The conventional linear time-frequency analysis method cannot achieve high resolution and energy focusing in the time and frequency dimensions at the same time,especially in the low frequency region.In order to improv...The conventional linear time-frequency analysis method cannot achieve high resolution and energy focusing in the time and frequency dimensions at the same time,especially in the low frequency region.In order to improve the resolution of the linear time-frequency analysis method in the low-frequency region,we have proposed a W transform method,in which the instantaneous frequency is introduced as a parameter into the linear transformation,and the analysis time window is constructed which matches the instantaneous frequency of the seismic data.In this paper,the W transform method is compared with the Wigner-Ville distribution(WVD),a typical nonlinear time-frequency analysis method.The WVD method that shows the energy distribution in the time-frequency domain clearly indicates the gravitational center of time and the gravitational center of frequency of a wavelet,while the time-frequency spectrum of the W transform also has a clear gravitational center of energy focusing,because the instantaneous frequency corresponding to any time position is introduced as the transformation parameter.Therefore,the W transform can be benchmarked directly by the WVD method.We summarize the development of the W transform and three improved methods in recent years,and elaborate on the evolution of the standard W transform,the chirp-modulated W transform,the fractional-order W transform,and the linear canonical W transform.Through three application examples of W transform in fluvial sand body identification and reservoir prediction,it is verified that W transform can improve the resolution and energy focusing of time-frequency spectra.展开更多
Singular spectrum analysis is widely used in geodetic time series analysis.However,when extracting time-varying periodic signals from a large number of Global Navigation Satellite System(GNSS)time series,the selection...Singular spectrum analysis is widely used in geodetic time series analysis.However,when extracting time-varying periodic signals from a large number of Global Navigation Satellite System(GNSS)time series,the selection of appropriate embedding window size and principal components makes this method cumbersome and inefficient.To improve the efficiency and accuracy of singular spectrum analysis,this paper proposes an adaptive singular spectrum analysis method by combining spectrum analysis with a new trace matrix.The running time and correlation analysis indicate that the proposed method can adaptively set the embedding window size to extract the time-varying periodic signals from GNSS time series,and the extraction efficiency of a single time series is six times that of singular spectrum analysis.The method is also accurate and more suitable for time-varying periodic signal analysis of global GNSS sites.展开更多
(Multichannel)Singular spectrum analysis is considered as one of the most effective methods for seismic incoherent noise suppression.It utilizes the low-rank feature of seismic signal and regards the noise suppression...(Multichannel)Singular spectrum analysis is considered as one of the most effective methods for seismic incoherent noise suppression.It utilizes the low-rank feature of seismic signal and regards the noise suppression as a low-rank reconstruction problem.However,in some cases the seismic geophones receive some erratic disturbances and the amplitudes are dramatically larger than other receivers.The presence of this kind of noise,called erratic noise,makes singular spectrum analysis(SSA)reconstruction unstable and has undesirable effects on the final results.We robustify the low-rank reconstruction of seismic data by a reweighted damped SSA(RD-SSA)method.It incorporates the damped SSA,an improved version of SSA,into a reweighted framework.The damping operator is used to weaken the artificial disturbance introduced by the low-rank projection of both erratic and random noise.The central idea of the RD-SSA method is to iteratively approximate the observed data with the quadratic norm for the first iteration and the Tukeys bisquare norm for the rest iterations.The RD-SSA method can suppress seismic incoherent noise and keep the reconstruction process robust to the erratic disturbance.The feasibility of RD-SSA is validated via both synthetic and field data examples.展开更多
Joint time–frequency analysis is an emerging method for interpreting the underlying physics in fuel cells,batteries,and supercapacitors.To increase the reliability of time–frequency analysis,a theoretical correlatio...Joint time–frequency analysis is an emerging method for interpreting the underlying physics in fuel cells,batteries,and supercapacitors.To increase the reliability of time–frequency analysis,a theoretical correlation between frequency-domain stationary analysis and time-domain transient analysis is urgently required.The present work formularizes a thorough model reduction of fractional impedance spectra for electrochemical energy devices involving not only the model reduction from fractional-order models to integer-order models and from high-to low-order RC circuits but also insight into the evolution of the characteristic time constants during the whole reduction process.The following work has been carried out:(i)the model-reduction theory is addressed for typical Warburg elements and RC circuits based on the continued fraction expansion theory and the response error minimization technique,respectively;(ii)the order effect on the model reduction of typical Warburg elements is quantitatively evaluated by time–frequency analysis;(iii)the results of time–frequency analysis are confirmed to be useful to determine the reduction order in terms of the kinetic information needed to be captured;and(iv)the results of time–frequency analysis are validated for the model reduction of fractional impedance spectra for lithium-ion batteries,supercapacitors,and solid oxide fuel cells.In turn,the numerical validation has demonstrated the powerful function of the joint time–frequency analysis.The thorough model reduction of fractional impedance spectra addressed in the present work not only clarifies the relationship between time-domain transient analysis and frequency-domain stationary analysis but also enhances the reliability of the joint time–frequency analysis for electrochemical energy devices.展开更多
The warhead of a ballistic missile may precess due to lateral moments during release. The resulting micro-Doppler effect is determined by parameters such as the target's motion state and size. A three-dimensional ...The warhead of a ballistic missile may precess due to lateral moments during release. The resulting micro-Doppler effect is determined by parameters such as the target's motion state and size. A three-dimensional reconstruction method for the precession warhead via the micro-Doppler analysis and inverse Radon transform(IRT) is proposed in this paper. The precession parameters are extracted by the micro-Doppler analysis from three radars, and the IRT is used to estimate the size of targe. The scatterers of the target can be reconstructed based on the above parameters. Simulation experimental results illustrate the effectiveness of the proposed method in this paper.展开更多
