期刊文献+
共找到1,277篇文章
< 1 2 64 >
每页显示 20 50 100
基于ARMA模型的城乡居民收入差距预测分析--以安徽省为例
1
作者 刘炯 周敏 伍燕 《江苏航运职业技术学院学报》 2024年第1期89-95,共7页
ARMA模型是当前普遍应用的时间序列建模方法之一。选取安徽省1980—2020年的城乡居民收入差距数据为样本,借助EVIEWS9.0软件,针对绝对收入差距与相对收入差距先后构建ARIMA((1,4),1,0)与ARMA(1,3)模型,两个模型的样本内静态预测结果均... ARMA模型是当前普遍应用的时间序列建模方法之一。选取安徽省1980—2020年的城乡居民收入差距数据为样本,借助EVIEWS9.0软件,针对绝对收入差距与相对收入差距先后构建ARIMA((1,4),1,0)与ARMA(1,3)模型,两个模型的样本内静态预测结果均较好。分别利用所建立的两个模型,样本外动态预测2021—2023年安徽省城乡居民绝对收入差距依次为23756.7元、24846.8元与26094.6元,相对收入差距依次为2.563078元、2.563116元与2.563147元,以期为相关部门制定政策提供数据支持。 展开更多
关键词 arma模型 城镇居民收入 农村居民收入 差距 预测
下载PDF
基于ARMA模型的海洋磁力测量数据小波去噪方法研究
2
作者 罗兵 《经纬天地》 2024年第1期1-5,共5页
海洋磁力测量是指通过安置在海底质子旋进磁力仪来直接测量地磁场,这样在海洋表面和海底同时测量,就可以得到地磁场的垂直梯度。但处理海洋磁力测量数据时不仅需要消耗大量时间,并且分块处理拼图还会导致精确度较低。为了实现对海洋地... 海洋磁力测量是指通过安置在海底质子旋进磁力仪来直接测量地磁场,这样在海洋表面和海底同时测量,就可以得到地磁场的垂直梯度。但处理海洋磁力测量数据时不仅需要消耗大量时间,并且分块处理拼图还会导致精确度较低。为了实现对海洋地质层参数的准确测量,提出基于ARMA模型的海洋磁力测量数据小波去噪方法。构建海洋磁力测量数据的小波降噪和滤波检测模型,通过对海洋磁力测量数据的类型化分类识别,进行多波束的信息分割,实现对海洋磁力测量数据的自动滤波降噪,使得输出数据更清晰、自然。测试结果表明,使用ARMA模型后,输出数据的信噪比较之前提升了33.6632 dB,海洋磁力测量数据去噪效果好。通过ARMA模型对海洋磁力数据进行去噪,有助于达到更精确的海洋磁力测量数据,为研究地磁场及其变化、海洋地质构造、矿产预测和国防建设提供了重要支持。 展开更多
关键词 arma模型 海洋磁力测量数据 小波去噪
下载PDF
基于ARMA-GARCH模型的中证绿色债券指数预测
3
作者 徐智琦 《商业观察》 2024年第17期72-75,82,共5页
文章选取了中证绿色债券指数2018年11月1日至2023年12月29日的日收盘价,通过Eviews10.0建立ARMA-GARCH模型预测其时间序列变化趋势并得出相应的结论,其实证结果表明:ARMA-GARCH模型可以有效地应用于绿色债券市场预测未来走势,其中静态... 文章选取了中证绿色债券指数2018年11月1日至2023年12月29日的日收盘价,通过Eviews10.0建立ARMA-GARCH模型预测其时间序列变化趋势并得出相应的结论,其实证结果表明:ARMA-GARCH模型可以有效地应用于绿色债券市场预测未来走势,其中静态预测结果优于动态预测,未来一定时间内绿色债券指数收盘价总体呈现向上增长趋势。这对投资者降低投资风险、挖掘投资机遇具有重要意义,便于投资者更好地制定投资策略,控制风险,进而获得更高的收益。 展开更多
关键词 绿色债券 arma-GARCH模型 时间序列模型 绿色债券指数
下载PDF
基于ARMA模型的隧道变形预测及参数估计分析
4
作者 刘君伟 杨晓辉 《市政技术》 2024年第7期54-60,共7页
以北京市海淀区某地铁站一体化棚户区改造项目为例,运用ARMA模型对高层建筑盖挖逆作法施工过程中邻近既有地铁隧道变形进行预测。以既有地铁隧道沉降实时监测数据为原始数据集,对原始数据集进行适当插补处理后,通过极大似然估计法对模... 以北京市海淀区某地铁站一体化棚户区改造项目为例,运用ARMA模型对高层建筑盖挖逆作法施工过程中邻近既有地铁隧道变形进行预测。以既有地铁隧道沉降实时监测数据为原始数据集,对原始数据集进行适当插补处理后,通过极大似然估计法对模型进行参数估计,给出了模型关键参数,构建了合理的预测模型。将模型预测结果与实测数据进行对比,显示预测结果与实测数据变化趋势高度吻合,充分验证了预测模型的可行性、有效性与稳定性。 展开更多
关键词 地铁隧道 arma模型 变形预测 时间序列
下载PDF
oncausal spatial prediction filtering based on an ARMA model 被引量:8
5
作者 Liu Zhipeng Chen Xiaohong Li Jingye 《Applied Geophysics》 SCIE CSCD 2009年第2期122-128,共7页
Conventional f-x prediction filtering methods are based on an autoregressive model. The error section is first computed as a source noise but is removed as additive noise to obtain the signal, which results in an assu... Conventional f-x prediction filtering methods are based on an autoregressive model. The error section is first computed as a source noise but is removed as additive noise to obtain the signal, which results in an assumption inconsistency before and after filtering. In this paper, an autoregressive, moving-average model is employed to avoid the model inconsistency. Based on the ARMA model, a noncasual prediction filter