This paper proposes a novel open set recognition method,the Spatial Distribution Feature Extraction Network(SDFEN),to address the problem of electromagnetic signal recognition in an open environment.The spatial distri...This paper proposes a novel open set recognition method,the Spatial Distribution Feature Extraction Network(SDFEN),to address the problem of electromagnetic signal recognition in an open environment.The spatial distribution feature extraction layer in SDFEN replaces convolutional output neural networks with the spatial distribution features that focus more on inter-sample information by incorporating class center vectors.The designed hybrid loss function considers both intra-class distance and inter-class distance,thereby enhancing the similarity among samples of the same class and increasing the dissimilarity between samples of different classes during training.Consequently,this method allows unknown classes to occupy a larger space in the feature space.This reduces the possibility of overlap with known class samples and makes the boundaries between known and unknown samples more distinct.Additionally,the feature comparator threshold can be used to reject unknown samples.For signal open set recognition,seven methods,including the proposed method,are applied to two kinds of electromagnetic signal data:modulation signal and real-world emitter.The experimental results demonstrate that the proposed method outperforms the other six methods overall in a simulated open environment.Specifically,compared to the state-of-the-art Openmax method,the novel method achieves up to 8.87%and 5.25%higher micro-F-measures,respectively.展开更多
Global navigation satellite system(GNSS)technique has irreplaceable advantages in the continuous monitoring of surface deformation.Reducing noise to improve the signal-to-noise ratio(SNR)and extract the concerned sign...Global navigation satellite system(GNSS)technique has irreplaceable advantages in the continuous monitoring of surface deformation.Reducing noise to improve the signal-to-noise ratio(SNR)and extract the concerned signals is of great significance.As an improved algorithm of empirical mode decomposition(EMD),complete ensemble empirical mode decomposition with adaptive noise(CEEMDAN)algorithm has better signal processing ability.Using the CEEMDAN algorithm,the height time series of 29GNSS stations in Chinese mainland were analyzed,and good denoising effects and extraction from periodic signals were achieved.The numerical results showed that the annual signal obtained with the CEEMDAN algorithm was significantly based on Lomb_Scargle spectrum analysis,and large differences in the long-term signals were found between the stations at different locations in Chinese mainland.With respect to data denoising,compared with the EMD and wavelet denoising algorithms,the CEEMDAN algorithm respectively improved the SNR by 29.35% and 36.54%,increased the correlation coefficient by 8.67% and 11.96%,and reduced root mean square error(RMSE)by 44.68% and 43.48%,indicating that the CEEMDAN algorithm had better denoising behavior than the other two algorithms.In addition,the results demonstrated that different denoising methods had little influence on estimating the annual vertical deformation velocity.The extraction of periodic signals showed that more components were retained by using the CEEMDAN algorithm than the EMD algorithm,which indicated that the CEEMDAN algorithm had advantages over frequency aliasing.In conclusion,the CEEMDAN algorithm was recommended for processing the GNSS height time series to analyze the vertical deformation due to its excellent features of denoising and the extraction of periodic signals.展开更多
Aim To extract harmonic frequencies of helicopter acoustic signal as features for hel icopter identification. Methods Estimation of signal parameters via rotational invariance techniques(ESPRIT) was selected to ext...Aim To extract harmonic frequencies of helicopter acoustic signal as features for hel icopter identification. Methods Estimation of signal parameters via rotational invariance techniques(ESPRIT) was selected to extract harmonic frequencies from really measured helicopter acoustic signal and an algorithm based on the SVD TLS was used. Results ESPRIT correctly extracted harmonic frequencies of helicopter using the data of limited length under the variousflight conditions. Conclusion ESPRIT is an effective method of extracting harmonic frequencies and using harmonic frequencies of helicopter acoustic signal to recognize helicopter is feasible.展开更多
A method is proposed for the analysis of vibration signals from components ofrotating machines, based on the wavelet packet transformation (WPT) and the underlying physicalconcepts of modulation mechanism. The method ...A method is proposed for the analysis of vibration signals from components ofrotating machines, based on the wavelet packet transformation (WPT) and the underlying physicalconcepts of modulation mechanism. The method provides a finer analysis and better time-frequencylocalization capabilities than any other analysis methods. Both details and approximations are splitinto finer components and result in better-localized frequency ranges corresponding to each node ofa wavelet packet tree. For the punpose of feature extraction, a hard threshold is given and theenergy of the coefficients above the threshold is used, as a criterion for the selection of the bestvector. The feature extraction of a vibration signal is accomplished by computing thereconstruction signal and its spectrum. When applied to a rolling bear vibration signal featureextraction, the proposed method can lead to be very effective.展开更多
