A localized parametric time-sheared Gabor atom is derived by convolving a linear frequency modulated factor, modulating in frequency and translating in time to a dilated Gaussian function, which is the generalization ...A localized parametric time-sheared Gabor atom is derived by convolving a linear frequency modulated factor, modulating in frequency and translating in time to a dilated Gaussian function, which is the generalization of Gabor atom and is more delicate for matching most of the signals encountered in practice, especially for those having frequency dispersion characteristics. The time-frequency distribution of this atom concentrates in its time center and frequency center along energy curve, with the curve being oblique to a certain extent along the time axis. A novel parametric adaptive time-frequency distribution based on a set of the derived atoms is then proposed using a adaptive signal subspace decomposition method in frequency domain, which is non-negative time-frequency energy distribution and free of cross-term interference for multicomponent signals. The results of numerical simulation manifest the effectiveness of the approach in time-frequency representation and signal de-noising processing.展开更多
This paper deals with the blind separation of nonstation-ary sources and direction-of-arrival (DOA) estimation in the under-determined case, when there are more sources than sensors. We assume the sources to be time...This paper deals with the blind separation of nonstation-ary sources and direction-of-arrival (DOA) estimation in the under-determined case, when there are more sources than sensors. We assume the sources to be time-frequency (TF) disjoint to a certain extent. In particular, the number of sources presented at any TF neighborhood is strictly less than that of sensors. We can identify the real number of active sources and achieve separation in any TF neighborhood by the sparse representation method. Compared with the subspace-based algorithm under the same sparseness assumption, which suffers from the extra noise effect since it can-not estimate the true number of active sources, the proposed algorithm can estimate the number of active sources and their cor-responding TF values in any TF neighborhood simultaneously. An-other contribution of this paper is a new estimation procedure for the DOA of sources in the underdetermined case, which combines the TF sparseness of sources and the clustering technique. Sim-ulation results demonstrate the validity and high performance of the proposed algorithm in both blind source separation (BSS) and DOA estimation.展开更多
This paper proposes a new method for estimating the parameter of maneuvering targets based on sparse time-frequency transform in over-the-horizon radar(OTHR). In this method, the sparse time-frequency distribution o...This paper proposes a new method for estimating the parameter of maneuvering targets based on sparse time-frequency transform in over-the-horizon radar(OTHR). In this method, the sparse time-frequency distribution of the radar echo is obtained by solving a sparse optimization problem based on the short-time Fourier transform. Then Hough transform is employed to estimate the parameter of the targets. The proposed algorithm has the following advantages: Compared with the Wigner-Hough transform method, the computational complexity of the sparse optimization is low due to the application of fast Fourier transform(FFT). And the computational cost of Hough transform is also greatly reduced because of the sparsity of the time-frequency distribution. Compared with the high order ambiguity function(HAF) method, the proposed method improves in terms of precision and robustness to noise. Simulation results show that compared with the HAF method, the required SNR and relative mean square error are 8 dB lower and 50 dB lower respectively in the proposed method. While processing the field experiment data, the execution time of Hough transform in the proposed method is only 4% of the Wigner-Hough transform method.展开更多
A new time-frequency representation called Dopplerlet transform, which uses the dilated, translated and modulated windowed Doppler signals as its basis functions, is proposed, and the Fourier transform, short-time Fou...A new time-frequency representation called Dopplerlet transform, which uses the dilated, translated and modulated windowed Doppler signals as its basis functions, is proposed, and the Fourier transform, short-time Fourier transform (including Gabor transform), wavelet transform, and chirplet transform are formulated in one framework of Dopplerlet transform accordingly.It is proved that the matching pursuits based on Dopplerlet basis functions are convergent, and that the energy of residual signals yielded in the decomposition process decays exponentially. Simulation results show that the matching pursuits with Dopplerlet basis functions can characterize compactly a nonstationary signal.展开更多
A novel method of EEG time-frequency analysis and representation based on a wavelet network is presented. The wavelet network model can represent the EEG data effectively. Based on the wavelet network model, a novel t...A novel method of EEG time-frequency analysis and representation based on a wavelet network is presented. The wavelet network model can represent the EEG data effectively. Based on the wavelet network model, a novel time-frequency energy distribution function is obtained, which has the same time-frequency resolution as Wigner-Ville distribution and is free of cross-term interference. There is a great potential for the use of the novel time-frequency representation of nonstationary biosignal based on a wavelet network in the field of the electrophysiological signal processing and time-frequency analysis.展开更多