Pulse echo accumulation is commonly employed in coherent Doppler wind LiDAR(light detection and ranging)under the assumption of steady wind.Here,the measured spectral data are analyzed in the time dimension and freque...Pulse echo accumulation is commonly employed in coherent Doppler wind LiDAR(light detection and ranging)under the assumption of steady wind.Here,the measured spectral data are analyzed in the time dimension and frequency dimension to cope with the temporal wind shear and achieve the optimal accumulation time.A hardware-efficient algorithm combining the interpolation and cross-correlation is used to enhance the wind retrieval accuracy by reducing the frequency sampling interval and then reduce the spectral width calculation error.Moreover,the temporal broadening effect and spatial broadening effect are decoupled according to the strategy we developed.展开更多
The uncertainty of nuclide libraries in the analysis of the gamma spectra of low-and intermediate-level radioactive waste(LILW)using existing methods produces unstable results.To address this problem,a novel spectral ...The uncertainty of nuclide libraries in the analysis of the gamma spectra of low-and intermediate-level radioactive waste(LILW)using existing methods produces unstable results.To address this problem,a novel spectral analysis method is proposed in this study.In this method,overlapping peaks are located using a continuous wavelet transform.An improved quadratic convolution method is proposed to calculate the widths of the peaks and establish a fourth-order filter model to estimate the Compton edge baseline with the overlapping peaks.Combined with the adaptive sensitive nonlinear iterative peak,this method can effectively subtracts the background.Finally,a function describing the peak shape as a filter is used to deconvolve the energy spectrum to achieve accurate qualitative and quantitative analyses of the nuclide without the aid of a nuclide library.Gamma spectrum acquisition experiments for standard point sources of Cs-137 and Eu-152,a segmented gamma scanning experiment for a 200 L standard drum,and a Monte Carlo simulation experiment for triple overlapping peaks using the closest energy of three typical LILW nuclides(Sb-125,Sb-124,and Cs-134)are conducted.The results of the experiments indicate that(1)the novel method and gamma vision(GV)with an accurate nuclide library have the same spectral analysis capability,and the peak area calculation error is less than 4%;(2)compared with the GV,the analysis results of the novel method are more stable;(3)the novel method can be applied to the activity measurement of LILW,and the error of the activity reconstruction at the equivalent radius is 2.4%;and(4)The proposed novel method can quantitatively analyze all nuclides in LILW without a nuclide library.This novel method can improve the accuracy and precision of LILW measurements,provide key technical support for the reasonable disposal of LILW,and ensure the safety of humans and the environment.展开更多
Dispersion and attenuation analysis can be used to determine formation anisotropy induced by fractures,or stresses.In this paper,we propose a nonparametric spectrum estimation method to get phase dispersion characteri...Dispersion and attenuation analysis can be used to determine formation anisotropy induced by fractures,or stresses.In this paper,we propose a nonparametric spectrum estimation method to get phase dispersion characteristics and attenuation coefficient.By designing an appropriate vector filter,phase velocity,attenuation coefficient and amplitude can be inverted from the waveform recorded by the receiver array.Performance analysis of this algorithm is compared with Extended Prony Method(EPM)and Forward and Backward Matrix Pencil(FBMP)method.Based on the analysis results,the proposed method is capable of achieving high resolution and precision as the parametric spectrum estimation methods.At the meantime,it also keeps high stability as the other nonparametric spectrum estimation methods.At last,applications to synthetic waveforms modeled using finite difference method and real data show its efficiency.The real data processing results show that the P-wave attenuation log is more sensitive to oil formation compared to S-wave;and the S-wave attenuation log is more sensitive to shale formation compared to P-wave.展开更多
As a new promising detection technology in the terahertz research field,the terahertz time-domain spec-troscopy(THz-TDS)has very broad application potential in many fields because its advantage on the characteristic s...As a new promising detection technology in the terahertz research field,the terahertz time-domain spec-troscopy(THz-TDS)has very broad application potential in many fields because its advantage on the characteristic spectrum,wide spectrum and non-destructive analysis of interested substances.In this paper,the terahertz absorption spectra of gases mixed with 12 CO and 13 CO in the spec-trum range of 0.5–2.5 THz are measured by terahertz time-domain spectroscopy for the first time.Several isotopo-logues can be clearly distinguished based on the difference in their rotational energies and the consequent terahertz spectrum.The experimental results show that 12 CO and 13 CO have obvious characteristic absorption peaks in the spectrum range of 0.5–2.5 THz due to the difference in rotational energy,and the rotational constant B can be calculated according to the experimental values to distin-guish the two gaseous isotopologues.The frequency posi-tions of the characteristic absorption peak measured by this experiment and the rotation constant B calculated accord-ing to the experimental values are compared with those previous theoretical calculations and experimental results,and they are in good agreement.This result lays a foun-dation for developing more sophisticated terahertz instru-ments to the detection of different isotopologues.展开更多