A novel class of periodically changing features hidden in radar pulse sequence environment,named G features,is proposed.Combining fractal theory and Hilbert-Huang transform,the features are extracted using changing ch...A novel class of periodically changing features hidden in radar pulse sequence environment,named G features,is proposed.Combining fractal theory and Hilbert-Huang transform,the features are extracted using changing characteristics of pulse parameters in radar emitter signals.The features can be applied in modern complex electronic warfare environment to address the issue of signal sorting when radar emitter pulse signal parameters severely or even completely overlap.Experiment results show that the proposed feature class and feature extraction method can discriminate periodically changing pulse sequence signal sorting features from radar pulse signal flow with complex variant features,therefore provide a new methodology for signal sorting.展开更多
This paper analyses a key problem in the quantification of pulse diagnosis. Due to the subjectivity and fuzziness of pulse diagnosis,quantitative methods are needed. To extract the parameters of pulse signals,the prer...This paper analyses a key problem in the quantification of pulse diagnosis. Due to the subjectivity and fuzziness of pulse diagnosis,quantitative methods are needed. To extract the parameters of pulse signals,the prerequisite is to detect the corners of pulse signals correctly. Up to now,the pulse parameters are mostly acquired by marking the pulse corners manually,which is an obstacle to modernize pulse diagnosis. Therefore,a new automatic parameters extraction approach for pulse signals using wavelet transform is presented. The results testified that the method we proposed is feasible and effective and can detect corners of pulse signals accurately,which can be expected to facilitate the modernization of pulse diagnosis.展开更多
The goal of this paper is to find an excellent adaptive window function for extracting the weak vibration signal and high frequency vibration signal under strong noise.The relationship between windowing transform andf...The goal of this paper is to find an excellent adaptive window function for extracting the weak vibration signal and high frequency vibration signal under strong noise.The relationship between windowing transform andfiltering is analyzed first in the paper.The advantage of adjustable time-frequency window of wavelet transform is introduced.Secondly the relationship between harmonic wavelet and multiple analytic band-pass filter is analyzed.The coherence of the multiple analytic band-pass filter and harmonic wavelet base function is discussed,and the characteristic that multiple analytic band-pass filter included in the harmonic wavelet transform is founded.Thirdly,by extending the harmonic wavelet transform,the concept of the adaptive harmonic window and its theoretical equation without decomposition are put forward in this paper.Then comparing with the Hanning window,the good performance of restraining side-lobe leakage possessed by adaptive harmonic window is shown,and the adaptive characteristics of window width changing and analytical center moving of the adaptive harmonic window are presented.Finally,the proposed adaptive harmonic window is applied to weak signal extraction and high frequency orbit extraction of high speed rotor under strong noise,and the satisfactory results are achieved.The application results show that the adaptive harmonic window function can be successfully applied to the actual engineering signal processing.展开更多
This paper presents a novel approach to extract the periodic signals masked by a chaotic carrier. It verifies that the driven Duffing oscillator is immune to the chaotic carrier and sensitive to certain periodic signa...This paper presents a novel approach to extract the periodic signals masked by a chaotic carrier. It verifies that the driven Duffing oscillator is immune to the chaotic carrier and sensitive to certain periodic signals. A preliminary detection scenario illustrates that the frequency and amplitude of the hidden sine wave signal can be extracted from the chaotic carrier by numerical simulation. The obtained results indicate that the hidden messages in chaotic secure communication can be eavesdropped utilizing Duffing oscillators.展开更多
The application scope of the forward scatter radar(FSR)based on the Global Navigation Satellite System(GNSS)can be expanded by improving the detection capability.Firstly,the forward-scatter signal model when the targe...The application scope of the forward scatter radar(FSR)based on the Global Navigation Satellite System(GNSS)can be expanded by improving the detection capability.Firstly,the forward-scatter signal model when the target crosses the baseline is constructed.Then,the detection method of the for-ward-scatter signal based on the Rényi entropy of time-fre-quency distribution is proposed and the detection performance with different time-frequency distributions is compared.Simula-tion results show that the method based on the smooth pseudo Wigner-Ville distribution(SPWVD)can achieve the best perfor-mance.Next,combined with the geometry of FSR,the influence on detection performance of the relative distance between the target and the baseline is analyzed.Finally,the proposed method is validated by the anechoic chamber measurements and the results show that the detection ability has a 10 dB improvement compared with the common constant false alarm rate(CFAR)detection.展开更多