High-precision and real-time diagnosis of sucker rod pumping system(SRPS)is important for quickly mastering oil well operations.Deep learning-based method for classifying the dynamometer card(DC)of oil wells is an eff...High-precision and real-time diagnosis of sucker rod pumping system(SRPS)is important for quickly mastering oil well operations.Deep learning-based method for classifying the dynamometer card(DC)of oil wells is an efficient diagnosis method.However,the input of the DC as a two-dimensional image into the deep learning framework suffers from low feature utilization and high computational effort.Additionally,different SRPSs in an oil field have various system parameters,and the same SRPS generates different DCs at different moments.Thus,there is heterogeneity in field data,which can dramatically impair the diagnostic accuracy.To solve the above problems,a working condition recognition method based on 4-segment time-frequency signature matrix(4S-TFSM)and deep learning is presented in this paper.First,the 4-segment time-frequency signature(4S-TFS)method that can reduce the computing power requirements is proposed for feature extraction of DC data.Subsequently,the 4S-TFSM is constructed by relative normalization and matrix calculation to synthesize the features of multiple data and solve the problem of data heterogeneity.Finally,a convolutional neural network(CNN),one of the deep learning frameworks,is used to determine the functioning conditions based on the 4S-TFSM.Experiments on field data verify that the proposed diagnostic method based on 4S-TFSM and CNN(4S-TFSM-CNN)can significantly improve the accuracy of working condition recognition with lower computational cost.To the best of our knowledge,this is the first work to discuss the effect of data heterogeneity on the working condition recognition performance of SRPS.展开更多
The conventional linear time-frequency analysis method cannot achieve high resolution and energy focusing in the time and frequency dimensions at the same time,especially in the low frequency region.In order to improv...The conventional linear time-frequency analysis method cannot achieve high resolution and energy focusing in the time and frequency dimensions at the same time,especially in the low frequency region.In order to improve the resolution of the linear time-frequency analysis method in the low-frequency region,we have proposed a W transform method,in which the instantaneous frequency is introduced as a parameter into the linear transformation,and the analysis time window is constructed which matches the instantaneous frequency of the seismic data.In this paper,the W transform method is compared with the Wigner-Ville distribution(WVD),a typical nonlinear time-frequency analysis method.The WVD method that shows the energy distribution in the time-frequency domain clearly indicates the gravitational center of time and the gravitational center of frequency of a wavelet,while the time-frequency spectrum of the W transform also has a clear gravitational center of energy focusing,because the instantaneous frequency corresponding to any time position is introduced as the transformation parameter.Therefore,the W transform can be benchmarked directly by the WVD method.We summarize the development of the W transform and three improved methods in recent years,and elaborate on the evolution of the standard W transform,the chirp-modulated W transform,the fractional-order W transform,and the linear canonical W transform.Through three application examples of W transform in fluvial sand body identification and reservoir prediction,it is verified that W transform can improve the resolution and energy focusing of time-frequency spectra.展开更多
BACKGROUND:Chlorfenapyr is used to kill insects that are resistant to organophosphorus insecticides.Chlorfenapyr poisoning has a high mortality rate and is difficult to treat.This article aims to review the mechanisms...BACKGROUND:Chlorfenapyr is used to kill insects that are resistant to organophosphorus insecticides.Chlorfenapyr poisoning has a high mortality rate and is difficult to treat.This article aims to review the mechanisms,clinical presentations,and treatment strategies for chlorfenapyr poisoning.DATA RESOURCES:We conducted a review of the literature using PubMed,Web of Science,and SpringerLink from their beginnings to the end of October 2023.The inclusion criteria were systematic reviews,clinical guidelines,retrospective studies,and case reports on chlorfenapyr poisoning that focused on its mechanisms,clinical presentations,and treatment strategies.The references in the included studies were also examined to identify additional sources.RESULTS:We included 57 studies in this review.Chlorfenapyr can be degraded into tralopyril,which is more toxic and reduces energy production by inhibiting the conversion of adenosine diphosphate to adenosine triphosphate.High fever and altered mental status are characteristic clinical presentations of chlorfenapyr poisoning.Once it occurs,respiratory failure occurs immediately,ultimately leading to cardiac arrest and death.Chlorfenapyr poisoning is diflcult to treat,and there is no specific antidote.CONCLUSION:Chlorfenapyr is a new pyrrole pesticide.Although it has been identified as a moderately toxic pesticide by the World Health Organization(WHO),the mortality rate of poisoned patients is extremely high.There is no specific antidote for chlorfenapyr poisoning.Therefore,based on the literature review,future efforts to explore rapid and effective detoxification methods,reconstitute intracellular oxidative phosphorylation couplings,identify early biomarkers of chlorfenapyr poisoning,and block the conversion of chlorfenapyr to tralopyril may be helpful for emergency physicians in the diagnosis and treatment of this disease.展开更多
