Using the method of Picus and Beer invariants, general expressions are obtained for the total intensity I and the degree of circular polarization Рcirc.of the luminescence of GaAs-type semiconductors with the partici...Using the method of Picus and Beer invariants, general expressions are obtained for the total intensity I and the degree of circular polarization Рcirc.of the luminescence of GaAs-type semiconductors with the participation of shallow acceptor levels in a longitudinal magnetic field H. Special cases are analyzed depending on the value and direction of the magnetic field strength, as well as on the constants of the g-factor of the acceptor g1,g2and the conduction band electron ge. In the case of a strong magnetic field H// [100], [111], [110], a numerical calculation of the angular dependence of the quantities I and Рcirc.was performed for some critical values of g2/g1, at which Рcirc.exhibits a sharp anisotropy in the range from −100% to +100%, and the intensity of the crystal radiation along the magnetic field tends to a minimum value.展开更多
The thermal examination of a non-integer-ordered mobile fin with a magnetism in the presence of a trihybrid nanofluid(Fe_3O_4-Au-Zn-blood) is carried out. Three types of nanoparticles, each having a different shape, a...The thermal examination of a non-integer-ordered mobile fin with a magnetism in the presence of a trihybrid nanofluid(Fe_3O_4-Au-Zn-blood) is carried out. Three types of nanoparticles, each having a different shape, are considered. These shapes include spherical(Fe_3O_4), cylindrical(Au), and platelet(Zn) configurations. The combination approach is utilized to evaluate the physical and thermal characteristics of the trihybrid and hybrid nanofluids, excluding the thermal conductivity and dynamic viscosity. These two properties are inferred by means of the interpolation method based on the volume fraction of nanoparticles. The governing equation is transformed into a dimensionless form, and the Adomian decomposition Sumudu transform method(ADSTM) is adopted to solve the conundrum of a moving fin immersed in a trihybrid nanofluid. The obtained results agree well with those numerical simulation results, indicating that this research is reliable. The influence of diverse factors on the thermal overview for varying noninteger values of γ is analyzed and presented in graphical representations. Furthermore, the fluctuations in the heat transfer concerning the pertinent parameters are studied. The results show that the heat flux in the presence of the combination of spherical, cylindrical, and platelet nanoparticles is higher than that in the presence of the combination of only spherical and cylindrical nanoparticles. The temperature at the fin tip increases by 0.705 759% when the value of the Peclet number increases by 400%, while decreases by 11.825 13% when the value of the Hartman number increases by 400%.展开更多
The application of mathematical modeling to biological fluids is of utmost importance, as it has diverse applicationsin medicine. The peristaltic mechanism plays a crucial role in understanding numerous biological flo...The application of mathematical modeling to biological fluids is of utmost importance, as it has diverse applicationsin medicine. The peristaltic mechanism plays a crucial role in understanding numerous biological flows. In thispaper, we present a theoretical investigation of the double diffusion convection in the peristaltic transport of aPrandtl nanofluid through an asymmetric tapered channel under the combined action of thermal radiation andan induced magnetic field. The equations for the current flow scenario are developed, incorporating relevantassumptions, and considering the effect of viscous dissipation. The impact of thermal radiation and doublediffusion on public health is of particular interest. For instance, infrared radiation techniques have been used totreat various skin-related diseases and can also be employed as a measure of thermotherapy for some bones toenhance blood circulation, with radiation increasing blood flow by approximately 80%. To solve the governingequations, we employ a numerical method with the aid of symbolic software such as Mathematica and MATLAB.The velocity, magnetic force function, pressure rise, temperature, solute (species) concentration, and nanoparticlevolume fraction profiles are analytically derived and graphically displayed. The results outcomes are compared withthe findings of limiting situations for verification.展开更多
The quantum Unruh effect on radiation of a gravitational object including a black hole is analyzed and calculated. It is surprisingly found that the well-known Hawking radiation of a black hole is not physical. Applyi...The quantum Unruh effect on radiation of a gravitational object including a black hole is analyzed and calculated. It is surprisingly found that the well-known Hawking radiation of a black hole is not physical. Applying the Stephan-Boltzmann law with the use of the Unruh radiation temperature at the surface of a black hole to calculate the power of radiation of the black hole is conceptually unphysical. This is because the Unruh radiation temperature results from the gravitational field of the object rather than from the thermal motion of matter of the object, so that the Stephan-Boltzmann law is not applicable. This paper shows that the emission power of Unruh radiation from a gravitational object should be calculated in terms of the rate of increase of the total Unruh radiation energy outside the object. The result obtained from this study indicates that a gravitational object can emit Unruh radiation when the variation of its mass and radius satisfies an inequality of dM/M > 1.25dR/R. For a black hole, the emission of Unruh radiation does not occur unless it can loose its mass (dM < 0). The emission power of Unruh radiation is only an extremely tiny part of the rate of mass-energy loss if the black hole is not extremely micro-sized. This study turns down our traditional understanding of the Hawking radiation and thermodynamics of black holes.展开更多