Multi-radar signal separation is a critical process in modern reconnaissance systems. However, the complicated battlefield is typically confronted with increasing electronic equipment and complex radar waveforms. The ...Multi-radar signal separation is a critical process in modern reconnaissance systems. However, the complicated battlefield is typically confronted with increasing electronic equipment and complex radar waveforms. The intercepted signal is difficult to separate with conventional parameters because of severe overlapping in both time and frequency domains. On the contrary, time-frequency analysis maps the 1D signal into a 2D time-frequency plane, which provides a better insight into the signal than traditional methods. Particularly, the parameterized time-frequency analysis (PTFA) shows great potential in processing such non stationary signals. Five procedures for the PTFA are proposed to separate the overlapped multi-radar signal, including initiation, instantaneous frequency estimation with PTFA, signal demodulation, signal separation with adaptive filter and signal recovery. The proposed method is verified with both simulated and real signals, which shows good performance in the application on multi-radar signal separation.展开更多
Seismic signal is generally employed in moving target monitoring due to its robust characteristic.A recognition method for vehicle and personnel with seismic signal sensing system was proposed based on improved neural...Seismic signal is generally employed in moving target monitoring due to its robust characteristic.A recognition method for vehicle and personnel with seismic signal sensing system was proposed based on improved neural network.For analyzing the seismic signal of the moving objects,the seismic signal of person and vehicle was acquisitioned from the seismic sensor,and then feature vectors were extracted with combined methods after filter processing.Finally,these features were put into the improved BP neural network designed for effective signal classification.Compared with previous ways,it is demonstrated that the proposed system presents higher recognition accuracy and validity based on the experimental results.It also shows the effectiveness of the improved BP neural network.展开更多
With the new system radar put into practical use, the characteristics of complex radar signals are changing and developing. The traditional analysis method of one-dimensional transformation domain is no longer applica...With the new system radar put into practical use, the characteristics of complex radar signals are changing and developing. The traditional analysis method of one-dimensional transformation domain is no longer applicable to the modern radar signal processing, and it is necessary to seek new methods in the two-dimensional transformation domain. The time-frequency analysis method is the most widely used method in the two-dimensional transformation domain. In this paper, two typical time-frequency analysis methods of short-time Fourier transform and Wigner-Ville distribution are studied by analyzing the time-frequency transform of typical radar reconnaissance linear frequency modulation signal, aiming at the problem of low accuracy and sen-sitivity to the signal noise of common methods, the improved wavelet transform algorithm was proposed.展开更多
Early detection of sudden cardiac death may be used for surviving the life of cardiac patients. In this paper we have investigated an algorithm to detect and predict sudden cardiac death, by processing of heart rate v...Early detection of sudden cardiac death may be used for surviving the life of cardiac patients. In this paper we have investigated an algorithm to detect and predict sudden cardiac death, by processing of heart rate variability signal through the classical and time-frequency methods. At first, one minute of ECG signals, just before the cardiac death event are extracted and used to compute heart rate variability (HRV) signal. Five features in time domain and four features in frequency domain are extracted from the HRV signal and used as classical linear features. Then the Wigner Ville transform is applied to the HRV signal, and 11 extra features in the time-frequency (TF) domain are obtained. In order to improve the performance of classification, the principal component analysis (PCA) is applied to the obtained features vector. Finally a neural network classifier is applied to the reduced features. The obtained results show that the TF method can classify normal and SCD subjects, more efficiently than the classical methods. A MIT-BIH ECG database was used to evaluate the proposed method. The proposed method was implemented using MLP classifier and had 74.36% and 99.16% correct detection rate (accuracy) for classical features and TF method, respectively. Also, the accuracy of the KNN classifier were 73.87% and 96.04%.展开更多