Viscoelastic damper is an effective passive damping device,which can reduce the seismic response of the structure by increasing the damping and dissipating the vibration energy of structures.It has a wide application ...Viscoelastic damper is an effective passive damping device,which can reduce the seismic response of the structure by increasing the damping and dissipating the vibration energy of structures.It has a wide application prospect in actual structural vibration control because of simple device and economical material.In view of the poor seismic behaviors of assembled frame structure connections,various energy dissipation devices are proposed to improve the seismic performance.The finite element numerical analysis method is adopted to analyze relevant energy dissipation structural parameters.The response spectrum of a 7-story assembled frame structure combined the ordinary steel support,ordinary viscoelastic damper,and viscoelastic damper with displacement amplification device is analyzed.The analysis results show that the mechanical behavior of assembled frame structure with ordinary steel supports are not significantly different from those without energy dissipation devices.The assembled frame structure with viscoelastic damper has better seismic performance and energy dissipation,especially for the viscoelastic damper with displacement amplification devices.The maximum value of inter-story displacement angle decreases by 32.24%;the maximum floor displacement decreases by 31.91%,and the base shear decreases by 13.62%compared with the assembled frame structures without energy dissipation devices.The results show that the seismic fortification ability of the structure is significantly improved,and the overall structure is more uniformly stressed.The damping structure with viscoelastic damper mainly reduces the dynamic response of the structure by increasing the damping coefficient,rather than by changing the natural vibration period of the structure.This paper provides an effective theoretical basis and reference for improving the energy dissipation system and the seismic performance of assembled frame structures.展开更多
The power output state of photovoltaic power generation is affected by the earth’s rotation and solar radiation intensity.On the one hand,its output sequence has daily periodicity;on the other hand,it has discrete ra...The power output state of photovoltaic power generation is affected by the earth’s rotation and solar radiation intensity.On the one hand,its output sequence has daily periodicity;on the other hand,it has discrete randomness.With the development of new energy economy,the proportion of photovoltaic energy increased accordingly.In order to solve the problem of improving the energy conversion efficiency in the grid-connected optical network and ensure the stability of photovoltaic power generation,this paper proposes the short-termprediction of photovoltaic power generation based on the improvedmulti-scale permutation entropy,localmean decomposition and singular spectrum analysis algorithm.Firstly,taking the power output per unit day as the research object,the multi-scale permutation entropy is used to calculate the eigenvectors under different weather conditions,and the cluster analysis is used to reconstruct the historical power generation under typical weather rainy and snowy,sunny,abrupt,cloudy.Then,local mean decomposition(LMD)is used to decompose the output sequence,so as to extract more detail components of the reconstructed output sequence.Finally,combined with the weather forecast of the Meteorological Bureau for the next day,the singular spectrumanalysis algorithm is used to predict the photovoltaic classification of the recombination decomposition sequence under typical weather.Through the verification and analysis of examples,the hierarchical prediction experiments of reconstructed and non-reconstructed output sequences are compared.The results show that the algorithm proposed in this paper is effective in realizing the short-term prediction of photovoltaic generator,and has the advantages of simple structure and high prediction accuracy.展开更多
The quality factor(or Q value)is an important parameter for characterizing the inelastic properties of rock.Achieving a Q value estimation with high accuracy and stability is still challenging.In this study,a new meth...The quality factor(or Q value)is an important parameter for characterizing the inelastic properties of rock.Achieving a Q value estimation with high accuracy and stability is still challenging.In this study,a new method for estimating ultrasonic attenuation using a spectral ratio based on an S transform(SR-ST)is presented to improve the stability and accuracy of Q estimation.The variable window of ST is used to solve the time window problem.We add two window factors to the Gaussian window function in the ST.The window factors can adjust the scale of the Gaussian window function to the ultrasonic signal,which reduces the calculation error attributed to the conventional Gaussian window function.Meanwhile,the frequency bandwidth selection rules for the linear regression of the amplitude ratio are given to further improve stability and accuracy.First,the feasibility and influencing factors of the SR-ST method are studied through numerical testing and standard sample experiments.Second,artificial samples with different Q values are used to study the adaptability and stability of the SR-ST method.Finally,a further comparison between the new method and the conventional spectral ratio method(SR)is conducted using rock field samples,again addressing stability and accuracy.The experimental results show that this method will yield an error of approximately 36%using the conventional Gaussian window function.This problem can be solved by adding the time window factors to the Gaussian window function.The frequency bandwidth selection rules and mean slope value of the amplitude ratio used in the SR-ST method can ensure that the maximum error of different Q values estimation(Q>15)is less than 10%.展开更多
Li transient concentration distribution in spherical active material particles can affect the maximum power density and the safe operating regime of the electric vehicles(EVs). On one hand, the quasiexact/exact soluti...Li transient concentration distribution in spherical active material particles can affect the maximum power density and the safe operating regime of the electric vehicles(EVs). On one hand, the quasiexact/exact solution obtained in the time/frequency domain is time-consuming and just as a reference value for approximate solutions;on the other hand, calculation errors and application range of approximate solutions not only rely on approximate algorithms but also on discharge modes. For the purpose to track the transient dynamics for Li solid-phase diffusion in spherical active particles with a tolerable error range and for a wide applicable range, it is necessary to choose optimal approximate algorithms in terms of discharge modes and the nature of active material particles. In this study, approximation methods,such as diffusion length method, polynomial profile approximation method, Padé approximation method,pseudo steady state method, eigenfunction-based Galerkin collocation method, and separation of variables method for solving Li solid-phase diffusion in spherical active particles are compared from calculation fundamentals to algorithm implementation. Furthermore, these approximate solutions are quantitatively compared to the quasi-exact/exact solution in the time/frequency domain under typical discharge modes, i.e., start-up, slow-down, and speed-up. The results obtained from the viewpoint of time-frequency analysis offer a theoretical foundation on how to track Li transient concentration profile in spherical active particles with a high precision and for a wide application range. In turn, optimal solutions of Li solid diffusion equations for spherical active particles can improve the reliability in predicting safe operating regime and estimating maximum power for automotive batteries.展开更多