Nearfield acoustic holography(NAH)is a powerful tool for realizing source identification and sound field reconstruction.The wave superposition(WS)-based NAH is appropriate for the spatially extended sources and does n...Nearfield acoustic holography(NAH)is a powerful tool for realizing source identification and sound field reconstruction.The wave superposition(WS)-based NAH is appropriate for the spatially extended sources and does not require the complex numerical integrals.Equivalent source method(ESM),as a classical WS approach,is widely used due to its simplicity and efficiency.In the ESM,a virtual source surface is introduced,on which the virtual point sources are taken as the assumed sources,and an optimal retreat distance needs to be considered.A newly proposed WS-based approach,the element radiation superposition method(ERSM),uses piston surface source as the assumed source with no need to choose a virtual source surface.To satisfy the application conditions of piston pressure formula,the sizes of pistons are assumed to be as small as possible,which results in a large number of pistons and sampling points.In this paper,transfer matrix modes(TMMs),which are composed of the singular vectors of the vibro-acoustic transfer matrix,are used as the sparse basis of piston normal velocities.Then,the compressive ERSM based on TMMs is proposed.Compared with the conventional ERSM,the proposed method maintains a good pressure reconstruction when the number of sampling points and pistons are both reduced.Besides,the proposed method is compared with the compressive ESM in a mathematical sense.Both simulations and experiments for a rectangular plate demonstrate the advantage of the proposed method over the existing methods.展开更多
The main goal of this paper is to investigate natural convective heat transfer and flow characteristics of non-Newtonian nanofluid streaming between two infinite vertical flat plates in the presence of magnetic field ...The main goal of this paper is to investigate natural convective heat transfer and flow characteristics of non-Newtonian nanofluid streaming between two infinite vertical flat plates in the presence of magnetic field and thermal radiation.Initially,a similarity transformation is used to convert momentum and energy conservation equations in partial differential forms into non-linear ordinary differential equations (ODE) applying meaningful boundary conditions.In order to obtain the non-linear ODEs analytically,Galerkin method (GM) is employed.Subsequently,the ODEs are also solved by a reliable numerical solution.In order to test the accuracy,precision and reliability of the analytical method,results of the analytical analysis are compared with the numerical results.With respect to the comparisons,fairly good compatibilities with insignificant errors are observed.Eventually,the impacts of effective parameters including magnetic and radiation parameters and nanofluid volume fraction on the velocity,skin friction coefficient and Nusselt number distributions are comprehensively described.Based on the results,it is revealed that with increasing the role of magnetic force,velocity profile,skin friction coefficient and thermal performance descend.Radiation parameter has insignificant influence on velocity profile while it obviously has augmentative and decreasing effects on skin friction and Nusselt number,respectively.展开更多
The thickness of shallow landslides is generally less than 2 m,which is of the same order of magnitude as the growth range of vegetation roots.Vegetation roots can improve the stability of shallow soil through mechani...The thickness of shallow landslides is generally less than 2 m,which is of the same order of magnitude as the growth range of vegetation roots.Vegetation roots can improve the stability of shallow soil through mechanical and hydraulic effects.Therefore,the landslide process is closely related to the plant roots growing on the slope surface.Plant roots play a dominant role in the regulation of soil suction through solar radiation induced transpiration.However,little is known about the correlation between cumulative solar radiation and soil suction.Moreover,the specific effects of fine roots on the suction distribution are not clear in most previous studies.In this study,a vegetated soil of a drought-tolerant and water-tolerant shrub,namely Amorpha fruticose,was adopted.The suction and volumetric water content of bare and vegetated soils were monitored under natural conditions for 4 months.The results demonstrate that there is a nearly linear relationship between cumulative solar radiation and suction ranging from zero to 100 kPa.Regarding the modeling of the soil-plant-atmosphere interactions,this relationship could serve a significant role in calculating the root water uptake under given solar radiation conditions.In addition,higher suctions were observed at the lower layer of the vegetated soil than those at the middle layer,which is different from the results of vegetated soil from previous investigations.This is due to the fact that the root area index(RAI)of fine roots at the lower layer is twice that of the middle layer.Importantly,the higher concentration of fine roots at the lower layer of vegetated soil sample resembles the root distribution of shrub near the soil-bedrock interface on shallow bedrock landslides.The fine roots would increase soil suction through transpiration,and hence reduce the permeability and increase shear strength of landslides.Eventually,these new findings serve as a preliminary step on the evaluation of the stability of this common type of landslides.展开更多
In this paper, we make a theoretical investigation of the plasma-wave instability mechanism in a two-dimensional electron fluid in a high electron mobility transistor (HEMT) driven by the terahertz radiation in the ...In this paper, we make a theoretical investigation of the plasma-wave instability mechanism in a two-dimensional electron fluid in a high electron mobility transistor (HEMT) driven by the terahertz radiation in the presence of a perpendicular magnetic field. It is found that the resonant peaks of the gate-to-source/drain admittances and detection responsivity depend on the strength of the external magnetic field. Such phenomena can be used to produce a desired effect by adjusting the intensity of the magnetic field.展开更多
We propose a method to determine the optimal power of the microwave resonance transition that simultaneously improves the signal-to-noise ratio and reduces line width based on saturation broadening theory and experime...We propose a method to determine the optimal power of the microwave resonance transition that simultaneously improves the signal-to-noise ratio and reduces line width based on saturation broadening theory and experiment. Saturation broadening spectra of the ground state hyperfine transition of trapped 199Hg+ ions are measured and analyzed. The value of the optimal microwave power is obtained by using the proposed method and is verified. Rabi oscillations decay spectra of trapped 199Hg+ ions are observed and the optimal microwave irradiation time for the maximum transition signal intensity is determined. This work will help to improve the short-term frequency stability of the mercury ion microwave frequency standard.展开更多