Moyamoya disease (MMD) is a condition characterized by the gradual narrowing and blockage of blood vessels in the brain, specifically those in the circle of Willis and the arteries that supply it. This results in redu...Moyamoya disease (MMD) is a condition characterized by the gradual narrowing and blockage of blood vessels in the brain, specifically those in the circle of Willis and the arteries that supply it. This results in reduced blood flow and oxygen to the brain, leading to progressive symptoms and potential complications. The underlying pathophysiological mechanism remains elucidated. However, recent studies have highlighted numerous etiologic factors: abnormal immune complex responses, susceptibility genes, branched-chain amino acids, antibodies, heritable diseases, and acquired diseases, which may be the great potential triggers for the development of moyamoya disease. Its clinical presentation has varying degrees from transient asymptomatic events to significant neurological deficits. Moyamoya disease (MMD) shows different patterns in children and adults. Children with MMD are more susceptible to ischemic events due to decreased blood flow to the brain. Conversely, adults with MMD are more prone to hemorrhagic events involving brain bleeding. Children with MMD may experience a range of symptoms including motor impairments, sensory issues, seizures, headaches, dizziness, cognitive delays, or ongoing neurological problems. Although adults may present with similar clinical symptoms as children, they are more prone to experiencing sudden onset intraventricular, subarachnoid, or intracerebral hemorrhages. One of the challenges in moyamoya disease is the potential for misdiagnosis or delayed diagnosis, particularly when physicians fail to consider MMD as a possible cause in stroke patients. This review aims to provide a comprehensive overview of recent global studies on the pathophysiology of MMD, along with advancements in its management. Additionally, the review will delve into various surgical treatment options for MMD, as well as its rare occurrence alongside atrioventricular malformations. Exciting prospects include the use of autologous bone marrow transplant and the potential role of Connexin 43 protein treatment in the development of moyamoya disease.展开更多
Background: Globally, PRAKI is among the leading causes of death in pregnant women. The prevalence, causes and outcome of this condition vary among countries due to differences in environmental, socioeconomic, and hea...Background: Globally, PRAKI is among the leading causes of death in pregnant women. The prevalence, causes and outcome of this condition vary among countries due to differences in environmental, socioeconomic, and health delivery systems. The common causes that have been reported in several studies are PIH, Haemorrhages and Sepsis while the outcomes may be either complete renal recovery, progression to CKD and hence dialysis dependency or death. This study aimed at determining clinical presentation and treatment outcomes of Pregnancy-Related Acute Kidney Injury in Pregnant women admitted at the Benjamin Mkapa Hospital, Dodoma, Tanzania. Results: Out of 4007 pregnant women who were admitted to the maternity ward 51 pregnant women were found to have PRAKI. Of those with PRAKI, 74.5% were between 21 to 25 years. The leading causes of PRAKI were PPH 12 (23.53%), Eclampsia 12 (23.53%), and pre-eclampsia 12 (23.5%). Hemodialysis therapy was provided to 22 (43.1%) patients, 15 (29.4%) individuals recovered spontaneously with medical management and 14 (27.5%) missed haemodialysis therapy due to various reasons. The mortality due to PRAKI was 17 (33.3%). Conclusion and Recommendation: Pre-eclampsia/eclampsia and post-partum haemorrhage were found to be the main causes of PRAKI. The mortality related to PRAKI is high and Hemodialysis therapy is vital help to prevent deaths for pregnant women with PRAKI. Pregnant women who develop acute kidney injury should be followed closely and a nephrologist should be consulted early. Early referral should be done by the lower level facilities for all at-risk pregnant women to a specialized multidisciplinary health facility.展开更多
In the new era when demands for flexible intellectual skills are increasing,strengthening the cultivation of critical thinking ability of students has become one of the key purposes of higher education.This paper inte...In the new era when demands for flexible intellectual skills are increasing,strengthening the cultivation of critical thinking ability of students has become one of the key purposes of higher education.This paper intends to discuss how to cultivate students’critical thinking ability through English classroom presentations.It points out that during the whole process,teachers’guidance plays an indispensable role.Only when both teachers and students are aware that classroom presentations are a golden opportunity for the cultivation of students’critical thinking ability and carry this awareness into their English classes,can English presentations be brought into full play.展开更多
Based on the empirical investigation of presentation in college English classes for junior non-English majors in science and engineering universities,the author explains her own thinking on how to improve presentation...Based on the empirical investigation of presentation in college English classes for junior non-English majors in science and engineering universities,the author explains her own thinking on how to improve presentation teaching from four aspects:setting teaching objectives,selecting teaching contents,using teaching methods,and evaluating and implementing methods.展开更多