A novel method of Doppler frequency extraction is proposed for Doppler radar scoring systems. The idea is that the time-frequency map can show how the Doppler frequency varies along the time-line, so the Doppler frequ...A novel method of Doppler frequency extraction is proposed for Doppler radar scoring systems. The idea is that the time-frequency map can show how the Doppler frequency varies along the time-line, so the Doppler frequency extraction becomes curve detection in the image-view. A set of morphological operations are used to implement curve detection. And a map fusion scheme is presented to eliminate the influence of strong direct current (DC) component of echo signal during curve detection. The radar real-life data are used to illustrate the performance of the new approach. Experimental results show that the proposed method can overcome the shortcomings of piecewise-processing-based FFT method and can improve the measuring precision of miss distance.展开更多
Multi-radar signal separation is a critical process in modern reconnaissance systems. However, the complicated battlefield is typically confronted with increasing electronic equipment and complex radar waveforms. The ...Multi-radar signal separation is a critical process in modern reconnaissance systems. However, the complicated battlefield is typically confronted with increasing electronic equipment and complex radar waveforms. The intercepted signal is difficult to separate with conventional parameters because of severe overlapping in both time and frequency domains. On the contrary, time-frequency analysis maps the 1D signal into a 2D time-frequency plane, which provides a better insight into the signal than traditional methods. Particularly, the parameterized time-frequency analysis (PTFA) shows great potential in processing such non stationary signals. Five procedures for the PTFA are proposed to separate the overlapped multi-radar signal, including initiation, instantaneous frequency estimation with PTFA, signal demodulation, signal separation with adaptive filter and signal recovery. The proposed method is verified with both simulated and real signals, which shows good performance in the application on multi-radar signal separation.展开更多
Focused on the non-statlonarity and real-time analysis of signal in flutter test with progression variable speed (FTPVS), a new method of recursive time-frequency analysis is presented. The time-varying system is tr...Focused on the non-statlonarity and real-time analysis of signal in flutter test with progression variable speed (FTPVS), a new method of recursive time-frequency analysis is presented. The time-varying system is tracked on-line by building a time-varying parameter model, and then the relevant parameter spectrum can be obtained. The feasibility and advantages of the method are examined by digital simulation. The results of FTPVS at low-speed wind-tunnel promise the engineering application perspective of the method.展开更多
With the continuous improvement of Synthetic Aperture Radar(SAR) resolution, interpreting the small targets like aircraft in SAR images becomes possible and turn out to be a hot spot in SAR application research. Howev...With the continuous improvement of Synthetic Aperture Radar(SAR) resolution, interpreting the small targets like aircraft in SAR images becomes possible and turn out to be a hot spot in SAR application research. However, due to the complexity of SAR imaging mechanism, interpreting targets in SAR images is a tough problem. This paper presents a new aircraft interpretation method based on the joint time-frequency analysis and multi-dimensional contrasting of basic structures. Moreover, SAR data acquisition experiment is designed for interpreting the aircraft. Analyzing the experiment data with our method, the result shows that the proposed method largely makes use of the SAR data information. The reasonable results can provide some auxiliary support for the SAR images manual interpretation.展开更多
In order to investigate the characteristics of sensorimotor cortex during motor execution(ME), voluntary, stimulated and imaginary finger flexions were performed by ten volunteer subjects. Electroencephalogram(EEG) da...In order to investigate the characteristics of sensorimotor cortex during motor execution(ME), voluntary, stimulated and imaginary finger flexions were performed by ten volunteer subjects. Electroencephalogram(EEG) data were recorded according to the modified 10-20 International EEG System. The patterns were compared by the analysis of the motion-evoked EEG signals focusing on the contralateral(C3) and ipsilateral(C4) channels for hemispheric differences. The EEG energy distributions at alpha(8—13 Hz), beta(14—30 Hz) and gamma(30—50 Hz) bands were computed by wavelet transform(WT) and compared by the analysis of variance(ANOVA). The timefrequency(TF) analysis indicated that there existed a contralateral dominance of alpha post-movement event-related synchronization(ERS) pattern during the voluntary task, and that the energy of alpha band increased in the ipsilateral area during the stimulated(median nerve of wrist) task. Besides, the contralateral alpha and beta event-related desynchronization(ERD) patterns were observed in both stimulated and imaginary tasks. Another significant difference was found in the mean power values of gamma band(p<0.01)between the imaginary and other tasks. The results show that significant hemispheric differences such as alpha and beta band EEG energy distributions and TF changing phenomena(ERS/ERD) were found between C3 and C4 areas during all of the three patterns. The largest energy distribution was always at the alpha band for each task.展开更多
Objective: To analyze the non-periodic, unstable and even chaotic echoes scattered from microbubbles which are extremely sensitive and may easily collapse, fragment or shrink when ultrasound contrast agents are expose...Objective: To analyze the non-periodic, unstable and even chaotic echoes scattered from microbubbles which are extremely sensitive and may easily collapse, fragment or shrink when ultrasound contrast agents are exposed to ultrasound (US) irradiation. Methods: The combined time-frequency analysis was applied to the original signals instead of the traditional Fourier spectral analysis technique. Results: The results obtained from simulation as well as experiment showed that the subharmonic, 2nd harmonic and ultra harmonic of the microbubbles occurred during the oscillation and varied with time. The dependence on the incident ultrasonic amplitude and microbubble parameters were established. Conclusion: The transient echoes backscattered from the ultrasound agent in the evaluation of the blood perfusion can be analyzed thoroughly by the technique of combined-frequency analysis and the time detail of the frequency contents can be revealed.展开更多