We develop a model for calculating the radiation force on spherically symmetric multilayered particles based on the acoustic scattering approach.An expression is derived for the radiation force on a multilayered spher...We develop a model for calculating the radiation force on spherically symmetric multilayered particles based on the acoustic scattering approach.An expression is derived for the radiation force on a multilayered sphere centered on the axis of a Gaussian standing wave propagating in an ideal fluid,The effects of the sound absorption of the materials and sound wave on acoustic radiation force of a multilayered sphere immersed in water are analyzed,with particular emphasis on the shell thickness of every layer,and the width of the Gaussian beam.The results reveal that the existence of particle trapping behavior depends on the choice of the non-dimensional frequency ka,as well as the shell thickness of each layer.This study provides a theoretical basis for the development of acoustical tweezers in a Gaussian standing wave,which may benefit the improvement and development of acoustic control technology,such as trapping,sorting,and assembling a cell,and drug delivery applications.展开更多
In recent years,in order to meet the practical needs of deep edge mine detection with large depth and high precision,transient electromagnetic method(TEM)near emission source detection mode has become an international...In recent years,in order to meet the practical needs of deep edge mine detection with large depth and high precision,transient electromagnetic method(TEM)near emission source detection mode has become an international advanced method(Xue et al.,2020).展开更多
Acoustic manipulation is one of the well-known technologies of particle control and a top research in acoustic field.Calculation of acoustic radiation force on a particle nearby boundaries is one of the critical tasks...Acoustic manipulation is one of the well-known technologies of particle control and a top research in acoustic field.Calculation of acoustic radiation force on a particle nearby boundaries is one of the critical tasks,as it approximates realistic applications.Nevertheless,it is quite difficult to solve the problem by theoretical method when the boundary conditions are intricate.In this study,we present a finite element method numerical model for the acoustic radiation force exerting on a rigid cylindrical particle immersed in fluid near a rigid corner.The effects of the boundaries on acoustic radiation force of a rigid cylinder are analyzed with particular emphasis on the non-dimensional frequency and the distance from the center of cylinder to each boundary.The results reveal that these parameters play important roles in acoustic manipulation for particle-nearby complicated rigid boundaries.This study verifies the feasibility of numerical analysis on the issue of acoustic radiation force calculation close to complex boundaries,which may provide a new idea on analyzing the acoustic particle manipulation in confined space.展开更多
The instability of plasma waves in the channel of field-effect transistors will cause the electromagnetic waves with THz frequency.Based on a self-consistent quantum hydrodynamic model,the instability of THz plasmas w...The instability of plasma waves in the channel of field-effect transistors will cause the electromagnetic waves with THz frequency.Based on a self-consistent quantum hydrodynamic model,the instability of THz plasmas waves in the channel of graphene field-effect transistors has been investigated with external magnetic field and quantum effects.We analyzed the influence of weak magnetic fields,quantum effects,device size,and temperature on the instability of plasma waves under asymmetric boundary conditions numerically.The results show that the magnetic fields,quantum effects,and the thickness of the dielectric layer between the gate and the channel can increase the radiation frequency.Additionally,we observed that increase in temperature leads to a decrease in both oscillation frequency and instability increment.The numerical results and accompanying images obtained from our simulations provide support for the above conclusions.展开更多
This paper presents a novel watermarking scheme designed to address the copyright protection challenges encountered with Neural radiation field(NeRF)models.We employ an embedding network to integrate the watermark int...This paper presents a novel watermarking scheme designed to address the copyright protection challenges encountered with Neural radiation field(NeRF)models.We employ an embedding network to integrate the watermark into the images within the training set.Then,theNeRFmodel is utilized for 3Dmodeling.For copyright verification,a secret image is generated by inputting a confidential viewpoint into NeRF.On this basis,design an extraction network to extract embedded watermark images fromconfidential viewpoints.In the event of suspicion regarding the unauthorized usage of NeRF in a black-box scenario,the verifier can extract the watermark from the confidential viewpoint to authenticate the model’s copyright.The experimental results demonstrate not only the production of visually appealing watermarks but also robust resistance against various types of noise attacks,thereby substantiating the effectiveness of our approach in safeguarding NeRF.展开更多
The neutron radiation field has vital applications in areas such as biomedicine,geology,radiation safety,and many others for neutron detection and neutron metrology.Correcting neutron fluence rate perturbation accurat...The neutron radiation field has vital applications in areas such as biomedicine,geology,radiation safety,and many others for neutron detection and neutron metrology.Correcting neutron fluence rate perturbation accurately is an important yet challenging problem.This study proposes a correction method that analyzes three physical processes.This method,which transforms the detection process from point detection to area detection,is based on a novel physical model and has been validated through theoretical analyses,experiments,and simulations.According to the average differences between the calculated and experimental results,the new method(1.67%)demonstrated better accuracy than the traditional simulation(2.17%).In a closed thermal neutron radiation field,the detector or strong neutron absorption material significantly perturbs the neutron fluence rate,whereas its impact on the energy spectrum shape and neutron directionality is relatively minor.Furthermore,based on the calculation results of the perturbation rate formula for medium materials with different compositions and sizes,the larger the volume and capture cross section of the medium,the higher the perturbation rate generated in the closed radiation field.展开更多