In this paper, we propose extraction of signals correlated with noise in which they are buried. Proposed extraction method uses no a-priori information on the buried signal and works independently of the nature of noi...In this paper, we propose extraction of signals correlated with noise in which they are buried. Proposed extraction method uses no a-priori information on the buried signal and works independently of the nature of noise, correlated or not with the signal, colored or white, Gaussian or not, and locations of its spectral extent. Extraction of buried correlated signals is achieved without averaging in the time or frequency domain.展开更多
Focused on the non-statlonarity and real-time analysis of signal in flutter test with progression variable speed (FTPVS), a new method of recursive time-frequency analysis is presented. The time-varying system is tr...Focused on the non-statlonarity and real-time analysis of signal in flutter test with progression variable speed (FTPVS), a new method of recursive time-frequency analysis is presented. The time-varying system is tracked on-line by building a time-varying parameter model, and then the relevant parameter spectrum can be obtained. The feasibility and advantages of the method are examined by digital simulation. The results of FTPVS at low-speed wind-tunnel promise the engineering application perspective of the method.展开更多
Several popular time-frequency techniques,including the Wigner-Ville distribution,smoothed pseudo-Wigner-Ville distribution,wavelet transform,synchrosqueezing transform,Hilbert-Huang transform,and Gabor-Wigner transfo...Several popular time-frequency techniques,including the Wigner-Ville distribution,smoothed pseudo-Wigner-Ville distribution,wavelet transform,synchrosqueezing transform,Hilbert-Huang transform,and Gabor-Wigner transform,are investigated to determine how well they can identify damage to structures.In this work,a synchroextracting transform(SET)based on the short-time Fourier transform is proposed for estimating post-earthquake structural damage.The performance of SET for artificially generated signals and actual earthquake signals is examined with existing methods.Amongst other tested techniques,SET improves frequency resolution to a great extent by lowering the influence of smearing along the time-frequency plane.Hence,interpretation and readability with the proposed method are improved,and small changes in the time-varying frequency characteristics of the damaged buildings are easily detected through the SET method.展开更多
This paper presents an accurate small-signal model for multi-gate GaAs pHEMTs in switching-mode.The extraction method for the proposed model is developed.A 2-gate switch structure is fabricated on a commercial 0.5μm ...This paper presents an accurate small-signal model for multi-gate GaAs pHEMTs in switching-mode.The extraction method for the proposed model is developed.A 2-gate switch structure is fabricated on a commercial 0.5μm AlGaAs/GaAs pHEMT technology to verify the proposed model.Excellent agreement has been obtained between the measured and simulated results over a wide frequency range.展开更多
Based on the data synthesis simulation and the actual processing of the airgun seismic source signal,three quantitative indicators of signal-to-noise ratio,waveform correlation coefficient and phase offset,are superim...Based on the data synthesis simulation and the actual processing of the airgun seismic source signal,three quantitative indicators of signal-to-noise ratio,waveform correlation coefficient and phase offset,are superimposed. We systematically evaluate the functions of the following three stack methods including linearity,phase weighting and S-transform in the extraction of weak signals under strong background noise and quantitatively estimate the reliability of the stack results. Through the comprehensive discussion of the above three methods of stack results,the preliminary comparative analysis believes that the linear stack signal-to-noise ratio is low,but the waveform distortion is minimal; the phase-weighted superimposed signal-to-noise ratio is high and the phase offset is small,but the results of the waveform quality and linear stack are larger than the deviation; the S-transform stack has a relatively higher signal-to-noise ratio and a small loss of waveform amplitude,but there is a certain phase shift phenomenon. It is therefore suggested that linear stack technology should be used when the requirements of both waveform quality and time precision are high. However,the selection of the stack method when the airgun source excitation is limited should be emphasized. If high fidelity is required, the S-transform stack method should be selected; if the required time is high,accuracy can be selected by phase-weighted stack method to achieve reasonable extraction of weak signals.展开更多
This paper presents an evaluation of time-frequency methods for the analysis of seismic signals.Background of the present work is to describe,how the frequency content of the signal is changing in time.The theoretical...This paper presents an evaluation of time-frequency methods for the analysis of seismic signals.Background of the present work is to describe,how the frequency content of the signal is changing in time.The theoretical basis of short time Fourier transform,Gabor transform,wavelet transform,S-transform,Wigner distribution,Wigner-Ville distribution,Pseudo Wigner-Ville distribution,Smoothed Pseudo Wigner-Ville distribution,Choi-William distribution,Born-Jordan Distribution and cone shape distribution are presented.The strengths and weaknesses of each technique are verified by applying them to a particular synthetic seismic signal and recorded real time earthquake data.展开更多