A method of time-frequency analysis (TFA) based on wavelets is applied to study the phase space structure of three-dimensional asymmetric triaxial galaxy enclosed by spherical dark halo component. The investigation is...A method of time-frequency analysis (TFA) based on wavelets is applied to study the phase space structure of three-dimensional asymmetric triaxial galaxy enclosed by spherical dark halo component. The investigation is carried out in the presence and absence of dark halo component. Time-frequency analysis is based on the extraction of instantaneous frequency from the phase of the continuous wavelet transform. This method is comparatively fast and reliable. This method can differentiate periodic from quasi-periodic, chaotic sticky from chaotic non-sticky, ordered from chaotic and also, it can accurately determine the time interval of the resonance trapping and transitions too. Apart from that, the phenomenon of transient chaos can be explained with the help of time-frequency analysis. Comparison with the method of total angular momentum (denoted as Ltot) proposed recently is also presented.展开更多
基金Supported by the National Science Foundation of China(42055402)。
文摘The conventional linear time-frequency analysis method cannot achieve high resolution and energy focusing in the time and frequency dimensions at the same time,especially in the low frequency region.In order to improve the resolution of the linear time-frequency analysis method in the low-frequency region,we have proposed a W transform method,in which the instantaneous frequency is introduced as a parameter into the linear transformation,and the analysis time window is constructed which matches the instantaneous frequency of the seismic data.In this paper,the W transform method is compared with the Wigner-Ville distribution(WVD),a typical nonlinear time-frequency analysis method.The WVD method that shows the energy distribution in the time-frequency domain clearly indicates the gravitational center of time and the gravitational center of frequency of a wavelet,while the time-frequency spectrum of the W transform also has a clear gravitational center of energy focusing,because the instantaneous frequency corresponding to any time position is introduced as the transformation parameter.Therefore,the W transform can be benchmarked directly by the WVD method.We summarize the development of the W transform and three improved methods in recent years,and elaborate on the evolution of the standard W transform,the chirp-modulated W transform,the fractional-order W transform,and the linear canonical W transform.Through three application examples of W transform in fluvial sand body identification and reservoir prediction,it is verified that W transform can improve the resolution and energy focusing of time-frequency spectra.
基金supported by the National Natural Science Foundation of China(Grants:42204006,42274053,42030105,and 41504031)the Open Research Fund Program of the Key Laboratory of Geospace Environment and Geodesy,Ministry of Education,China(Grants:20-01-03 and 21-01-04)。
文摘Singular spectrum analysis is widely used in geodetic time series analysis.However,when extracting time-varying periodic signals from a large number of Global Navigation Satellite System(GNSS)time series,the selection of appropriate embedding window size and principal components makes this method cumbersome and inefficient.To improve the efficiency and accuracy of singular spectrum analysis,this paper proposes an adaptive singular spectrum analysis method by combining spectrum analysis with a new trace matrix.The running time and correlation analysis indicate that the proposed method can adaptively set the embedding window size to extract the time-varying periodic signals from GNSS time series,and the extraction efficiency of a single time series is six times that of singular spectrum analysis.The method is also accurate and more suitable for time-varying periodic signal analysis of global GNSS sites.
基金supported by the National Natural Science Foundation of China under grant no.42374133the Beijing Nova Program under grant no.2022056+1 种基金the Fundamental Research Funds for the Central Universities under grant no.2462020YXZZ006the Young Elite Scientists Sponsorship Program by CAST(YESS)under grant no.2018QNRC001。
文摘(Multichannel)Singular spectrum analysis is considered as one of the most effective methods for seismic incoherent noise suppression.It utilizes the low-rank feature of seismic signal and regards the noise suppression as a low-rank reconstruction problem.However,in some cases the seismic geophones receive some erratic disturbances and the amplitudes are dramatically larger than other receivers.The presence of this kind of noise,called erratic noise,makes singular spectrum analysis(SSA)reconstruction unstable and has undesirable effects on the final results.We robustify the low-rank reconstruction of seismic data by a reweighted damped SSA(RD-SSA)method.It incorporates the damped SSA,an improved version of SSA,into a reweighted framework.The damping operator is used to weaken the artificial disturbance introduced by the low-rank projection of both erratic and random noise.The central idea of the RD-SSA method is to iteratively approximate the observed data with the quadratic norm for the first iteration and the Tukeys bisquare norm for the rest iterations.The RD-SSA method can suppress seismic incoherent noise and keep the reconstruction process robust to the erratic disturbance.The feasibility of RD-SSA is validated via both synthetic and field data examples.
基金support from the National Science Foundation of China(22078190)the National Key R&D Plan of China(2020YFB1505802).
文摘Joint time–frequency analysis is an emerging method for interpreting the underlying physics in fuel cells,batteries,and supercapacitors.To increase the reliability of time–frequency analysis,a theoretical correlation between frequency-domain stationary analysis and time-domain transient analysis is urgently required.The present work formularizes a thorough model reduction of fractional impedance spectra for electrochemical energy devices involving not only the model reduction from fractional-order models to integer-order models and from high-to low-order RC circuits but also insight into the evolution of the characteristic time constants during the whole reduction process.The following work has been carried out:(i)the model-reduction theory is addressed for typical Warburg elements and RC circuits based on the continued fraction expansion theory and the response error minimization technique,respectively;(ii)the order effect on the model reduction of typical Warburg elements is quantitatively evaluated by time–frequency analysis;(iii)the results of time–frequency analysis are confirmed to be useful to determine the reduction order in terms of the kinetic information needed to be captured;and(iv)the results of time–frequency analysis are validated for the model reduction of fractional impedance spectra for lithium-ion batteries,supercapacitors,and solid oxide fuel cells.In turn,the numerical validation has demonstrated the powerful function of the joint time–frequency analysis.The thorough model reduction of fractional impedance spectra addressed in the present work not only clarifies the relationship between time-domain transient analysis and frequency-domain stationary analysis but also enhances the reliability of the joint time–frequency analysis for electrochemical energy devices.