Seismic inversion can be divided into time-domain inversion and frequency-domain inversion based on different transform domains.Time-domain inversion has stronger stability and noise resistance compared to frequencydo...Seismic inversion can be divided into time-domain inversion and frequency-domain inversion based on different transform domains.Time-domain inversion has stronger stability and noise resistance compared to frequencydomain inversion.Frequency domain inversion has stronger ability to identify small-scale bodies and higher inversion resolution.Therefore,the research on the joint inversion method in the time-frequency domain is of great significance for improving the inversion resolution,stability,and noise resistance.The introduction of prior information constraints can effectively reduce ambiguity in the inversion process.However,the existing modeldriven time-frequency joint inversion assumes a specific prior distribution of the reservoir.These methods do not consider the original features of the data and are difficult to describe the relationship between time-domain features and frequency-domain features.Therefore,this paper proposes a high-resolution seismic inversion method based on joint data-driven in the time-frequency domain.The method is based on the impedance and reflectivity samples from logging,using joint dictionary learning to obtain adaptive feature information of the reservoir,and using sparse coefficients to capture the intrinsic relationship between impedance and reflectivity.The optimization result of the inversion is achieved through the regularization term of the joint dictionary sparse representation.We have finally achieved an inversion method that combines constraints on time-domain features and frequency features.By testing the model data and field data,the method has higher resolution in the inversion results and good noise resistance.展开更多
Piano art has a certain sense of musical beauty,and the performance of piano works can fully reflect the artistic and aesthetic connotations of music works.In piano performance,the aesthetic presentation of Chinese cl...Piano art has a certain sense of musical beauty,and the performance of piano works can fully reflect the artistic and aesthetic connotations of music works.In piano performance,the aesthetic presentation of Chinese classical music can further enhance the performance effect and give the audience and listeners a better artistic experience.Therefore,this paper analyzes the artistic characteristics of Chinese classical music and the characteristics of piano performance and discusses the aesthetic presentation and effect of Chinese classical music in piano performance.展开更多
A heterogeneous information network,which is composed of various types of nodes and edges,has a complex structure and rich information content,and is widely used in social networks,academic networks,e-commerce,and oth...A heterogeneous information network,which is composed of various types of nodes and edges,has a complex structure and rich information content,and is widely used in social networks,academic networks,e-commerce,and other fields.Link prediction,as a key task to reveal the unobserved relationships in the network,is of great significance in heterogeneous information networks.This paper reviews the application of presentation-based learning methods in link prediction of heterogeneous information networks.This paper introduces the basic concepts of heterogeneous information networks,and the theoretical basis of representation learning,and discusses the specific application of the deep learning model in node embedding learning and link prediction in detail.The effectiveness and superiority of these methods on multiple real data sets are demonstrated by experimental verification.展开更多
The Gabor and S transforms are frequently used in time-frequency decomposition methods. Constrained by the uncertainty principle, both transforms produce low-resolution time-frequency decomposition results in the time...The Gabor and S transforms are frequently used in time-frequency decomposition methods. Constrained by the uncertainty principle, both transforms produce low-resolution time-frequency decomposition results in the time and frequency domains. To improve the resolution of the time-frequency decomposition results, we use the instantaneous frequency distribution function(IFDF) to express the seismic signal. When the instantaneous frequencies of the nonstationary signal satisfy the requirements of the uncertainty principle, the support of IFDF is just the support of the amplitude ridges in the signal obtained using the short-time Fourier transform. Based on this feature, we propose a new iteration algorithm to achieve the sparse time-frequency decomposition of the signal. The iteration algorithm uses the support of the amplitude ridges of the residual signal obtained with the short-time Fourier transform to update the time-frequency components of the signal. The summation of the updated time-frequency components in each iteration is the result of the sparse timefrequency decomposition. Numerical examples show that the proposed method improves the resolution of the time-frequency decomposition results and the accuracy of the analysis of the nonstationary signal. We also use the proposed method to attenuate the ground roll of field seismic data with good results.展开更多
Predicting the time-varying auto-spectral density of a spacecraft in high-altitude orbits requires an accurate model for the non-stationary random vibration signals with densely spaced modal frequency. The traditional...Predicting the time-varying auto-spectral density of a spacecraft in high-altitude orbits requires an accurate model for the non-stationary random vibration signals with densely spaced modal frequency. The traditional time-varying algorithm limits prediction accuracy, thus affecting a number of operational decisions. To solve this problem, a time-varying auto regressive (TVAR) model based on the process neural network (PNN) and the empirical mode decomposition (EMD) is proposed. The time-varying system is tracked on-line by establishing a time-varying parameter model, and then the relevant parameter spectrum is obtained. Firstly, the EMD method is utilized to decompose the signal into several intrinsic mode functions (IMFs). Then for each IMF, the PNN is established and the time-varying auto-spectral density is obtained. Finally, the time-frequency distribution of the signals can be reconstructed by linear superposition. The simulation and the analytical results from an example demonstrate that this approach possesses simplicity, effectiveness, and feasibility, as well as higher frequency resolution.展开更多
基金This project was supported by the National Natural Science Foundation of China (60472102)Shanghai Leading Academic Discipline Project (T0103).