The requirement of the fast three-dimensional radiation field calculation is raised during the decommissioning of large-scale nuclear installations. The most often used methods, such as the Monte Carlo and the discret...The requirement of the fast three-dimensional radiation field calculation is raised during the decommissioning of large-scale nuclear installations. The most often used methods, such as the Monte Carlo and the discrete ordinates methods, have shortcomings in their simulations of such problems. The coupled Monte Carlo–point kernel computational scheme is developed to meet the requirement. The facility is separated into the source region and the bulk shielding region, with a common interface. The transport within the source region is simulated using the Monte Carlo method, which is by nature good at treating complex geometries. The radiation field in the bulk shielding region is treated by the point kernel approach to avoid the extremely expensive computation for deep penetration problems. The flow rate through the interface,which is given by the Monte Carlo simulation, is considered as the equivalent surface source for the point kernel calculation. Test calculations from simplified typical waste storage facilities have been performed to validate the coupled scheme by comparing them with the results conducted by the Monte Carlo method directly. The good agreement of the results, as well as the significant saving in computing time, indicates that the coupled method is suitable for the fast three-dimensional radiation field calculation.展开更多
In order to probe the mechanism of the phenomena of seismic electromagnetic radiation (EMR), we have completed field experiment on EMR caused by explosiom of rocks. In the experiments, the data of medium lo...In order to probe the mechanism of the phenomena of seismic electromagnetic radiation (EMR), we have completed field experiment on EMR caused by explosiom of rocks. In the experiments, the data of medium low freguency (<5000 Hz) EMR caused by 26 explosion tests of small dimension rocks have been obtained. This paper shows some representative observational results of the field experiment. The observational results show that, nearly 20 points of the 26 explosive points, the EMR phenomena are recorded at various degrees in the related explosive processes. The EMR intensities decay with the distance from explosive origins and increase with the explosive energy. The EMR records have certain repeatability (under the same condition), complexity( multiple EMR effects caused by one explosion) and regional characteristics such as rock structure and observational direction etc.展开更多
In intensity modulated radiation treatment (IMRT) planning, the use of asymmetrically collimated fields that are placed on central axis or its off-set is mostly required. Output is the main topic discussed today for e...In intensity modulated radiation treatment (IMRT) planning, the use of asymmetrically collimated fields that are placed on central axis or its off-set is mostly required. Output is the main topic discussed today for extremely small and/or severe irregularly shaped fields. The air scatter data are involved directly or indirectly in obtaining the output. Despite the fact that extensive data have been published in many studies to provide a guide on the magnitude of output factor for clinical accelerators, there are very few data reviewed about output factor in-air or phantom for off-set fields. This study was aimed to investigate the impact of these conditions for small fields. This study was conducted in Elekta Synergy linear accelerator which produces 6 MV X-ray energy. The in-air output factor (Sc) has been measured by CC04 ion chamber with brass-alloy “build-up” cap and Dose-1 electrometer, and the total output (Scp) measurements were carried on at dose maximum depth in phantom by the same chamber and Thermoluminescence dosimeter (TLD) for 1 - 10 cm2 fields. The all measurements at center of isocenter and off-set fields at three directions (X2, Y1, Diagonal) were done. By decreasing field size from 10 to 2 cm2 at isocenter, the Sc value using CC04 was decreased to 5.4% and Scp using CC04 and TLD to 14.5% and 11% respectively. By increasing off-set value, the Sc and Scp values were increased in all directions comparing to central fields. The maximum increase was obtained in Y1 direction for Sc and Scp. TLD results for Scp is slightly higher than CC04. The dosimetric properties of small fields and their off-set should be evaluated and modelled appropriately in the treatment planning system to ensure accurate dose calculation in Intensity Modulated Radiation Treatment.展开更多
Further exploration of the fteld theory as first proposed by Yu (1989) is here presented to cover the equation of motion of a test particle which induces gravitational radiation. The same theory is shown to contain an...Further exploration of the fteld theory as first proposed by Yu (1989) is here presented to cover the equation of motion of a test particle which induces gravitational radiation. The same theory is shown to contain an exact gravitational radiation equation derived as a logical consequence of field equations without extra postulates. In this general dynamic context the theory is renamed 'The field Theory'.展开更多
The complexity of the indoor environment brings great challenges to predict the electromagnetic radiation field of multiple antenna systems. Based on the Finite Difference Time Domain (FDTD) algorithm, using the mobil...The complexity of the indoor environment brings great challenges to predict the electromagnetic radiation field of multiple antenna systems. Based on the Finite Difference Time Domain (FDTD) algorithm, using the mobile phone shielding device as the multiple antenna systems example, the mobile phone shielding device's indoor electromagnetic radiation field is researched by measurment method and simulation method. The effectivity of prediction method is verified by comparing the prediciton results with the measurment results. About 80% of the error can be controlled less than dB. The quantitative research has certain guiding significance to the prediction of the multiple antenna systems radio wave propagation.展开更多
文摘Using the method of Picus and Beer invariants, general expressions are obtained for the total intensity I and the degree of circular polarization Рcirc.of the luminescence of GaAs-type semiconductors with the participation of shallow acceptor levels in a longitudinal magnetic field H. Special cases are analyzed depending on the value and direction of the magnetic field strength, as well as on the constants of the g-factor of the acceptor g1,g2and the conduction band electron ge. In the case of a strong magnetic field H// [100], [111], [110], a numerical calculation of the angular dependence of the quantities I and Рcirc.was performed for some critical values of g2/g1, at which Рcirc.exhibits a sharp anisotropy in the range from −100% to +100%, and the intensity of the crystal radiation along the magnetic field tends to a minimum value.
