Based on the Morlet wavelet transform and digital data from the Fushun and Beizhen seismic stations, Liaoning Province, we put forward a new method in the paper, called time-frequency energy attenuation factor (α-va...Based on the Morlet wavelet transform and digital data from the Fushun and Beizhen seismic stations, Liaoning Province, we put forward a new method in the paper, called time-frequency energy attenuation factor (α-value). The characteristics of the α-value and its variation with magnitude of natural and mine earthquakes are studied, and the statistic relations between the α-value and specific earthquake magnitude are obtained. From the results, some conclusions can be drawn as follows: (1) in general, the α-values of mine and natural earthquakes of the same intensity have obvious difference and the ranges of their variation do not overlap each other; (2) the α-value decreases with the increase of earthquake magnitude, and the α-value of mine earthquake decreases faster than that of natural earthquake; (3) based on the earthquake magnitude and on the relations between the α-value and earthquake magnitude, we can distinguish the mine earthquakes from the natural ones; (4) the difference in focal mechanism of mine and natural earthquakes would be the main cause for obvious difference of the α-value; (5) the α-value variation is relatively steady for mine and natural earthquakes that occur in the same region, but it has obvious regional difference. The above results are of inspirational meaning for the study of abnormal change of the α-value before strong earthquakes.展开更多
Accurate identification of protein-coding regions (exons) in DNA sequences has been a challenging task in bioinformatics. Particularly the coding regions have a 3-base periodicity, which forms the basis of all exon ...Accurate identification of protein-coding regions (exons) in DNA sequences has been a challenging task in bioinformatics. Particularly the coding regions have a 3-base periodicity, which forms the basis of all exon identifica- tion methods. Many signal processing tools and techniques have been applied successfully for the identification task but still improvement in this direction is needed. In this paper, we have introduced a new promising model-independent time-frequency filtering technique based on S-transform for accurate identification of the coding regions. The S-transform is a powerful linear time-frequency representation useful for filtering in time-frequency domain. The potential of the proposed technique has been assessed through simulation study and the results obtained have been compared with the existing methods using standard datasets. The comparative study demonstrates that the proposed method outperforms its counterparts in identifying the coding regions.展开更多
文摘Based on the Morlet wavelet transform and digital data from the Fushun and Beizhen seismic stations, Liaoning Province, we put forward a new method in the paper, called time-frequency energy attenuation factor (α-value). The characteristics of the α-value and its variation with magnitude of natural and mine earthquakes are studied, and the statistic relations between the α-value and specific earthquake magnitude are obtained. From the results, some conclusions can be drawn as follows: (1) in general, the α-values of mine and natural earthquakes of the same intensity have obvious difference and the ranges of their variation do not overlap each other; (2) the α-value decreases with the increase of earthquake magnitude, and the α-value of mine earthquake decreases faster than that of natural earthquake; (3) based on the earthquake magnitude and on the relations between the α-value and earthquake magnitude, we can distinguish the mine earthquakes from the natural ones; (4) the difference in focal mechanism of mine and natural earthquakes would be the main cause for obvious difference of the α-value; (5) the α-value variation is relatively steady for mine and natural earthquakes that occur in the same region, but it has obvious regional difference. The above results are of inspirational meaning for the study of abnormal change of the α-value before strong earthquakes.
文摘Accurate identification of protein-coding regions (exons) in DNA sequences has been a challenging task in bioinformatics. Particularly the coding regions have a 3-base periodicity, which forms the basis of all exon identifica- tion methods. Many signal processing tools and techniques have been applied successfully for the identification task but still improvement in this direction is needed. In this paper, we have introduced a new promising model-independent time-frequency filtering technique based on S-transform for accurate identification of the coding regions. The S-transform is a powerful linear time-frequency representation useful for filtering in time-frequency domain. The potential of the proposed technique has been assessed through simulation study and the results obtained have been compared with the existing methods using standard datasets. The comparative study demonstrates that the proposed method outperforms its counterparts in identifying the coding regions.