基金supported by the National Natural Science Foundation of China (61871146)the Fundamental Research Funds for the Central Universities (FRFCU5710093720)。
文摘The warhead of a ballistic missile may precess due to lateral moments during release. The resulting micro-Doppler effect is determined by parameters such as the target's motion state and size. A three-dimensional reconstruction method for the precession warhead via the micro-Doppler analysis and inverse Radon transform(IRT) is proposed in this paper. The precession parameters are extracted by the micro-Doppler analysis from three radars, and the IRT is used to estimate the size of targe. The scatterers of the target can be reconstructed based on the above parameters. Simulation experimental results illustrate the effectiveness of the proposed method in this paper.
基金Project supported by the Shanghai Science and Technology Innovation Action(Grant No.22dz1208700).
文摘Pulse echo accumulation is commonly employed in coherent Doppler wind LiDAR(light detection and ranging)under the assumption of steady wind.Here,the measured spectral data are analyzed in the time dimension and frequency dimension to cope with the temporal wind shear and achieve the optimal accumulation time.A hardware-efficient algorithm combining the interpolation and cross-correlation is used to enhance the wind retrieval accuracy by reducing the frequency sampling interval and then reduce the spectral width calculation error.Moreover,the temporal broadening effect and spatial broadening effect are decoupled according to the strategy we developed.
基金supported by the National Natural Science Foundation of China(Nos.12205190,11805121)the Science and Technology Commission of Shanghai Municipality(No.21ZR1435400).
文摘The uncertainty of nuclide libraries in the analysis of the gamma spectra of low-and intermediate-level radioactive waste(LILW)using existing methods produces unstable results.To address this problem,a novel spectral analysis method is proposed in this study.In this method,overlapping peaks are located using a continuous wavelet transform.An improved quadratic convolution method is proposed to calculate the widths of the peaks and establish a fourth-order filter model to estimate the Compton edge baseline with the overlapping peaks.Combined with the adaptive sensitive nonlinear iterative peak,this method can effectively subtracts the background.Finally,a function describing the peak shape as a filter is used to deconvolve the energy spectrum to achieve accurate qualitative and quantitative analyses of the nuclide without the aid of a nuclide library.Gamma spectrum acquisition experiments for standard point sources of Cs-137 and Eu-152,a segmented gamma scanning experiment for a 200 L standard drum,and a Monte Carlo simulation experiment for triple overlapping peaks using the closest energy of three typical LILW nuclides(Sb-125,Sb-124,and Cs-134)are conducted.The results of the experiments indicate that(1)the novel method and gamma vision(GV)with an accurate nuclide library have the same spectral analysis capability,and the peak area calculation error is less than 4%;(2)compared with the GV,the analysis results of the novel method are more stable;(3)the novel method can be applied to the activity measurement of LILW,and the error of the activity reconstruction at the equivalent radius is 2.4%;and(4)The proposed novel method can quantitatively analyze all nuclides in LILW without a nuclide library.This novel method can improve the accuracy and precision of LILW measurements,provide key technical support for the reasonable disposal of LILW,and ensure the safety of humans and the environment.
基金This research was supported by the National Natural Science Foundation of China(No.42274141)Science Foundation of China University of Petroleum,Beijing(No.2462020YXZZ007).
文摘Dispersion and attenuation analysis can be used to determine formation anisotropy induced by fractures,or stresses.In this paper,we propose a nonparametric spectrum estimation method to get phase dispersion characteristics and attenuation coefficient.By designing an appropriate vector filter,phase velocity,attenuation coefficient and amplitude can be inverted from the waveform recorded by the receiver array.Performance analysis of this algorithm is compared with Extended Prony Method(EPM)and Forward and Backward Matrix Pencil(FBMP)method.Based on the analysis results,the proposed method is capable of achieving high resolution and precision as the parametric spectrum estimation methods.At the meantime,it also keeps high stability as the other nonparametric spectrum estimation methods.At last,applications to synthetic waveforms modeled using finite difference method and real data show its efficiency.The real data processing results show that the P-wave attenuation log is more sensitive to oil formation compared to S-wave;and the S-wave attenuation log is more sensitive to shale formation compared to P-wave.
基金supported by Chinese NSF project(42130114)the strategic priority research program(B)of CAS(XDB41000000)the pre-research Project on Civil Aerospace Technologies No.D020202 funded by Chinese National Space Administration(CNSA).
文摘As a new promising detection technology in the terahertz research field,the terahertz time-domain spec-troscopy(THz-TDS)has very broad application potential in many fields because its advantage on the characteristic spectrum,wide spectrum and non-destructive analysis of interested substances.In this paper,the terahertz absorption spectra of gases mixed with 12 CO and 13 CO in the spec-trum range of 0.5–2.5 THz are measured by terahertz time-domain spectroscopy for the first time.Several isotopo-logues can be clearly distinguished based on the difference in their rotational energies and the consequent terahertz spectrum.The experimental results show that 12 CO and 13 CO have obvious characteristic absorption peaks in the spectrum range of 0.5–2.5 THz due to the difference in rotational energy,and the rotational constant B can be calculated according to the experimental values to distin-guish the two gaseous isotopologues.The frequency posi-tions of the characteristic absorption peak measured by this experiment and the rotation constant B calculated accord-ing to the experimental values are compared with those previous theoretical calculations and experimental results,and they are in good agreement.This result lays a foun-dation for developing more sophisticated terahertz instru-ments to the detection of different isotopologues.
基金supported by Foundation of Henan Educational Committee(20A560004,J.Z.)Foundation of Henan Science and Technology Project(182102311086,Y.W.)Foundation for University Key Teacher(YCJQNGGJS201901,J.Z.,YCJXSJSDTR201801,Y.W.,Henan University of Urban Construction).