基金Project supported by the DST-FIST Program for Higher Education Institutions of India(No. SR/FST/MS-I/2018/23(C))。
文摘The thermal examination of a non-integer-ordered mobile fin with a magnetism in the presence of a trihybrid nanofluid(Fe_3O_4-Au-Zn-blood) is carried out. Three types of nanoparticles, each having a different shape, are considered. These shapes include spherical(Fe_3O_4), cylindrical(Au), and platelet(Zn) configurations. The combination approach is utilized to evaluate the physical and thermal characteristics of the trihybrid and hybrid nanofluids, excluding the thermal conductivity and dynamic viscosity. These two properties are inferred by means of the interpolation method based on the volume fraction of nanoparticles. The governing equation is transformed into a dimensionless form, and the Adomian decomposition Sumudu transform method(ADSTM) is adopted to solve the conundrum of a moving fin immersed in a trihybrid nanofluid. The obtained results agree well with those numerical simulation results, indicating that this research is reliable. The influence of diverse factors on the thermal overview for varying noninteger values of γ is analyzed and presented in graphical representations. Furthermore, the fluctuations in the heat transfer concerning the pertinent parameters are studied. The results show that the heat flux in the presence of the combination of spherical, cylindrical, and platelet nanoparticles is higher than that in the presence of the combination of only spherical and cylindrical nanoparticles. The temperature at the fin tip increases by 0.705 759% when the value of the Peclet number increases by 400%, while decreases by 11.825 13% when the value of the Hartman number increases by 400%.
基金Institutional Fund Projects under No.(IFP-A-2022-2-5-24)by Ministry of Education and University of Hafr Al Batin,Saudi Arabia.
文摘The application of mathematical modeling to biological fluids is of utmost importance, as it has diverse applicationsin medicine. The peristaltic mechanism plays a crucial role in understanding numerous biological flows. In thispaper, we present a theoretical investigation of the double diffusion convection in the peristaltic transport of aPrandtl nanofluid through an asymmetric tapered channel under the combined action of thermal radiation andan induced magnetic field. The equations for the current flow scenario are developed, incorporating relevantassumptions, and considering the effect of viscous dissipation. The impact of thermal radiation and doublediffusion on public health is of particular interest. For instance, infrared radiation techniques have been used totreat various skin-related diseases and can also be employed as a measure of thermotherapy for some bones toenhance blood circulation, with radiation increasing blood flow by approximately 80%. To solve the governingequations, we employ a numerical method with the aid of symbolic software such as Mathematica and MATLAB.The velocity, magnetic force function, pressure rise, temperature, solute (species) concentration, and nanoparticlevolume fraction profiles are analytically derived and graphically displayed. The results outcomes are compared withthe findings of limiting situations for verification.
文摘The quantum Unruh effect on radiation of a gravitational object including a black hole is analyzed and calculated. It is surprisingly found that the well-known Hawking radiation of a black hole is not physical. Applying the Stephan-Boltzmann law with the use of the Unruh radiation temperature at the surface of a black hole to calculate the power of radiation of the black hole is conceptually unphysical. This is because the Unruh radiation temperature results from the gravitational field of the object rather than from the thermal motion of matter of the object, so that the Stephan-Boltzmann law is not applicable. This paper shows that the emission power of Unruh radiation from a gravitational object should be calculated in terms of the rate of increase of the total Unruh radiation energy outside the object. The result obtained from this study indicates that a gravitational object can emit Unruh radiation when the variation of its mass and radius satisfies an inequality of dM/M > 1.25dR/R. For a black hole, the emission of Unruh radiation does not occur unless it can loose its mass (dM < 0). The emission power of Unruh radiation is only an extremely tiny part of the rate of mass-energy loss if the black hole is not extremely micro-sized. This study turns down our traditional understanding of the Hawking radiation and thermodynamics of black holes.
