Due to the calculation problem of classical methods (such as Lyapunovexponent) for chaotic behavior, a new method of identifying nonlinear dynamics with higher-ordertime-frequency entropy (HOTFE) based on time-frequen...Due to the calculation problem of classical methods (such as Lyapunovexponent) for chaotic behavior, a new method of identifying nonlinear dynamics with higher-ordertime-frequency entropy (HOTFE) based on time-frequency analysis and information theorem is proposed.Firstly, the meaning of HOTFE is defined, and then its validity is testified by numericalsimulation. In the end vibration data from rotors are analyzed by HOTFE. The results demonstratethat it can indeed identify the early rub-impact chaotic behavior in rotors and also is simpler tocalculate than previous methods.展开更多
文摘Due to the calculation problem of classical methods (such as Lyapunovexponent) for chaotic behavior, a new method of identifying nonlinear dynamics with higher-ordertime-frequency entropy (HOTFE) based on time-frequency analysis and information theorem is proposed.Firstly, the meaning of HOTFE is defined, and then its validity is testified by numericalsimulation. In the end vibration data from rotors are analyzed by HOTFE. The results demonstratethat it can indeed identify the early rub-impact chaotic behavior in rotors and also is simpler tocalculate than previous methods.