文摘A localized parametric time-sheared Gabor atom is derived by convolving a linear frequency modulated factor, modulating in frequency and translating in time to a dilated Gaussian function, which is the generalization of Gabor atom and is more delicate for matching most of the signals encountered in practice, especially for those having frequency dispersion characteristics. The time-frequency distribution of this atom concentrates in its time center and frequency center along energy curve, with the curve being oblique to a certain extent along the time axis. A novel parametric adaptive time-frequency distribution based on a set of the derived atoms is then proposed using a adaptive signal subspace decomposition method in frequency domain, which is non-negative time-frequency energy distribution and free of cross-term interference for multicomponent signals. The results of numerical simulation manifest the effectiveness of the approach in time-frequency representation and signal de-noising processing.
基金supported by the National Natural Science Foundation of China(61072120)
文摘This paper deals with the blind separation of nonstation-ary sources and direction-of-arrival (DOA) estimation in the under-determined case, when there are more sources than sensors. We assume the sources to be time-frequency (TF) disjoint to a certain extent. In particular, the number of sources presented at any TF neighborhood is strictly less than that of sensors. We can identify the real number of active sources and achieve separation in any TF neighborhood by the sparse representation method. Compared with the subspace-based algorithm under the same sparseness assumption, which suffers from the extra noise effect since it can-not estimate the true number of active sources, the proposed algorithm can estimate the number of active sources and their cor-responding TF values in any TF neighborhood simultaneously. An-other contribution of this paper is a new estimation procedure for the DOA of sources in the underdetermined case, which combines the TF sparseness of sources and the clustering technique. Sim-ulation results demonstrate the validity and high performance of the proposed algorithm in both blind source separation (BSS) and DOA estimation.
基金supported by the National Natural Science Foundation of China(611011726137118461301262)
文摘This paper proposes a new method for estimating the parameter of maneuvering targets based on sparse time-frequency transform in over-the-horizon radar(OTHR). In this method, the sparse time-frequency distribution of the radar echo is obtained by solving a sparse optimization problem based on the short-time Fourier transform. Then Hough transform is employed to estimate the parameter of the targets. The proposed algorithm has the following advantages: Compared with the Wigner-Hough transform method, the computational complexity of the sparse optimization is low due to the application of fast Fourier transform(FFT). And the computational cost of Hough transform is also greatly reduced because of the sparsity of the time-frequency distribution. Compared with the high order ambiguity function(HAF) method, the proposed method improves in terms of precision and robustness to noise. Simulation results show that compared with the HAF method, the required SNR and relative mean square error are 8 dB lower and 50 dB lower respectively in the proposed method. While processing the field experiment data, the execution time of Hough transform in the proposed method is only 4% of the Wigner-Hough transform method.
基金Supported by the National Natural Science Fundation of China(Grant No.69775009)
文摘A new time-frequency representation called Dopplerlet transform, which uses the dilated, translated and modulated windowed Doppler signals as its basis functions, is proposed, and the Fourier transform, short-time Fourier transform (including Gabor transform), wavelet transform, and chirplet transform are formulated in one framework of Dopplerlet transform accordingly.It is proved that the matching pursuits based on Dopplerlet basis functions are convergent, and that the energy of residual signals yielded in the decomposition process decays exponentially. Simulation results show that the matching pursuits with Dopplerlet basis functions can characterize compactly a nonstationary signal.
基金This work is Funded in part by the Science Foundation of Shandong Province (No.Y2000C25 and No.Y2001C02)
文摘A novel method of EEG time-frequency analysis and representation based on a wavelet network is presented. The wavelet network model can represent the EEG data effectively. Based on the wavelet network model, a novel time-frequency energy distribution function is obtained, which has the same time-frequency resolution as Wigner-Ville distribution and is free of cross-term interference. There is a great potential for the use of the novel time-frequency representation of nonstationary biosignal based on a wavelet network in the field of the electrophysiological signal processing and time-frequency analysis.