基金Project supported by the National Natural Science Foundation of China(Grant No.61701133)。
文摘Nearfield acoustic holography(NAH)is a powerful tool for realizing source identification and sound field reconstruction.The wave superposition(WS)-based NAH is appropriate for the spatially extended sources and does not require the complex numerical integrals.Equivalent source method(ESM),as a classical WS approach,is widely used due to its simplicity and efficiency.In the ESM,a virtual source surface is introduced,on which the virtual point sources are taken as the assumed sources,and an optimal retreat distance needs to be considered.A newly proposed WS-based approach,the element radiation superposition method(ERSM),uses piston surface source as the assumed source with no need to choose a virtual source surface.To satisfy the application conditions of piston pressure formula,the sizes of pistons are assumed to be as small as possible,which results in a large number of pistons and sampling points.In this paper,transfer matrix modes(TMMs),which are composed of the singular vectors of the vibro-acoustic transfer matrix,are used as the sparse basis of piston normal velocities.Then,the compressive ERSM based on TMMs is proposed.Compared with the conventional ERSM,the proposed method maintains a good pressure reconstruction when the number of sampling points and pistons are both reduced.Besides,the proposed method is compared with the compressive ESM in a mathematical sense.Both simulations and experiments for a rectangular plate demonstrate the advantage of the proposed method over the existing methods.
文摘The main goal of this paper is to investigate natural convective heat transfer and flow characteristics of non-Newtonian nanofluid streaming between two infinite vertical flat plates in the presence of magnetic field and thermal radiation.Initially,a similarity transformation is used to convert momentum and energy conservation equations in partial differential forms into non-linear ordinary differential equations (ODE) applying meaningful boundary conditions.In order to obtain the non-linear ODEs analytically,Galerkin method (GM) is employed.Subsequently,the ODEs are also solved by a reliable numerical solution.In order to test the accuracy,precision and reliability of the analytical method,results of the analytical analysis are compared with the numerical results.With respect to the comparisons,fairly good compatibilities with insignificant errors are observed.Eventually,the impacts of effective parameters including magnetic and radiation parameters and nanofluid volume fraction on the velocity,skin friction coefficient and Nusselt number distributions are comprehensively described.Based on the results,it is revealed that with increasing the role of magnetic force,velocity profile,skin friction coefficient and thermal performance descend.Radiation parameter has insignificant influence on velocity profile while it obviously has augmentative and decreasing effects on skin friction and Nusselt number,respectively.
基金the financial supports from the National Natural Science Foundation of China(grant No.41925030 and 4179043)the Second Tibetan Plateau Scientific Expedition and Research Program(STEP,grant No.2019QZKK0904)the Natural Science Foundation of Shaanxi Province(2020JQ-041)。
文摘The thickness of shallow landslides is generally less than 2 m,which is of the same order of magnitude as the growth range of vegetation roots.Vegetation roots can improve the stability of shallow soil through mechanical and hydraulic effects.Therefore,the landslide process is closely related to the plant roots growing on the slope surface.Plant roots play a dominant role in the regulation of soil suction through solar radiation induced transpiration.However,little is known about the correlation between cumulative solar radiation and soil suction.Moreover,the specific effects of fine roots on the suction distribution are not clear in most previous studies.In this study,a vegetated soil of a drought-tolerant and water-tolerant shrub,namely Amorpha fruticose,was adopted.The suction and volumetric water content of bare and vegetated soils were monitored under natural conditions for 4 months.The results demonstrate that there is a nearly linear relationship between cumulative solar radiation and suction ranging from zero to 100 kPa.Regarding the modeling of the soil-plant-atmosphere interactions,this relationship could serve a significant role in calculating the root water uptake under given solar radiation conditions.In addition,higher suctions were observed at the lower layer of the vegetated soil than those at the middle layer,which is different from the results of vegetated soil from previous investigations.This is due to the fact that the root area index(RAI)of fine roots at the lower layer is twice that of the middle layer.Importantly,the higher concentration of fine roots at the lower layer of vegetated soil sample resembles the root distribution of shrub near the soil-bedrock interface on shallow bedrock landslides.The fine roots would increase soil suction through transpiration,and hence reduce the permeability and increase shear strength of landslides.Eventually,these new findings serve as a preliminary step on the evaluation of the stability of this common type of landslides.
基金Project supported by the National Natural Science Foundation for outstanding Young Scientists of China (Grant No 60425415), the Major Program of the National Natural Science Foundation of China (Grant No 10390162), and the Shanghai Municipal Commission of Science and Technology of China (Grant No 05XD14020).
文摘In this paper, we make a theoretical investigation of the plasma-wave instability mechanism in a two-dimensional electron fluid in a high electron mobility transistor (HEMT) driven by the terahertz radiation in the presence of a perpendicular magnetic field. It is found that the resonant peaks of the gate-to-source/drain admittances and detection responsivity depend on the strength of the external magnetic field. Such phenomena can be used to produce a desired effect by adjusting the intensity of the magnetic field.