is computed and a self-deconvolved projection filter is used for estimating additive noise in order to suppress random noise. The 1-D ARMA model is also extended to the 2-D spatial domain, which is the basis for noncasual spatial prediction filtering for random noise attenuation on 3-D seismic data. Synthetic and field data processing indicate this method can suppress random noise more effectively and preserve the signal simultaneously and does much better than other conventional prediction filtering methods. 展开更多
关键词 AR model arma model noncasual random noise self-deconvolved projection filtering
下载PDF
Parameter Estimation of Time-Varying ARMA Model 被引量:3
6
作者 王文华 韩力 王文星 《Journal of Beijing Institute of Technology》 EI CAS 2004年第2期131-134,共4页
The auto-regressive moving-average (ARMA) model with time-varying parameters is analyzed. The time-varying parameters are assumed to be a linear combination of a set of basis time-varying functions, and the feedbac... The auto-regressive moving-average (ARMA) model with time-varying parameters is analyzed. The time-varying parameters are assumed to be a linear combination of a set of basis time-varying functions, and the feedback linear estimation algorithm is used to estimate the time-varying parameters of the ARMA model. This algorithm includes 2 linear least squares estimations and a linear filter. The influence of the order of basis time-(varying) functions on parameters estimation is analyzed. The method has the advantage of simple, saving computation time and storage space. Theoretical analysis and experimental results show the validity of this method. 展开更多
关键词 auto-regressive moving-average (arma) model feedback linear estimation basis time-varying function spectral estimation
下载PDF
Study on Optimality of Two-Stage Estimation with ARMA Model Random Bias 被引量:2
7
作者 Zhou Lu(Department of Mathematics, Beijing National University,100875, P. R. China)Wen Xin( 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 1999年第2期39-47,共9页
The optimality of two-stage state estimation with ARMA model random bias is studiedin this paper. Firstly, the optimal augmented state Kalman filter is given; Secondly, the two-stageKalman estimator is designed. Final... The optimality of two-stage state estimation with ARMA model random bias is studiedin this paper. Firstly, the optimal augmented state Kalman filter is given; Secondly, the two-stageKalman estimator is designed. Finally, under an algebraic constraint condition, the equivalencebetween the two-stage Kalman estimator and the optimal augmented state Kalman filter is proved.Thereby, the algebraic constraint conditions of optimal two-stage state estimation in the presence ofARMA model random bias are given. 展开更多
关键词 Kalman filter State estimation Optimal filtering arma model Random bias.