基金We would like to thank the associate editor and the reviewers for their constructive comments.This work was supported in part by the National Natural Science Foundation of China under Grant 62203234in part by the State Key Laboratory of Robotics of China under Grant 2023-Z03+1 种基金in part by the Natural Science Foundation of Liaoning Province under Grant 2023-BS-025in part by the Research Program of Liaoning Liaohe Laboratory under Grant LLL23ZZ-02-02.
文摘High-precision and real-time diagnosis of sucker rod pumping system(SRPS)is important for quickly mastering oil well operations.Deep learning-based method for classifying the dynamometer card(DC)of oil wells is an efficient diagnosis method.However,the input of the DC as a two-dimensional image into the deep learning framework suffers from low feature utilization and high computational effort.Additionally,different SRPSs in an oil field have various system parameters,and the same SRPS generates different DCs at different moments.Thus,there is heterogeneity in field data,which can dramatically impair the diagnostic accuracy.To solve the above problems,a working condition recognition method based on 4-segment time-frequency signature matrix(4S-TFSM)and deep learning is presented in this paper.First,the 4-segment time-frequency signature(4S-TFS)method that can reduce the computing power requirements is proposed for feature extraction of DC data.Subsequently,the 4S-TFSM is constructed by relative normalization and matrix calculation to synthesize the features of multiple data and solve the problem of data heterogeneity.Finally,a convolutional neural network(CNN),one of the deep learning frameworks,is used to determine the functioning conditions based on the 4S-TFSM.Experiments on field data verify that the proposed diagnostic method based on 4S-TFSM and CNN(4S-TFSM-CNN)can significantly improve the accuracy of working condition recognition with lower computational cost.To the best of our knowledge,this is the first work to discuss the effect of data heterogeneity on the working condition recognition performance of SRPS.
基金Supported by the National Science Foundation of China(42055402)。
文摘The conventional linear time-frequency analysis method cannot achieve high resolution and energy focusing in the time and frequency dimensions at the same time,especially in the low frequency region.In order to improve the resolution of the linear time-frequency analysis method in the low-frequency region,we have proposed a W transform method,in which the instantaneous frequency is introduced as a parameter into the linear transformation,and the analysis time window is constructed which matches the instantaneous frequency of the seismic data.In this paper,the W transform method is compared with the Wigner-Ville distribution(WVD),a typical nonlinear time-frequency analysis method.The WVD method that shows the energy distribution in the time-frequency domain clearly indicates the gravitational center of time and the gravitational center of frequency of a wavelet,while the time-frequency spectrum of the W transform also has a clear gravitational center of energy focusing,because the instantaneous frequency corresponding to any time position is introduced as the transformation parameter.Therefore,the W transform can be benchmarked directly by the WVD method.We summarize the development of the W transform and three improved methods in recent years,and elaborate on the evolution of the standard W transform,the chirp-modulated W transform,the fractional-order W transform,and the linear canonical W transform.Through three application examples of W transform in fluvial sand body identification and reservoir prediction,it is verified that W transform can improve the resolution and energy focusing of time-frequency spectra.
基金supported by the Research Foundation of Ningbo No.2 Hospital (2023HMKY49)Ningbo Key Support Medical Discipline (2022-F16)。
文摘BACKGROUND:Chlorfenapyr is used to kill insects that are resistant to organophosphorus insecticides.Chlorfenapyr poisoning has a high mortality rate and is difficult to treat.This article aims to review the mechanisms,clinical presentations,and treatment strategies for chlorfenapyr poisoning.DATA RESOURCES:We conducted a review of the literature using PubMed,Web of Science,and SpringerLink from their beginnings to the end of October 2023.The inclusion criteria were systematic reviews,clinical guidelines,retrospective studies,and case reports on chlorfenapyr poisoning that focused on its mechanisms,clinical presentations,and treatment strategies.The references in the included studies were also examined to identify additional sources.RESULTS:We included 57 studies in this review.Chlorfenapyr can be degraded into tralopyril,which is more toxic and reduces energy production by inhibiting the conversion of adenosine diphosphate to adenosine triphosphate.High fever and altered mental status are characteristic clinical presentations of chlorfenapyr poisoning.Once it occurs,respiratory failure occurs immediately,ultimately leading to cardiac arrest and death.Chlorfenapyr poisoning is diflcult to treat,and there is no specific antidote.CONCLUSION:Chlorfenapyr is a new pyrrole pesticide.Although it has been identified as a moderately toxic pesticide by the World Health Organization(WHO),the mortality rate of poisoned patients is extremely high.There is no specific antidote for chlorfenapyr poisoning.Therefore,based on the literature review,future efforts to explore rapid and effective detoxification methods,reconstitute intracellular oxidative phosphorylation couplings,identify early biomarkers of chlorfenapyr poisoning,and block the conversion of chlorfenapyr to tralopyril may be helpful for emergency physicians in the diagnosis and treatment of this disease.