基金Supported by the National Natural Science Foundation of China under Grant Nos 11074282 and 11474320
文摘We propose a method to determine the optimal power of the microwave resonance transition that simultaneously improves the signal-to-noise ratio and reduces line width based on saturation broadening theory and experiment. Saturation broadening spectra of the ground state hyperfine transition of trapped 199Hg+ ions are measured and analyzed. The value of the optimal microwave power is obtained by using the proposed method and is verified. Rabi oscillations decay spectra of trapped 199Hg+ ions are observed and the optimal microwave irradiation time for the maximum transition signal intensity is determined. This work will help to improve the short-term frequency stability of the mercury ion microwave frequency standard.
基金Project supported by National Key R&D Program of China(Grant No.2016YFF0203000)the National Natural Science Foundation of China(Grant Nos.11774167 and 61571222)+2 种基金the Fundamental Research Funds for the Central Universities of China(Grant No.020414380001)the Key Laboratory of Underwater Acoustic Environment,Institute of Acoustics,Chinese Academy of Sciences(Grant No.SSHJ-KFKT-1701)the AQSIQ Technology R&D Program of China(Grant No.2017QK125)
文摘We develop a model for calculating the radiation force on spherically symmetric multilayered particles based on the acoustic scattering approach.An expression is derived for the radiation force on a multilayered sphere centered on the axis of a Gaussian standing wave propagating in an ideal fluid,The effects of the sound absorption of the materials and sound wave on acoustic radiation force of a multilayered sphere immersed in water are analyzed,with particular emphasis on the shell thickness of every layer,and the width of the Gaussian beam.The results reveal that the existence of particle trapping behavior depends on the choice of the non-dimensional frequency ka,as well as the shell thickness of each layer.This study provides a theoretical basis for the development of acoustical tweezers in a Gaussian standing wave,which may benefit the improvement and development of acoustic control technology,such as trapping,sorting,and assembling a cell,and drug delivery applications.
基金project supported by Science and Technology Innovation Fund(Grant No.KDY2019001)Integrated Geophysical Simulation Lab of Chang’an University(Key Laboratory of Chinese Geophysical Society)
文摘In recent years,in order to meet the practical needs of deep edge mine detection with large depth and high precision,transient electromagnetic method(TEM)near emission source detection mode has become an international advanced method(Xue et al.,2020).
基金supported by the National Natural Science Foundation of China(Grant Nos.11604361 and 11904384)the National Key R&D Program of China(Grant No.2018 YFC0114900)Youth Innovation Promotion Association,Chinese Academy of Sciences(Grant No.2019024)。
文摘Acoustic manipulation is one of the well-known technologies of particle control and a top research in acoustic field.Calculation of acoustic radiation force on a particle nearby boundaries is one of the critical tasks,as it approximates realistic applications.Nevertheless,it is quite difficult to solve the problem by theoretical method when the boundary conditions are intricate.In this study,we present a finite element method numerical model for the acoustic radiation force exerting on a rigid cylindrical particle immersed in fluid near a rigid corner.The effects of the boundaries on acoustic radiation force of a rigid cylinder are analyzed with particular emphasis on the non-dimensional frequency and the distance from the center of cylinder to each boundary.The results reveal that these parameters play important roles in acoustic manipulation for particle-nearby complicated rigid boundaries.This study verifies the feasibility of numerical analysis on the issue of acoustic radiation force calculation close to complex boundaries,which may provide a new idea on analyzing the acoustic particle manipulation in confined space.
基金Project supported by the National Natural Science Foundation of China (Grant No.12065015)the Hongliu Firstlevel Discipline Construction Project of Lanzhou University of Technology。
文摘The instability of plasma waves in the channel of field-effect transistors will cause the electromagnetic waves with THz frequency.Based on a self-consistent quantum hydrodynamic model,the instability of THz plasmas waves in the channel of graphene field-effect transistors has been investigated with external magnetic field and quantum effects.We analyzed the influence of weak magnetic fields,quantum effects,device size,and temperature on the instability of plasma waves under asymmetric boundary conditions numerically.The results show that the magnetic fields,quantum effects,and the thickness of the dielectric layer between the gate and the channel can increase the radiation frequency.Additionally,we observed that increase in temperature leads to a decrease in both oscillation frequency and instability increment.The numerical results and accompanying images obtained from our simulations provide support for the above conclusions.
基金supported by the National Natural Science Foundation of China,with Fund Number 62272478.
文摘This paper presents a novel watermarking scheme designed to address the copyright protection challenges encountered with Neural radiation field(NeRF)models.We employ an embedding network to integrate the watermark into the images within the training set.Then,theNeRFmodel is utilized for 3Dmodeling.For copyright verification,a secret image is generated by inputting a confidential viewpoint into NeRF.On this basis,design an extraction network to extract embedded watermark images fromconfidential viewpoints.In the event of suspicion regarding the unauthorized usage of NeRF in a black-box scenario,the verifier can extract the watermark from the confidential viewpoint to authenticate the model’s copyright.The experimental results demonstrate not only the production of visually appealing watermarks but also robust resistance against various types of noise attacks,thereby substantiating the effectiveness of our approach in safeguarding NeRF.