下载PDF
A Study of Wind Statistics Through Auto-Regressive and Moving-Average (ARMA) Modeling 被引量:1
8
作者 John Z.YIM(尹彰) +1 位作者 ChunRen CHOU(周宗仁) 《China Ocean Engineering》 SCIE EI 2001年第1期61-72,共12页
Statistical properties of winds near the Taichung Harbour are investigated. The 26 years'incomplete data of wind speeds, measured on an hourly basis, are used as reference. The possibility of imputation using simu... Statistical properties of winds near the Taichung Harbour are investigated. The 26 years'incomplete data of wind speeds, measured on an hourly basis, are used as reference. The possibility of imputation using simulated results of the Auto-Regressive (AR), Moving-Average (MA), and/ or Auto-Regressive and Moving-Average (ARMA) models is studied. Predictions of the 25-year extreme wind speeds based upon the augmented data are compared with the original series. Based upon the results, predictions of the 50- and 100-year extreme wind speeds are then made. 展开更多
关键词 Auto-Regressive and Moving-Average (arma) modeling probability distributions extreme wind speeds
下载PDF
Wind Speed Forecasting Based on ARMA-ARCH Model in Wind Farms 被引量:3
9
作者 He Yu Gao Shan Chen Hao 《Electricity》 2011年第3期30-34,共5页
Wind speed forecasting is signif icant for wind farm planning and power grid operation. The research in this paper uses Eviews software to build the ARMA (autoregressive moving average) model of wind speed time series... Wind speed forecasting is signif icant for wind farm planning and power grid operation. The research in this paper uses Eviews software to build the ARMA (autoregressive moving average) model of wind speed time series, and employs Lagrange multipliers to test the ARCH (autoregressive conditional heteroscedasticity) effects of the residuals of the ARMA model. Also, the corresponding ARMA-ARCH models are established, and the wind speed series are forecasted by using the ARMA model and ARMA-ARCH model respectively. The comparison of the forecasting accuracy of the above two models shows that the ARMA-ARCH model possesses higher forecasting accuracy than the ARMA model and has certain practical value. 展开更多
关键词 short-term wind speed forecasting arma model ARCH effect volatility clustering
下载PDF
基于ARMA-SSESM组合模型的危险品道路运输泄漏事故预测研究 被引量:1
10
作者 白金花 刘勇 +2 位作者 程智慧 向前前 施星宇 《中国安全生产科学技术》 CAS CSCD 北大核心 2023年第10期171-177,共7页
为了预测危险品道路运输泄漏事故数量,以2013—2020年危险品道路运输泄漏月度事故为基础,运用时间序列理论建立自回归滑动平均(ARMA)预测模型和简单季节指数平滑法(SSESM)预测模型以及组合预测模型,对2021年1月—2021年6月的危险品道路... 为了预测危险品道路运输泄漏事故数量,以2013—2020年危险品道路运输泄漏月度事故为基础,运用时间序列理论建立自回归滑动平均(ARMA)预测模型和简单季节指数平滑法(SSESM)预测模型以及组合预测模型,对2021年1月—2021年6月的危险品道路运输泄漏事故数量进行预测,并对3种模型的预测精度进行比较。研究结果表明:组合预测模型的预测精度最佳,能够有效拟合时间序列的整体趋势。研究结果可为危险品道路运输泄漏事故预防工作提供参考。 展开更多
关键词 危险品 道路运输 arma模型 SSESM模型 组合预测模型 事故预测
下载PDF
基于POD和ARMA的阵风响应预测降阶模型研究 被引量:1
11
作者 于梦楠 李典 梁益华 《航空计算技术》 2023年第2期35-39,共5页
针对阵风响应流场高效精确分析需求,基于非定常CFD数值模拟发展了一种快速流场预测的降阶模型。采用本征正交分解(POD)方法对高斯阵风激励的CFD非定常流场快照进行特征分析、并基于能量占比准则截取主要基模态来降维,采用自回归滑动平均... 针对阵风响应流场高效精确分析需求,基于非定常CFD数值模拟发展了一种快速流场预测的降阶模型。采用本征正交分解(POD)方法对高斯阵风激励的CFD非定常流场快照进行特征分析、并基于能量占比准则截取主要基模态来降维,采用自回归滑动平均(ARMA)方法建立各主要基模态系数的线性预测模型。采用NACA0012和DLR-F12的分析算例进行了验证,与CFD非定常计算结果对比分析表明,模型具有可靠的计算精度,适合于精确高效快速分析阵风响应,为阵风减缓设计提供技术支撑。 展开更多