In recent years,the time-frequency overlapping multi-carrier signal has been a novel and valuable topic in blind signal processing,especially in the non-cooperative receiving field.But there is little related research...In recent years,the time-frequency overlapping multi-carrier signal has been a novel and valuable topic in blind signal processing,especially in the non-cooperative receiving field.But there is little related research in public published papers.This paper proposes two timing estimation algorithms,which are non-data-aided and based on the cyclic auto-correlation function.In order to evaluate the performance of the proposed algorithms,the theoretical bound of the timing estimation is derived.According to the analyses and simulation results,the effectiveness of the proposed algorithms has been demonstrated.It shows that MethodⅠhas better performance than MethodⅡ.However,MethodⅡdoes not need prior information,so it has a wider range of applications.展开更多
文摘This paper proposes a novel open set recognition method,the Spatial Distribution Feature Extraction Network(SDFEN),to address the problem of electromagnetic signal recognition in an open environment.The spatial distribution feature extraction layer in SDFEN replaces convolutional output neural networks with the spatial distribution features that focus more on inter-sample information by incorporating class center vectors.The designed hybrid loss function considers both intra-class distance and inter-class distance,thereby enhancing the similarity among samples of the same class and increasing the dissimilarity between samples of different classes during training.Consequently,this method allows unknown classes to occupy a larger space in the feature space.This reduces the possibility of overlap with known class samples and makes the boundaries between known and unknown samples more distinct.Additionally,the feature comparator threshold can be used to reject unknown samples.For signal open set recognition,seven methods,including the proposed method,are applied to two kinds of electromagnetic signal data:modulation signal and real-world emitter.The experimental results demonstrate that the proposed method outperforms the other six methods overall in a simulated open environment.Specifically,compared to the state-of-the-art Openmax method,the novel method achieves up to 8.87%and 5.25%higher micro-F-measures,respectively.
基金supported by the National Natural Science Foundation of China(Grant No.42192535,42174012,42174101,41974023)the Open Fund of Hubei Luojia Laboratory(Grant No.S22H640201)。
文摘Global navigation satellite system(GNSS)technique has irreplaceable advantages in the continuous monitoring of surface deformation.Reducing noise to improve the signal-to-noise ratio(SNR)and extract the concerned signals is of great significance.As an improved algorithm of empirical mode decomposition(EMD),complete ensemble empirical mode decomposition with adaptive noise(CEEMDAN)algorithm has better signal processing ability.Using the CEEMDAN algorithm,the height time series of 29GNSS stations in Chinese mainland were analyzed,and good denoising effects and extraction from periodic signals were achieved.The numerical results showed that the annual signal obtained with the CEEMDAN algorithm was significantly based on Lomb_Scargle spectrum analysis,and large differences in the long-term signals were found between the stations at different locations in Chinese mainland.With respect to data denoising,compared with the EMD and wavelet denoising algorithms,the CEEMDAN algorithm respectively improved the SNR by 29.35% and 36.54%,increased the correlation coefficient by 8.67% and 11.96%,and reduced root mean square error(RMSE)by 44.68% and 43.48%,indicating that the CEEMDAN algorithm had better denoising behavior than the other two algorithms.In addition,the results demonstrated that different denoising methods had little influence on estimating the annual vertical deformation velocity.The extraction of periodic signals showed that more components were retained by using the CEEMDAN algorithm than the EMD algorithm,which indicated that the CEEMDAN algorithm had advantages over frequency aliasing.In conclusion,the CEEMDAN algorithm was recommended for processing the GNSS height time series to analyze the vertical deformation due to its excellent features of denoising and the extraction of periodic signals.
文摘Aim To extract harmonic frequencies of helicopter acoustic signal as features for hel icopter identification. Methods Estimation of signal parameters via rotational invariance techniques(ESPRIT) was selected to extract harmonic frequencies from really measured helicopter acoustic signal and an algorithm based on the SVD TLS was used. Results ESPRIT correctly extracted harmonic frequencies of helicopter using the data of limited length under the variousflight conditions. Conclusion ESPRIT is an effective method of extracting harmonic frequencies and using harmonic frequencies of helicopter acoustic signal to recognize helicopter is feasible.