文摘Moyamoya disease (MMD) is a condition characterized by the gradual narrowing and blockage of blood vessels in the brain, specifically those in the circle of Willis and the arteries that supply it. This results in reduced blood flow and oxygen to the brain, leading to progressive symptoms and potential complications. The underlying pathophysiological mechanism remains elucidated. However, recent studies have highlighted numerous etiologic factors: abnormal immune complex responses, susceptibility genes, branched-chain amino acids, antibodies, heritable diseases, and acquired diseases, which may be the great potential triggers for the development of moyamoya disease. Its clinical presentation has varying degrees from transient asymptomatic events to significant neurological deficits. Moyamoya disease (MMD) shows different patterns in children and adults. Children with MMD are more susceptible to ischemic events due to decreased blood flow to the brain. Conversely, adults with MMD are more prone to hemorrhagic events involving brain bleeding. Children with MMD may experience a range of symptoms including motor impairments, sensory issues, seizures, headaches, dizziness, cognitive delays, or ongoing neurological problems. Although adults may present with similar clinical symptoms as children, they are more prone to experiencing sudden onset intraventricular, subarachnoid, or intracerebral hemorrhages. One of the challenges in moyamoya disease is the potential for misdiagnosis or delayed diagnosis, particularly when physicians fail to consider MMD as a possible cause in stroke patients. This review aims to provide a comprehensive overview of recent global studies on the pathophysiology of MMD, along with advancements in its management. Additionally, the review will delve into various surgical treatment options for MMD, as well as its rare occurrence alongside atrioventricular malformations. Exciting prospects include the use of autologous bone marrow transplant and the potential role of Connexin 43 protein treatment in the development of moyamoya disease.
文摘Background: Globally, PRAKI is among the leading causes of death in pregnant women. The prevalence, causes and outcome of this condition vary among countries due to differences in environmental, socioeconomic, and health delivery systems. The common causes that have been reported in several studies are PIH, Haemorrhages and Sepsis while the outcomes may be either complete renal recovery, progression to CKD and hence dialysis dependency or death. This study aimed at determining clinical presentation and treatment outcomes of Pregnancy-Related Acute Kidney Injury in Pregnant women admitted at the Benjamin Mkapa Hospital, Dodoma, Tanzania. Results: Out of 4007 pregnant women who were admitted to the maternity ward 51 pregnant women were found to have PRAKI. Of those with PRAKI, 74.5% were between 21 to 25 years. The leading causes of PRAKI were PPH 12 (23.53%), Eclampsia 12 (23.53%), and pre-eclampsia 12 (23.5%). Hemodialysis therapy was provided to 22 (43.1%) patients, 15 (29.4%) individuals recovered spontaneously with medical management and 14 (27.5%) missed haemodialysis therapy due to various reasons. The mortality due to PRAKI was 17 (33.3%). Conclusion and Recommendation: Pre-eclampsia/eclampsia and post-partum haemorrhage were found to be the main causes of PRAKI. The mortality related to PRAKI is high and Hemodialysis therapy is vital help to prevent deaths for pregnant women with PRAKI. Pregnant women who develop acute kidney injury should be followed closely and a nephrologist should be consulted early. Early referral should be done by the lower level facilities for all at-risk pregnant women to a specialized multidisciplinary health facility.
文摘In the new era when demands for flexible intellectual skills are increasing,strengthening the cultivation of critical thinking ability of students has become one of the key purposes of higher education.This paper intends to discuss how to cultivate students’critical thinking ability through English classroom presentations.It points out that during the whole process,teachers’guidance plays an indispensable role.Only when both teachers and students are aware that classroom presentations are a golden opportunity for the cultivation of students’critical thinking ability and carry this awareness into their English classes,can English presentations be brought into full play.
文摘Based on the empirical investigation of presentation in college English classes for junior non-English majors in science and engineering universities,the author explains her own thinking on how to improve presentation teaching from four aspects:setting teaching objectives,selecting teaching contents,using teaching methods,and evaluating and implementing methods.
