem,we propose the“Distant Spatial Embedding Module”,aiming to select and aggregate distant nodes through high-order randomwalk transition probabilities to enhance modeling capabilities.For the second issue,we design the“Proximal Frequency Domain Embedding Module”,constructing adaptive filters to separate high and low-frequency signals of nodes,and introduce frequency-domain guided attention mechanisms to fuse the relevant information,thereby reducing the noise introduced by the failure of the homophily assumption.We deploy the SFA-HGNN on six publicly available heterophilic networks,achieving state-of-the-art results in four of them.Furthermore,we elaborate on the hyperparameter selection mechanism and validate the performance of each module through experimentation,demonstrating a positive correlation between“node structural similarity”,“node attribute vector similarity”,and“node homophily”in heterophilic networks. 展开更多
关键词 Heterophilic graph graph neural network graph representation learning failure of the homophily assumption
下载PDF
Weighted Forwarding in Graph Convolution Networks for Recommendation Information Systems
13
作者 Sang-min Lee Namgi Kim 《Computers, Materials & Continua》 SCIE EI 2024年第2期1897-1914,共18页
Recommendation Information Systems(RIS)are pivotal in helping users in swiftly locating desired content from the vast amount of information available on the Internet.Graph Convolution Network(GCN)algorithms have been ... Recommendation Information Systems(RIS)are pivotal in helping users in swiftly locating desired content from the vast amount of information available on the Internet.Graph Convolution Network(GCN)algorithms have been employed to implement the RIS efficiently.However,the GCN algorithm faces limitations in terms of performance enhancement owing to the due to the embedding value-vanishing problem that occurs during the learning process.To address this issue,we propose a Weighted Forwarding method using the GCN(WF-GCN)algorithm.The proposed method involves multiplying the embedding results with different weights for each hop layer during graph learning.By applying the WF-GCN algorithm,which adjusts weights for each hop layer before forwarding to the next,nodes with many neighbors achieve higher embedding values.This approach facilitates the learning of more hop layers within the GCN framework.The efficacy of the WF-GCN was demonstrated through its application to various datasets.In the MovieLens dataset,the implementation of WF-GCN in LightGCN resulted in significant performance improvements,with recall and NDCG increasing by up to+163.64%and+132.04%,respectively.Similarly,in the Last.FM dataset,LightGCN using WF-GCN enhanced with WF-GCN showed substantial improvements,with the recall and NDCG metrics rising by up to+174.40%and+169.95%,respectively.Furthermore,the application of WF-GCN to Self-supervised Graph Learning(SGL)and Simple Graph Contrastive Learning(SimGCL)also demonstrated notable enhancements in both recall and NDCG across these datasets. 展开更多
关键词 Deep learning graph neural network graph convolution network graph convolution network model learning method recommender information systems
下载PDF
An End-To-End Hyperbolic Deep Graph Convolutional Neural Network Framework
14
作者 Yuchen Zhou Hongtao Huo +5 位作者 Zhiwen Hou Lingbin Bu Yifan Wang Jingyi Mao Xiaojun Lv Fanliang Bu 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第4期537-563,共27页
Graph Convolutional Neural Networks(GCNs)have been widely used in various fields due to their powerful capabilities in processing graph-structured data.However,GCNs encounter significant challenges when applied to sca... Graph Convolutional Neural Networks(GCNs)have been widely used in various fields due to their powerful capabilities in processing graph-structured data.However,GCNs encounter significant challenges when applied to scale-free graphs with power-law distributions,resulting in substantial distortions.Moreover,most of the existing GCN models are shallow structures,which restricts their ability to capture dependencies among distant nodes and more refined high-order node features in scale-free graphs with hierarchical structures.To more broadly and precisely apply GCNs to real-world graphs exhibiting scale-free or hierarchical structures and utilize multi-level aggregation of GCNs for capturing high-level information in local representations,we propose the Hyperbolic Deep Graph Convolutional Neural Network(HDGCNN),an end-to-end deep graph representation learning framework that can map scale-free graphs from Euclidean space to hyperbolic space.In HDGCNN,we define the fundamental operations of deep graph convolutional neural networks in hyperbolic space.Additionally,we introduce a hyperbolic feature transformation method based on identity mapping and a dense connection scheme based on a novel non-local message passing framework.In addition,we present a neighborhood aggregation method that combines initial structural featureswith hyperbolic attention coefficients.Through the above methods,HDGCNN effectively leverages both the structural features and node features of graph data,enabling enhanced exploration of non-local structural features and more refined node features in scale-free or hierarchical graphs.Experimental results demonstrate that HDGCNN achieves remarkable performance improvements over state-ofthe-art GCNs in node classification and link prediction tasks,even when utilizing low-dimensional embedding representations.Furthermore,when compared to shallow hyperbolic graph convolutional neural network models,HDGCNN exhibits notable advantages and performance enhancements. 展开更多