文摘A method is proposed for the analysis of vibration signals from components ofrotating machines, based on the wavelet packet transformation (WPT) and the underlying physicalconcepts of modulation mechanism. The method provides a finer analysis and better time-frequencylocalization capabilities than any other analysis methods. Both details and approximations are splitinto finer components and result in better-localized frequency ranges corresponding to each node ofa wavelet packet tree. For the punpose of feature extraction, a hard threshold is given and theenergy of the coefficients above the threshold is used, as a criterion for the selection of the bestvector. The feature extraction of a vibration signal is accomplished by computing thereconstruction signal and its spectrum. When applied to a rolling bear vibration signal featureextraction, the proposed method can lead to be very effective.
基金supported by the National Natural Science Foundation of China (60872108)the Postdoctoral Science Foundation of China(200902411+3 种基金20080430903)Heilongjiang Postdoctoral Financial Assistance (LBH-Z08129)the Scientific and Technological Creative Talents Special Research Foundation of Harbin Municipality (2008RFQXG030)Central University Basic Research Professional Expenses Special Fund Project
文摘A novel class of periodically changing features hidden in radar pulse sequence environment,named G features,is proposed.Combining fractal theory and Hilbert-Huang transform,the features are extracted using changing characteristics of pulse parameters in radar emitter signals.The features can be applied in modern complex electronic warfare environment to address the issue of signal sorting when radar emitter pulse signal parameters severely or even completely overlap.Experiment results show that the proposed feature class and feature extraction method can discriminate periodically changing pulse sequence signal sorting features from radar pulse signal flow with complex variant features,therefore provide a new methodology for signal sorting.
文摘This paper analyses a key problem in the quantification of pulse diagnosis. Due to the subjectivity and fuzziness of pulse diagnosis,quantitative methods are needed. To extract the parameters of pulse signals,the prerequisite is to detect the corners of pulse signals correctly. Up to now,the pulse parameters are mostly acquired by marking the pulse corners manually,which is an obstacle to modernize pulse diagnosis. Therefore,a new automatic parameters extraction approach for pulse signals using wavelet transform is presented. The results testified that the method we proposed is feasible and effective and can detect corners of pulse signals accurately,which can be expected to facilitate the modernization of pulse diagnosis.
基金Project(51675262)supported by the National Natural Science Foundation of ChinaProject(6140210020102)supported by the Advance Research Field Fund Project of ChinaProject(2016YFD0700800)supported by the National Key Research and Development Plan of China
文摘The goal of this paper is to find an excellent adaptive window function for extracting the weak vibration signal and high frequency vibration signal under strong noise.The relationship between windowing transform andfiltering is analyzed first in the paper.The advantage of adjustable time-frequency window of wavelet transform is introduced.Secondly the relationship between harmonic wavelet and multiple analytic band-pass filter is analyzed.The coherence of the multiple analytic band-pass filter and harmonic wavelet base function is discussed,and the characteristic that multiple analytic band-pass filter included in the harmonic wavelet transform is founded.Thirdly,by extending the harmonic wavelet transform,the concept of the adaptive harmonic window and its theoretical equation without decomposition are put forward in this paper.Then comparing with the Hanning window,the good performance of restraining side-lobe leakage possessed by adaptive harmonic window is shown,and the adaptive characteristics of window width changing and analytical center moving of the adaptive harmonic window are presented.Finally,the proposed adaptive harmonic window is applied to weak signal extraction and high frequency orbit extraction of high speed rotor under strong noise,and the satisfactory results are achieved.The application results show that the adaptive harmonic window function can be successfully applied to the actual engineering signal processing.
基金supported by the National Natural Science Foundation of China (Grant Nos 60577019 and 60777041) the International Cooperation Project of Shanxi Province,China
文摘This paper presents a novel approach to extract the periodic signals masked by a chaotic carrier. It verifies that the driven Duffing oscillator is immune to the chaotic carrier and sensitive to certain periodic signals. A preliminary detection scenario illustrates that the frequency and amplitude of the hidden sine wave signal can be extracted from the chaotic carrier by numerical simulation. The obtained results indicate that the hidden messages in chaotic secure communication can be eavesdropped utilizing Duffing oscillators.