关键词 降阶模型 阵风响应 本征正交分解 自回归滑动平均模型
下载PDF
Simulation of the growth ring density of Larix olgensis plantation wood with the ARMA model
12
作者 Yi Liu Minghui Guo 《Journal of Forestry Research》 SCIE CAS CSCD 2019年第2期727-737,共11页
Because growth ring data have temporal features, time series analysis can be used to simulate and reveal changes in the life of a tree and contribute to plantation management. In this study, the autoregressive(AR) and... Because growth ring data have temporal features, time series analysis can be used to simulate and reveal changes in the life of a tree and contribute to plantation management. In this study, the autoregressive(AR) and moving average modeling method was used to simulate the time series for growth ring density in a larch plantation with different initial planting densities. We adopted the Box–Jenkins method for the modeling, which was initially based on an intuitive analysis of sequence graphs followed by the augmented Dickey–Fuller stationarity test. The order p and q of the ARMA(p, q) model was determined based on the autocorrelation and partial correlation coefficient figure truncated on the respective order.Through the residual judgment, the model AR(2) was only fitted to the larch growth ring density series for the plantation with the 1.5 9 2.0 m^2 initial planting density.Because the residuals series for the other three series was not shown as a white noise sequence, the modeling was rerun. Larch wood from the initial planting density of2.0 9 2.0 m^2 was modeled by ARMA(2, 1), and ARMA((1, 5), 3) fitted to the 2.5 9 2.5 m^2 initial planting density,and the 3.0 9 3.0 m^2 was modeled by AR(1, 2, 5).Although the ARMA modeling can simulate the change in growth ring density, data for the different growth ring time series were described by different models. Thus, time series modeling can be suitable for growth ring data analysis, revealing the time domain and frequency domain of growth ring data. 展开更多
关键词 Growth RING DENSITY LARIX olgensis PLANTATION WOOD arma modeling Time series analysis
下载PDF
ARMA-GM combined forewarning model for the quality control
13
作者 WangXingyuan YangXu 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2005年第1期224-227,共4页
Three forecasting models are set up: the auto\|regressive moving average model, the grey forecasting model for the rate of qualified products P t, and the grey forecasting model for time intervals of the quality cata... Three forecasting models are set up: the auto\|regressive moving average model, the grey forecasting model for the rate of qualified products P t, and the grey forecasting model for time intervals of the quality catastrophes. Then a combined forewarning system for the quality of products is established, which contains three models, judgment rules and forewarning state illustration. Finally with an example of the practical production, this modeling system is proved fairly effective. 展开更多
关键词 auto-regressive moving average model (arma) grey system model (GM) combined forewarning model quality control.