关键词 graph neural networks hyperbolic graph convolutional neural networks deep graph convolutional neural networks message passing framework
下载PDF
GATiT:An Intelligent Diagnosis Model Based on Graph Attention Network Incorporating Text Representation in Knowledge Reasoning
15
作者 Yu Song Pengcheng Wu +2 位作者 Dongming Dai Mingyu Gui Kunli Zhang 《Computers, Materials & Continua》 SCIE EI 2024年第9期4767-4790,共24页
The growing prevalence of knowledge reasoning using knowledge graphs(KGs)has substantially improved the accuracy and efficiency of intelligent medical diagnosis.However,current models primarily integrate electronic me... The growing prevalence of knowledge reasoning using knowledge graphs(KGs)has substantially improved the accuracy and efficiency of intelligent medical diagnosis.However,current models primarily integrate electronic medical records(EMRs)and KGs into the knowledge reasoning process,ignoring the differing significance of various types of knowledge in EMRs and the diverse data types present in the text.To better integrate EMR text information,we propose a novel intelligent diagnostic model named the Graph ATtention network incorporating Text representation in knowledge reasoning(GATiT),which comprises text representation,subgraph construction,knowledge reasoning,and diagnostic classification.In the text representation process,GATiT uses a pre-trained model to obtain text representations of the EMRs and additionally enhances embeddings by including chief complaint information and numerical information in the input.In the subgraph construction process,GATiT constructs text subgraphs and disease subgraphs from the KG,utilizing EMR text and the disease to be diagnosed.To differentiate the varying importance of nodes within the subgraphs features such as node categories,relevance scores,and other relevant factors are introduced into the text subgraph.Themessage-passing strategy and attention weight calculation of the graph attention network are adjusted to learn these features in the knowledge reasoning process.Finally,in the diagnostic classification process,the interactive attention-based fusion method integrates the results of knowledge reasoning with text representations to produce the final diagnosis results.Experimental results on multi-label and single-label EMR datasets demonstrate the model’s superiority over several state-of-theart methods. 展开更多
关键词 Intelligent diagnosis knowledge graph graph attention network knowledge reasoning
下载PDF
KGTLIR:An Air Target Intention Recognition Model Based on Knowledge Graph and Deep Learning
16
作者 Bo Cao Qinghua Xing +2 位作者 Longyue Li Huaixi Xing Zhanfu Song 《Computers, Materials & Continua》 SCIE EI 2024年第7期1251-1275,共25页
As a core part of battlefield situational awareness,air target intention recognition plays an important role in modern air operations.Aiming at the problems of insufficient feature extraction and misclassification in ... As a core part of battlefield situational awareness,air target intention recognition plays an important role in modern air operations.Aiming at the problems of insufficient feature extraction and misclassification in intention recognition,this paper designs an air target intention recognition method(KGTLIR)based on Knowledge Graph and Deep Learning.Firstly,the intention recognition model based on Deep Learning is constructed to mine the temporal relationship of intention features using dilated causal convolution and the spatial relationship of intention features using a graph attention mechanism.Meanwhile,the accuracy,recall,and F1-score after iteration are introduced to dynamically adjust the sample weights to reduce the probability of misclassification.After that,an intention recognition model based on Knowledge Graph is constructed to predict the probability of the occurrence of different intentions of the target.Finally,the results of the two models are fused by evidence theory to obtain the target’s operational intention.Experiments show that the intention recognition accuracy of the KGTLIRmodel can reach 98.48%,which is not only better than most of the air target intention recognition methods,but also demonstrates better interpretability and trustworthiness. 展开更多
关键词 Dilated causal convolution graph attention mechanism intention recognition air targets knowledge graph
下载PDF
A Generalization of Torsion Graph for Modules
17
作者 Mohammad Jarrar 《Applied Mathematics》 2024年第7期469-476,共8页
Let R be a commutative ring with identity and M an R-module. In this paper, we relate a graph to M, say Γ(M), provided tsshat when M=R, Γ(M)is exactly the classic zero-divisor graph.