基金This work was supported by the National Natural Science Foundation of China(62071475,61890541,62171447).
文摘The application scope of the forward scatter radar(FSR)based on the Global Navigation Satellite System(GNSS)can be expanded by improving the detection capability.Firstly,the forward-scatter signal model when the target crosses the baseline is constructed.Then,the detection method of the for-ward-scatter signal based on the Rényi entropy of time-fre-quency distribution is proposed and the detection performance with different time-frequency distributions is compared.Simula-tion results show that the method based on the smooth pseudo Wigner-Ville distribution(SPWVD)can achieve the best perfor-mance.Next,combined with the geometry of FSR,the influence on detection performance of the relative distance between the target and the baseline is analyzed.Finally,the proposed method is validated by the anechoic chamber measurements and the results show that the detection ability has a 10 dB improvement compared with the common constant false alarm rate(CFAR)detection.
文摘Multi-radar signal separation is a critical process in modern reconnaissance systems. However, the complicated battlefield is typically confronted with increasing electronic equipment and complex radar waveforms. The intercepted signal is difficult to separate with conventional parameters because of severe overlapping in both time and frequency domains. On the contrary, time-frequency analysis maps the 1D signal into a 2D time-frequency plane, which provides a better insight into the signal than traditional methods. Particularly, the parameterized time-frequency analysis (PTFA) shows great potential in processing such non stationary signals. Five procedures for the PTFA are proposed to separate the overlapped multi-radar signal, including initiation, instantaneous frequency estimation with PTFA, signal demodulation, signal separation with adaptive filter and signal recovery. The proposed method is verified with both simulated and real signals, which shows good performance in the application on multi-radar signal separation.
基金Project(61201028)supported by the National Natural Science Foundation of ChinaProject(YWF-12-JFGF-060)supported by the Fundamental Research Funds for the Central Universities,ChinaProject(2011ZD51048)supported by Aviation Science Foundation of China
文摘Seismic signal is generally employed in moving target monitoring due to its robust characteristic.A recognition method for vehicle and personnel with seismic signal sensing system was proposed based on improved neural network.For analyzing the seismic signal of the moving objects,the seismic signal of person and vehicle was acquisitioned from the seismic sensor,and then feature vectors were extracted with combined methods after filter processing.Finally,these features were put into the improved BP neural network designed for effective signal classification.Compared with previous ways,it is demonstrated that the proposed system presents higher recognition accuracy and validity based on the experimental results.It also shows the effectiveness of the improved BP neural network.
文摘With the new system radar put into practical use, the characteristics of complex radar signals are changing and developing. The traditional analysis method of one-dimensional transformation domain is no longer applicable to the modern radar signal processing, and it is necessary to seek new methods in the two-dimensional transformation domain. The time-frequency analysis method is the most widely used method in the two-dimensional transformation domain. In this paper, two typical time-frequency analysis methods of short-time Fourier transform and Wigner-Ville distribution are studied by analyzing the time-frequency transform of typical radar reconnaissance linear frequency modulation signal, aiming at the problem of low accuracy and sen-sitivity to the signal noise of common methods, the improved wavelet transform algorithm was proposed.
文摘Early detection of sudden cardiac death may be used for surviving the life of cardiac patients. In this paper we have investigated an algorithm to detect and predict sudden cardiac death, by processing of heart rate variability signal through the classical and time-frequency methods. At first, one minute of ECG signals, just before the cardiac death event are extracted and used to compute heart rate variability (HRV) signal. Five features in time domain and four features in frequency domain are extracted from the HRV signal and used as classical linear features. Then the Wigner Ville transform is applied to the HRV signal, and 11 extra features in the time-frequency (TF) domain are obtained. In order to improve the performance of classification, the principal component analysis (PCA) is applied to the obtained features vector. Finally a neural network classifier is applied to the reduced features. The obtained results show that the TF method can classify normal and SCD subjects, more efficiently than the classical methods. A MIT-BIH ECG database was used to evaluate the proposed method. The proposed method was implemented using MLP classifier and had 74.36% and 99.16% correct detection rate (accuracy) for classical features and TF method, respectively. Also, the accuracy of the KNN classifier were 73.87% and 96.04%.