下载PDF
基于ARMA模型磁暴抑制的地震TEC异常分析
14
作者 孟一恒 黄永明 +1 位作者 卢永 缪发军 《防灾减灾工程学报》 CSCD 北大核心 2023年第4期896-904,共9页
地震孕育的过程中会影响电离层的粒子浓度(TEC),因此可以通过TEC数据分析地震异常信息,但是TEC数据相较地震事件受太阳活动影响更大,所以以往的研究通常只能选择太阳活动较为平静的时期。受磁暴影响TEC数据无法正常反应2021年云南大理... 地震孕育的过程中会影响电离层的粒子浓度(TEC),因此可以通过TEC数据分析地震异常信息,但是TEC数据相较地震事件受太阳活动影响更大,所以以往的研究通常只能选择太阳活动较为平静的时期。受磁暴影响TEC数据无法正常反应2021年云南大理州等地的地震异常信息,因此抑制磁暴干扰就显得格外重要。在滑动四分位法的基础上提出一种基于ARMA模型的TEC数据磁暴抑制方法,通过重新拟合磁暴发生前后的TEC数据,从而代替原始数据进行分析,在一定程度上降低磁暴对地震的信息的影响,然后提出一种地震特征及其相关性的模型对TEC异常和地震事件的相关性程度进行分析。基于IGS数据分析中心提供的全球电离层电子浓度数据,分别对2021年云南大理州漾濞县6.4级地震和青海果洛州玛多县7.4级地震进行仿真分析,分别使用传统的滑动四分位法和滑动窗口法,并通过提出的相关性模型对磁暴抑制前后的特征和事件相关性结果进行对比,结果表明去除磁暴后的特征与地震相关性增加约13-18%。 展开更多
关键词 磁暴抑制 arma模型 电离层数据 地震短临
下载PDF
基于ARMA-GARCH簇模型的碳配额价格波动特征研究 被引量:1
15
作者 樊晔琛 俞小平(指导) 《中国林业经济》 2023年第2期100-106,共7页
在“双碳”目标指引下,我国碳市场正处于从区域试点迈向全国统一的关键时期,如何实现地方衔接全国碳市场已经成为亟待解决的问题。以北京、上海、广东、湖北、天津和全国6个碳交易市场的碳价为研究对象,通过建立ARMA-GARCH簇模型对碳价... 在“双碳”目标指引下,我国碳市场正处于从区域试点迈向全国统一的关键时期,如何实现地方衔接全国碳市场已经成为亟待解决的问题。以北京、上海、广东、湖北、天津和全国6个碳交易市场的碳价为研究对象,通过建立ARMA-GARCH簇模型对碳价波动问题进行量化分析。研究结果发现,6个碳市场的碳价受前期交易的影响较为显著、价格波动具有集群效应以及存在非对称性冲击效应,为此提出丰富交易主体、交易产品和完善市场定价机制的相关建议。 展开更多
关键词 碳交易市场 碳价 arma-GARCH簇模型 非对称冲击
下载PDF
ARMA Modelling for Whispered Speech
16
作者 栗学丽 周卫东 《Journal of Measurement Science and Instrumentation》 CAS 2010年第3期300-303,共4页
The Autoregressive Moving Average (ARMA) model for whispered speech is proposed. with normal speech, whispered speech has no fundamental frequency because of the glottis being semi-opened and turbulent flow being cr... The Autoregressive Moving Average (ARMA) model for whispered speech is proposed. with normal speech, whispered speech has no fundamental frequency because of the glottis being semi-opened and turbulent flow being created, and formant shifting exists in the lower frequency region due to the narrowing of the tract in the false vocal fold regions and weak acoustic coupling with the aubglottal system. Analysis shows that the effect of the subglottal system is to introduce additional pole-zero pairs into the vocal tract transfer function. Theoretically, the method based on an ARMA process is superior to that based on an AR process in the spectral analysis of the whispered speech. Two methods, the least squared modified Yule-Walker likelihood estimate (LSMY) algorithm and the Frequency-Domain Steiglitz-Mcbide (FDSM) algorithm, are applied to the ARMA mfldel for the whispered speech. The performance evaluation shows that the ARMA model is much more appropriate for representing the whispered speech than the AR model, and the FDSM algorithm provides a name acorate estimation of the whispered speech spectral envelope than the LSMY algorithm with higher conputational complexity. 展开更多
关键词 arma model AR model whispered speech LSMY
下载PDF
ARMA模型在预测全球平均温度情况中的应用 被引量:1
17
作者 程研 华志强 +1 位作者 黄玉洁 侯云艳 《内蒙古民族大学学报(自然科学版)》 2023年第2期103-108,共6页
基于全球平均温度的动态数据,对全球平均气温情况进行了统计分析,首先,运用时间序列分析的方法,对历史数据进行预处理并建立ARMA(p,q)模型,其次,应用历史数据进行验证,并分析了预测精度。结果表明,所建的模型能很好地预测短期内气温变... 基于全球平均温度的动态数据,对全球平均气温情况进行了统计分析,首先,运用时间序列分析的方法,对历史数据进行预处理并建立ARMA(p,q)模型,其次,应用历史数据进行验证,并分析了预测精度。结果表明,所建的模型能很好地预测短期内气温变化情况,拟合模型符合发展趋势,为研究气象预测等问题提供理论依据。 展开更多
关键词 全球平均温度 时间序列分析 arma(p q)模型
下载PDF
基于WT-BiLSTM-ARMA模型的PM2.5浓度预测研究 被引量:3
18
作者 程妍菲 张明辉 王宝珠 《计算机时代》 2023年第1期44-49,共6页