关键词 Commutative Ring graph Anihilator
下载PDF
AFSTGCN:Prediction for multivariate time series using an adaptive fused spatial-temporal graph convolutional network
18
作者 Yuteng Xiao Kaijian Xia +5 位作者 Hongsheng Yin Yu-Dong Zhang Zhenjiang Qian Zhaoyang Liu Yuehan Liang Xiaodan Li 《Digital Communications and Networks》 SCIE CSCD 2024年第2期292-303,共12页
The prediction for Multivariate Time Series(MTS)explores the interrelationships among variables at historical moments,extracts their relevant characteristics,and is widely used in finance,weather,complex industries an... The prediction for Multivariate Time Series(MTS)explores the interrelationships among variables at historical moments,extracts their relevant characteristics,and is widely used in finance,weather,complex industries and other fields.Furthermore,it is important to construct a digital twin system.However,existing methods do not take full advantage of the potential properties of variables,which results in poor predicted accuracy.In this paper,we propose the Adaptive Fused Spatial-Temporal Graph Convolutional Network(AFSTGCN).First,to address the problem of the unknown spatial-temporal structure,we construct the Adaptive Fused Spatial-Temporal Graph(AFSTG)layer.Specifically,we fuse the spatial-temporal graph based on the interrelationship of spatial graphs.Simultaneously,we construct the adaptive adjacency matrix of the spatial-temporal graph using node embedding methods.Subsequently,to overcome the insufficient extraction of disordered correlation features,we construct the Adaptive Fused Spatial-Temporal Graph Convolutional(AFSTGC)module.The module forces the reordering of disordered temporal,spatial and spatial-temporal dependencies into rule-like data.AFSTGCN dynamically and synchronously acquires potential temporal,spatial and spatial-temporal correlations,thereby fully extracting rich hierarchical feature information to enhance the predicted accuracy.Experiments on different types of MTS datasets demonstrate that the model achieves state-of-the-art single-step and multi-step performance compared with eight other deep learning models. 展开更多
关键词 Adaptive adjacency matrix Digital twin graph convolutional network Multivariate time series prediction Spatial-temporal graph
下载PDF
Position-Aware and Subgraph Enhanced Dynamic Graph Contrastive Learning on Discrete-Time Dynamic Graph
19
作者 Jian Feng Tian Liu Cailing Du 《Computers, Materials & Continua》 SCIE EI 2024年第11期2895-2909,共15页
Unsupervised learning methods such as graph contrastive learning have been used for dynamic graph represen-tation learning to eliminate the dependence of labels.However,existing studies neglect positional information ... Unsupervised learning methods such as graph contrastive learning have been used for dynamic graph represen-tation learning to eliminate the dependence of labels.However,existing studies neglect positional information when learning discrete snapshots,resulting in insufficient network topology learning.At the same time,due to the lack of appropriate data augmentation methods,it is difficult to capture the evolving patterns of the network effectively.To address the above problems,a position-aware and subgraph enhanced dynamic graph contrastive learning method is proposed for discrete-time dynamic graphs.Firstly,the global snapshot is built based on the historical snapshots to express the stable pattern of the dynamic graph,and the random walk is used to obtain the position representation by learning the positional information of the nodes.Secondly,a new data augmentation method is carried out from the perspectives of short-term changes and long-term stable structures of dynamic graphs.Specifically,subgraph sampling based on snapshots and global snapshots is used to obtain two structural augmentation views,and node structures and evolving patterns are learned by combining graph neural network,gated recurrent unit,and attention mechanism.Finally,the quality of node representation is improved by combining the contrastive learning between different structural augmentation views and between the two representations of structure and position.Experimental results on four real datasets show that the performance of the proposed method is better than the existing unsupervised methods,and it is more competitive than the supervised learning method under a semi-supervised setting. 展开更多
关键词 Dynamic graph representation learning graph contrastive learning structure representation position representation evolving pattern
下载PDF
BLOW-UP CONDITIONS FOR A SEMILINEAR PARABOLIC SYSTEM ON LOCALLY FINITE GRAPHS
20
作者 吴艺婷 《Acta Mathematica Scientia》 SCIE CSCD 2024年第2期609-631,共23页
In this paper, we investigate a blow-up phenomenon for a semilinear parabolic system on locally finite graphs. Under some appropriate assumptions on the curvature condition CDE’(n,0), the polynomial volume growth of ... In this paper, we investigate a blow-up phenomenon for a semilinear parabolic system on locally finite graphs. Under some appropriate assumptions on the curvature condition CDE’(n,0), the polynomial volume growth of degree m, the initial values, and the exponents in absorption terms, we prove that every non-negative solution of the semilinear parabolic system blows up in a finite time. Our current work extends the results achieved by Lin and Wu (Calc Var Partial Differ Equ, 2017, 56: Art 102) and Wu (Rev R Acad Cien Serie A Mat, 2021, 115: Art 133). 展开更多
关键词 semilinear parabolic system on graphs BLOW-UP heat kernel estimate on graphs
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部