基金supported by the Fundamental Research Funds of the National Institute of MetrologyChina(No.AKYZZ2113)+1 种基金National Key Research and Development Program of China(No.2017YFF0206205)the Team Building Program of Nanjing University(No.1480604114)。
文摘The neutron radiation field has vital applications in areas such as biomedicine,geology,radiation safety,and many others for neutron detection and neutron metrology.Correcting neutron fluence rate perturbation accurately is an important yet challenging problem.This study proposes a correction method that analyzes three physical processes.This method,which transforms the detection process from point detection to area detection,is based on a novel physical model and has been validated through theoretical analyses,experiments,and simulations.According to the average differences between the calculated and experimental results,the new method(1.67%)demonstrated better accuracy than the traditional simulation(2.17%).In a closed thermal neutron radiation field,the detector or strong neutron absorption material significantly perturbs the neutron fluence rate,whereas its impact on the energy spectrum shape and neutron directionality is relatively minor.Furthermore,based on the calculation results of the perturbation rate formula for medium materials with different compositions and sizes,the larger the volume and capture cross section of the medium,the higher the perturbation rate generated in the closed radiation field.
基金supported by the National Natural Science Foundation of China(No.11405277)
文摘The requirement of the fast three-dimensional radiation field calculation is raised during the decommissioning of large-scale nuclear installations. The most often used methods, such as the Monte Carlo and the discrete ordinates methods, have shortcomings in their simulations of such problems. The coupled Monte Carlo–point kernel computational scheme is developed to meet the requirement. The facility is separated into the source region and the bulk shielding region, with a common interface. The transport within the source region is simulated using the Monte Carlo method, which is by nature good at treating complex geometries. The radiation field in the bulk shielding region is treated by the point kernel approach to avoid the extremely expensive computation for deep penetration problems. The flow rate through the interface,which is given by the Monte Carlo simulation, is considered as the equivalent surface source for the point kernel calculation. Test calculations from simplified typical waste storage facilities have been performed to validate the coupled scheme by comparing them with the results conducted by the Monte Carlo method directly. The good agreement of the results, as well as the significant saving in computing time, indicates that the coupled method is suitable for the fast three-dimensional radiation field calculation.
文摘In order to probe the mechanism of the phenomena of seismic electromagnetic radiation (EMR), we have completed field experiment on EMR caused by explosiom of rocks. In the experiments, the data of medium low freguency (<5000 Hz) EMR caused by 26 explosion tests of small dimension rocks have been obtained. This paper shows some representative observational results of the field experiment. The observational results show that, nearly 20 points of the 26 explosive points, the EMR phenomena are recorded at various degrees in the related explosive processes. The EMR intensities decay with the distance from explosive origins and increase with the explosive energy. The EMR records have certain repeatability (under the same condition), complexity( multiple EMR effects caused by one explosion) and regional characteristics such as rock structure and observational direction etc.
文摘In intensity modulated radiation treatment (IMRT) planning, the use of asymmetrically collimated fields that are placed on central axis or its off-set is mostly required. Output is the main topic discussed today for extremely small and/or severe irregularly shaped fields. The air scatter data are involved directly or indirectly in obtaining the output. Despite the fact that extensive data have been published in many studies to provide a guide on the magnitude of output factor for clinical accelerators, there are very few data reviewed about output factor in-air or phantom for off-set fields. This study was aimed to investigate the impact of these conditions for small fields. This study was conducted in Elekta Synergy linear accelerator which produces 6 MV X-ray energy. The in-air output factor (Sc) has been measured by CC04 ion chamber with brass-alloy “build-up” cap and Dose-1 electrometer, and the total output (Scp) measurements were carried on at dose maximum depth in phantom by the same chamber and Thermoluminescence dosimeter (TLD) for 1 - 10 cm2 fields. The all measurements at center of isocenter and off-set fields at three directions (X2, Y1, Diagonal) were done. By decreasing field size from 10 to 2 cm2 at isocenter, the Sc value using CC04 was decreased to 5.4% and Scp using CC04 and TLD to 14.5% and 11% respectively. By increasing off-set value, the Sc and Scp values were increased in all directions comparing to central fields. The maximum increase was obtained in Y1 direction for Sc and Scp. TLD results for Scp is slightly higher than CC04. The dosimetric properties of small fields and their off-set should be evaluated and modelled appropriately in the treatment planning system to ensure accurate dose calculation in Intensity Modulated Radiation Treatment.
文摘Further exploration of the fteld theory as first proposed by Yu (1989) is here presented to cover the equation of motion of a test particle which induces gravitational radiation. The same theory is shown to contain an exact gravitational radiation equation derived as a logical consequence of field equations without extra postulates. In this general dynamic context the theory is renamed 'The field Theory'.
基金Supported by the State Environmental Protection Commonweal Industry Research Special of China (No.200909106)
文摘The complexity of the indoor environment brings great challenges to predict the electromagnetic radiation field of multiple antenna systems. Based on the Finite Difference Time Domain (FDTD) algorithm, using the mobile phone shielding device as the multiple antenna systems example, the mobile phone shielding device's indoor electromagnetic radiation field is researched by measurment method and simulation method. The effectivity of prediction method is verified by comparing the prediciton results with the measurment results. About 80% of the error can be controlled less than dB. The quantitative research has certain guiding significance to the prediction of the multiple antenna systems radio wave propagation.