文摘Viscoelastic damper is an effective passive damping device,which can reduce the seismic response of the structure by increasing the damping and dissipating the vibration energy of structures.It has a wide application prospect in actual structural vibration control because of simple device and economical material.In view of the poor seismic behaviors of assembled frame structure connections,various energy dissipation devices are proposed to improve the seismic performance.The finite element numerical analysis method is adopted to analyze relevant energy dissipation structural parameters.The response spectrum of a 7-story assembled frame structure combined the ordinary steel support,ordinary viscoelastic damper,and viscoelastic damper with displacement amplification device is analyzed.The analysis results show that the mechanical behavior of assembled frame structure with ordinary steel supports are not significantly different from those without energy dissipation devices.The assembled frame structure with viscoelastic damper has better seismic performance and energy dissipation,especially for the viscoelastic damper with displacement amplification devices.The maximum value of inter-story displacement angle decreases by 32.24%;the maximum floor displacement decreases by 31.91%,and the base shear decreases by 13.62%compared with the assembled frame structures without energy dissipation devices.The results show that the seismic fortification ability of the structure is significantly improved,and the overall structure is more uniformly stressed.The damping structure with viscoelastic damper mainly reduces the dynamic response of the structure by increasing the damping coefficient,rather than by changing the natural vibration period of the structure.This paper provides an effective theoretical basis and reference for improving the energy dissipation system and the seismic performance of assembled frame structures.
文摘The power output state of photovoltaic power generation is affected by the earth’s rotation and solar radiation intensity.On the one hand,its output sequence has daily periodicity;on the other hand,it has discrete randomness.With the development of new energy economy,the proportion of photovoltaic energy increased accordingly.In order to solve the problem of improving the energy conversion efficiency in the grid-connected optical network and ensure the stability of photovoltaic power generation,this paper proposes the short-termprediction of photovoltaic power generation based on the improvedmulti-scale permutation entropy,localmean decomposition and singular spectrum analysis algorithm.Firstly,taking the power output per unit day as the research object,the multi-scale permutation entropy is used to calculate the eigenvectors under different weather conditions,and the cluster analysis is used to reconstruct the historical power generation under typical weather rainy and snowy,sunny,abrupt,cloudy.Then,local mean decomposition(LMD)is used to decompose the output sequence,so as to extract more detail components of the reconstructed output sequence.Finally,combined with the weather forecast of the Meteorological Bureau for the next day,the singular spectrumanalysis algorithm is used to predict the photovoltaic classification of the recombination decomposition sequence under typical weather.Through the verification and analysis of examples,the hierarchical prediction experiments of reconstructed and non-reconstructed output sequences are compared.The results show that the algorithm proposed in this paper is effective in realizing the short-term prediction of photovoltaic generator,and has the advantages of simple structure and high prediction accuracy.
基金supported by the Special Fund of the Institute of Geophysics,China Earthquake Administration(Nos.DQJB19B02 and DQJB17T04)
文摘The quality factor(or Q value)is an important parameter for characterizing the inelastic properties of rock.Achieving a Q value estimation with high accuracy and stability is still challenging.In this study,a new method for estimating ultrasonic attenuation using a spectral ratio based on an S transform(SR-ST)is presented to improve the stability and accuracy of Q estimation.The variable window of ST is used to solve the time window problem.We add two window factors to the Gaussian window function in the ST.The window factors can adjust the scale of the Gaussian window function to the ultrasonic signal,which reduces the calculation error attributed to the conventional Gaussian window function.Meanwhile,the frequency bandwidth selection rules for the linear regression of the amplitude ratio are given to further improve stability and accuracy.First,the feasibility and influencing factors of the SR-ST method are studied through numerical testing and standard sample experiments.Second,artificial samples with different Q values are used to study the adaptability and stability of the SR-ST method.Finally,a further comparison between the new method and the conventional spectral ratio method(SR)is conducted using rock field samples,again addressing stability and accuracy.The experimental results show that this method will yield an error of approximately 36%using the conventional Gaussian window function.This problem can be solved by adding the time window factors to the Gaussian window function.The frequency bandwidth selection rules and mean slope value of the amplitude ratio used in the SR-ST method can ensure that the maximum error of different Q values estimation(Q>15)is less than 10%.
基金the financial support from the National Science Foundation of China(22078190 and 12002196)the National Key Research and Development Program of China(2020YFB1505802)。
文摘Li transient concentration distribution in spherical active material particles can affect the maximum power density and the safe operating regime of the electric vehicles(EVs). On one hand, the quasiexact/exact solution obtained in the time/frequency domain is time-consuming and just as a reference value for approximate solutions;on the other hand, calculation errors and application range of approximate solutions not only rely on approximate algorithms but also on discharge modes. For the purpose to track the transient dynamics for Li solid-phase diffusion in spherical active particles with a tolerable error range and for a wide applicable range, it is necessary to choose optimal approximate algorithms in terms of discharge modes and the nature of active material particles. In this study, approximation methods,such as diffusion length method, polynomial profile approximation method, Padé approximation method,pseudo steady state method, eigenfunction-based Galerkin collocation method, and separation of variables method for solving Li solid-phase diffusion in spherical active particles are compared from calculation fundamentals to algorithm implementation. Furthermore, these approximate solutions are quantitatively compared to the quasi-exact/exact solution in the time/frequency domain under typical discharge modes, i.e., start-up, slow-down, and speed-up. The results obtained from the viewpoint of time-frequency analysis offer a theoretical foundation on how to track Li transient concentration profile in spherical active particles with a high precision and for a wide application range. In turn, optimal solutions of Li solid diffusion equations for spherical active particles can improve the reliability in predicting safe operating regime and estimating maximum power for automotive batteries.