文摘Seismic inversion can be divided into time-domain inversion and frequency-domain inversion based on different transform domains.Time-domain inversion has stronger stability and noise resistance compared to frequencydomain inversion.Frequency domain inversion has stronger ability to identify small-scale bodies and higher inversion resolution.Therefore,the research on the joint inversion method in the time-frequency domain is of great significance for improving the inversion resolution,stability,and noise resistance.The introduction of prior information constraints can effectively reduce ambiguity in the inversion process.However,the existing modeldriven time-frequency joint inversion assumes a specific prior distribution of the reservoir.These methods do not consider the original features of the data and are difficult to describe the relationship between time-domain features and frequency-domain features.Therefore,this paper proposes a high-resolution seismic inversion method based on joint data-driven in the time-frequency domain.The method is based on the impedance and reflectivity samples from logging,using joint dictionary learning to obtain adaptive feature information of the reservoir,and using sparse coefficients to capture the intrinsic relationship between impedance and reflectivity.The optimization result of the inversion is achieved through the regularization term of the joint dictionary sparse representation.We have finally achieved an inversion method that combines constraints on time-domain features and frequency features.By testing the model data and field data,the method has higher resolution in the inversion results and good noise resistance.
基金Liaoning Provincial Education Science Planning 2024 Annual Project“Research on the Status Quo of Artistic Literacy and Optimization Strategies for Higher Vocational Pre-School Education Majors”(JG24EB133)。
文摘Piano art has a certain sense of musical beauty,and the performance of piano works can fully reflect the artistic and aesthetic connotations of music works.In piano performance,the aesthetic presentation of Chinese classical music can further enhance the performance effect and give the audience and listeners a better artistic experience.Therefore,this paper analyzes the artistic characteristics of Chinese classical music and the characteristics of piano performance and discusses the aesthetic presentation and effect of Chinese classical music in piano performance.
基金Science and Technology Research Project of Jiangxi Provincial Department of Education(Project No.GJJ211348,GJJ211347 and GJJ2201056)。
文摘A heterogeneous information network,which is composed of various types of nodes and edges,has a complex structure and rich information content,and is widely used in social networks,academic networks,e-commerce,and other fields.Link prediction,as a key task to reveal the unobserved relationships in the network,is of great significance in heterogeneous information networks.This paper reviews the application of presentation-based learning methods in link prediction of heterogeneous information networks.This paper introduces the basic concepts of heterogeneous information networks,and the theoretical basis of representation learning,and discusses the specific application of the deep learning model in node embedding learning and link prediction in detail.The effectiveness and superiority of these methods on multiple real data sets are demonstrated by experimental verification.
基金funded by the National Basic Research Program of China(973 Program)(No.2011 CB201002)the National Natural Science Foundation of China(No.41374117)the great and special projects(2011ZX05005–005-008HZ and 2011ZX05006-002)
文摘The Gabor and S transforms are frequently used in time-frequency decomposition methods. Constrained by the uncertainty principle, both transforms produce low-resolution time-frequency decomposition results in the time and frequency domains. To improve the resolution of the time-frequency decomposition results, we use the instantaneous frequency distribution function(IFDF) to express the seismic signal. When the instantaneous frequencies of the nonstationary signal satisfy the requirements of the uncertainty principle, the support of IFDF is just the support of the amplitude ridges in the signal obtained using the short-time Fourier transform. Based on this feature, we propose a new iteration algorithm to achieve the sparse time-frequency decomposition of the signal. The iteration algorithm uses the support of the amplitude ridges of the residual signal obtained with the short-time Fourier transform to update the time-frequency components of the signal. The summation of the updated time-frequency components in each iteration is the result of the sparse timefrequency decomposition. Numerical examples show that the proposed method improves the resolution of the time-frequency decomposition results and the accuracy of the analysis of the nonstationary signal. We also use the proposed method to attenuate the ground roll of field seismic data with good results.
基金Aeronautical Science Foundation of China (20071551016)
文摘Predicting the time-varying auto-spectral density of a spacecraft in high-altitude orbits requires an accurate model for the non-stationary random vibration signals with densely spaced modal frequency. The traditional time-varying algorithm limits prediction accuracy, thus affecting a number of operational decisions. To solve this problem, a time-varying auto regressive (TVAR) model based on the process neural network (PNN) and the empirical mode decomposition (EMD) is proposed. The time-varying system is tracked on-line by establishing a time-varying parameter model, and then the relevant parameter spectrum is obtained. Firstly, the EMD method is utilized to decompose the signal into several intrinsic mode functions (IMFs). Then for each IMF, the PNN is established and the time-varying auto-spectral density is obtained. Finally, the time-frequency distribution of the signals can be reconstructed by linear superposition. The simulation and the analytical results from an example demonstrate that this approach possesses simplicity, effectiveness, and feasibility, as well as higher frequency resolution.