针对PM2.5浓度预测问题,提出一种基于小波变换的模型。在北京市六个大气污染监测站测得的PM2.5浓度数据上,运用小波分解算法对原始数据序列进行特征提取,使用BiLSTM对高频序列进行预测,同时使用ARMA对低频序列进行预测,最后将各个子序... 针对PM2.5浓度预测问题,提出一种基于小波变换的模型。在北京市六个大气污染监测站测得的PM2.5浓度数据上,运用小波分解算法对原始数据序列进行特征提取,使用BiLSTM对高频序列进行预测,同时使用ARMA对低频序列进行预测,最后将各个子序列的预测值进行小波重构得到最终预测结果。实验结果表明,相较于传统单一模型和组合模型,该模型的性能和预测精度均有提高。 展开更多
关键词 PM2.5预测 BiLSTM神经网络 小波变换 arma模型
下载PDF
Simulating Particle Swarm Optimization Algorithm to Estimate Likelihood Function of ARMA(1, 1) Model
19
作者 Basad Ali Hussain Al-sarray 《Journal of Mathematics and System Science》 2015年第10期399-410,共12页
This paper present a simulation study of an evolutionary algorithms, Particle Swarm Optimization PSO algorithm to optimize likelihood function of ARMA(1, 1) model, where maximizing likelihood function is equivalent ... This paper present a simulation study of an evolutionary algorithms, Particle Swarm Optimization PSO algorithm to optimize likelihood function of ARMA(1, 1) model, where maximizing likelihood function is equivalent to maximizing its logarithm, so the objective function 'obj.fun' is maximizing log-likelihood function. Monte Carlo method adapted for implementing and designing the experiments of this simulation. This study including a comparison among three versions of PSO algorithm “Constriction coefficient CCPSO, Inertia weight IWPSO, and Fully Informed FIPSO”, the experiments designed by setting different values of model parameters al, bs sample size n, moreover the parameters of PSO algorithms. MSE used as test statistic to measure the efficiency PSO to estimate model. The results show the ability of PSO to estimate ARMA' s parameters, and the minimum values of MSE getting for COPSO. 展开更多
关键词 Particle Swarm Optimization algorithm Likelihood function arma(1 1) model
下载PDF
Analysis and Prediction of Rural Residents’ Living Consumption Growth in Sichuan Province Based on Markov Prediction and ARMA Model
20
作者 LU Xiao-li 《Asian Agricultural Research》 2012年第10期45-48,共4页
I select 32 samples concerning per capita living consumption of rural residents in Sichuan Province during the period 1978-2009. First, using Markov prediction method, the growth rate of living consumption level in th... I select 32 samples concerning per capita living consumption of rural residents in Sichuan Province during the period 1978-2009. First, using Markov prediction method, the growth rate of living consumption level in the future is predicted to largely range from 10% to 20%. Then, in order to improve the prediction accuracy, time variable t is added into the traditional ARMA model for modeling and prediction. The prediction results show that the average relative error rate is 1.56%, and the absolute value of relative error during the period 2006-2009 is less than 0.5%. Finally, I compare the prediction results during the period 2010-2012 by Markov prediction method and ARMA model, respectively, indicating that the two are consistent in terms of growth rate of living consumption, and the prediction results are reliable. The results show that under the similar policies, rural residents' consumer demand in Sichuan Province will continue to grow in the short term, so it is necessary to further expand the consumer market. 展开更多
关键词 RURAL RESIDENTS LIVING CONSUMPTION MARKOV predicti
下载PDF
上一页 1 2 64 下一页 到第
使用帮助 返回顶部