基金the Ministerial Level Advanced Research Foundation(020045089)
文摘A novel method of Doppler frequency extraction is proposed for Doppler radar scoring systems. The idea is that the time-frequency map can show how the Doppler frequency varies along the time-line, so the Doppler frequency extraction becomes curve detection in the image-view. A set of morphological operations are used to implement curve detection. And a map fusion scheme is presented to eliminate the influence of strong direct current (DC) component of echo signal during curve detection. The radar real-life data are used to illustrate the performance of the new approach. Experimental results show that the proposed method can overcome the shortcomings of piecewise-processing-based FFT method and can improve the measuring precision of miss distance.
文摘Multi-radar signal separation is a critical process in modern reconnaissance systems. However, the complicated battlefield is typically confronted with increasing electronic equipment and complex radar waveforms. The intercepted signal is difficult to separate with conventional parameters because of severe overlapping in both time and frequency domains. On the contrary, time-frequency analysis maps the 1D signal into a 2D time-frequency plane, which provides a better insight into the signal than traditional methods. Particularly, the parameterized time-frequency analysis (PTFA) shows great potential in processing such non stationary signals. Five procedures for the PTFA are proposed to separate the overlapped multi-radar signal, including initiation, instantaneous frequency estimation with PTFA, signal demodulation, signal separation with adaptive filter and signal recovery. The proposed method is verified with both simulated and real signals, which shows good performance in the application on multi-radar signal separation.
文摘Focused on the non-statlonarity and real-time analysis of signal in flutter test with progression variable speed (FTPVS), a new method of recursive time-frequency analysis is presented. The time-varying system is tracked on-line by building a time-varying parameter model, and then the relevant parameter spectrum can be obtained. The feasibility and advantages of the method are examined by digital simulation. The results of FTPVS at low-speed wind-tunnel promise the engineering application perspective of the method.
文摘With the continuous improvement of Synthetic Aperture Radar(SAR) resolution, interpreting the small targets like aircraft in SAR images becomes possible and turn out to be a hot spot in SAR application research. However, due to the complexity of SAR imaging mechanism, interpreting targets in SAR images is a tough problem. This paper presents a new aircraft interpretation method based on the joint time-frequency analysis and multi-dimensional contrasting of basic structures. Moreover, SAR data acquisition experiment is designed for interpreting the aircraft. Analyzing the experiment data with our method, the result shows that the proposed method largely makes use of the SAR data information. The reasonable results can provide some auxiliary support for the SAR images manual interpretation.
基金Supported by the National Natural Science Foundation of China(No.81222021,No.61172008,No.81171423)National Key Technology Research and Development Program of the Ministry of Science and Technology of China(No.2012BAI34B02)Program for New Century Excellent Talents in University of the Ministry of Education of China(No.NCET-10-0618)
文摘In order to investigate the characteristics of sensorimotor cortex during motor execution(ME), voluntary, stimulated and imaginary finger flexions were performed by ten volunteer subjects. Electroencephalogram(EEG) data were recorded according to the modified 10-20 International EEG System. The patterns were compared by the analysis of the motion-evoked EEG signals focusing on the contralateral(C3) and ipsilateral(C4) channels for hemispheric differences. The EEG energy distributions at alpha(8—13 Hz), beta(14—30 Hz) and gamma(30—50 Hz) bands were computed by wavelet transform(WT) and compared by the analysis of variance(ANOVA). The timefrequency(TF) analysis indicated that there existed a contralateral dominance of alpha post-movement event-related synchronization(ERS) pattern during the voluntary task, and that the energy of alpha band increased in the ipsilateral area during the stimulated(median nerve of wrist) task. Besides, the contralateral alpha and beta event-related desynchronization(ERD) patterns were observed in both stimulated and imaginary tasks. Another significant difference was found in the mean power values of gamma band(p<0.01)between the imaginary and other tasks. The results show that significant hemispheric differences such as alpha and beta band EEG energy distributions and TF changing phenomena(ERS/ERD) were found between C3 and C4 areas during all of the three patterns. The largest energy distribution was always at the alpha band for each task.
文摘Objective: To analyze the non-periodic, unstable and even chaotic echoes scattered from microbubbles which are extremely sensitive and may easily collapse, fragment or shrink when ultrasound contrast agents are exposed to ultrasound (US) irradiation. Methods: The combined time-frequency analysis was applied to the original signals instead of the traditional Fourier spectral analysis technique. Results: The results obtained from simulation as well as experiment showed that the subharmonic, 2nd harmonic and ultra harmonic of the microbubbles occurred during the oscillation and varied with time. The dependence on the incident ultrasonic amplitude and microbubble parameters were established. Conclusion: The transient echoes backscattered from the ultrasound agent in the evaluation of the blood perfusion can be analyzed thoroughly by the technique of combined-frequency analysis and the time detail of the frequency contents can be revealed.
文摘A method of time-frequency analysis (TFA) based on wavelets is applied to study the phase space structure of three-dimensional asymmetric triaxial galaxy enclosed by spherical dark halo component. The investigation is carried out in the presence and absence of dark halo component. Time-frequency analysis is based on the extraction of instantaneous frequency from the phase of the continuous wavelet transform. This method is comparatively fast and reliable. This method can differentiate periodic from quasi-periodic, chaotic sticky from chaotic non-sticky, ordered from chaotic and also, it can accurately determine the time interval of the resonance trapping and transitions too. Apart from that, the phenomenon of transient chaos can be explained with the help of time-frequency analysis. Comparison with the method of total angular momentum (denoted as Ltot) proposed recently is also presented.