文摘In this paper, we propose extraction of signals correlated with noise in which they are buried. Proposed extraction method uses no a-priori information on the buried signal and works independently of the nature of noise, correlated or not with the signal, colored or white, Gaussian or not, and locations of its spectral extent. Extraction of buried correlated signals is achieved without averaging in the time or frequency domain.
文摘Focused on the non-statlonarity and real-time analysis of signal in flutter test with progression variable speed (FTPVS), a new method of recursive time-frequency analysis is presented. The time-varying system is tracked on-line by building a time-varying parameter model, and then the relevant parameter spectrum can be obtained. The feasibility and advantages of the method are examined by digital simulation. The results of FTPVS at low-speed wind-tunnel promise the engineering application perspective of the method.
文摘Several popular time-frequency techniques,including the Wigner-Ville distribution,smoothed pseudo-Wigner-Ville distribution,wavelet transform,synchrosqueezing transform,Hilbert-Huang transform,and Gabor-Wigner transform,are investigated to determine how well they can identify damage to structures.In this work,a synchroextracting transform(SET)based on the short-time Fourier transform is proposed for estimating post-earthquake structural damage.The performance of SET for artificially generated signals and actual earthquake signals is examined with existing methods.Amongst other tested techniques,SET improves frequency resolution to a great extent by lowering the influence of smearing along the time-frequency plane.Hence,interpretation and readability with the proposed method are improved,and small changes in the time-varying frequency characteristics of the damaged buildings are easily detected through the SET method.
文摘This paper presents an accurate small-signal model for multi-gate GaAs pHEMTs in switching-mode.The extraction method for the proposed model is developed.A 2-gate switch structure is fabricated on a commercial 0.5μm AlGaAs/GaAs pHEMT technology to verify the proposed model.Excellent agreement has been obtained between the measured and simulated results over a wide frequency range.
基金sponsored by the Spark Program of Earthquake Science and Technology,CEA(XH16003)the National Natural Science Foundation(NNSF) of China under Grant No.41474087
文摘Based on the data synthesis simulation and the actual processing of the airgun seismic source signal,three quantitative indicators of signal-to-noise ratio,waveform correlation coefficient and phase offset,are superimposed. We systematically evaluate the functions of the following three stack methods including linearity,phase weighting and S-transform in the extraction of weak signals under strong background noise and quantitatively estimate the reliability of the stack results. Through the comprehensive discussion of the above three methods of stack results,the preliminary comparative analysis believes that the linear stack signal-to-noise ratio is low,but the waveform distortion is minimal; the phase-weighted superimposed signal-to-noise ratio is high and the phase offset is small,but the results of the waveform quality and linear stack are larger than the deviation; the S-transform stack has a relatively higher signal-to-noise ratio and a small loss of waveform amplitude,but there is a certain phase shift phenomenon. It is therefore suggested that linear stack technology should be used when the requirements of both waveform quality and time precision are high. However,the selection of the stack method when the airgun source excitation is limited should be emphasized. If high fidelity is required, the S-transform stack method should be selected; if the required time is high,accuracy can be selected by phase-weighted stack method to achieve reasonable extraction of weak signals.
文摘This paper presents an evaluation of time-frequency methods for the analysis of seismic signals.Background of the present work is to describe,how the frequency content of the signal is changing in time.The theoretical basis of short time Fourier transform,Gabor transform,wavelet transform,S-transform,Wigner distribution,Wigner-Ville distribution,Pseudo Wigner-Ville distribution,Smoothed Pseudo Wigner-Ville distribution,Choi-William distribution,Born-Jordan Distribution and cone shape distribution are presented.The strengths and weaknesses of each technique are verified by applying them to a particular synthetic seismic signal and recorded real time earthquake data.
基金supported by the National Natural Science Foundation of China under Grant No. 61501084。
文摘In recent years,the time-frequency overlapping multi-carrier signal has been a novel and valuable topic in blind signal processing,especially in the non-cooperative receiving field.But there is little related research in public published papers.This paper proposes two timing estimation algorithms,which are non-data-aided and based on the cyclic auto-correlation function.In order to evaluate the performance of the proposed algorithms,the theoretical bound of the timing estimation is derived.According to the analyses and simulation results,the effectiveness of the proposed algorithms has been demonstrated.It shows that MethodⅠhas better performance than MethodⅡ.However,MethodⅡdoes not need prior information,so it has a wider range of applications.