The range of coal-mine underground goaf has continuously expanded over time.Caving,fracture,and deformation zones have also changed,thereby inducing coal-mine water inrush and other environmental disasters.In this stu...The range of coal-mine underground goaf has continuously expanded over time.Caving,fracture,and deformation zones have also changed,thereby inducing coal-mine water inrush and other environmental disasters.In this study,4 D seismic monitoring technology that is effective in reservoir development was used to monitor abnormal changes in coal-mine underground goaf to explore the feasibility of the method.Taking a coal mine in Hancheng,Shaanxi as an example,we used the aforementioned technology to dynamically monitor the abnormal changes in the goaf.Based on the 4 D seismic data obtained in the experiment and the abnormal change characteristics of the coal-mine goaf,the method of 4 D seismic data processing in reservoir was improved.A set of 4 D data processing flow for the goaf was established,and the anomalies in the surface elevation and overlying strata velocity caused by collapse were corrected.We have made the following improvements to the method of 4 D seismic data processing in the reservoir:(1)the static correction problem caused by the changes of surface elevation and destruction of the low-velocity layer has been solved through fusion static correction to comb the low-frequency components of elevation statics with the high-frequency components of refraction statics;(2)the problem of overlying strata velocity changes in the goaf caused by collapse has been solved through the velocity consistency method;(3)the problem of reflection event pull-down in the disturbance area has been solved through space-varying moveout correction based on cross-correlation;and(4)amplitude anomalies in the coal seam caused by the goaf have been addressed using the correction method of space-varying amplitude.Results show that the 4 D seismic data processing and interpretation method established in this study is reasonable and effective.展开更多
油藏地球物理技术是地球物理在油气开发与生产中的应用技术。以《The Leading Edge》的"开发与生产地球物理"专栏为窗口,系统回顾了油藏地球物理技术的发展历程,分析了该技术的特点与现状,并对其中的井间地震与时延地震两项...油藏地球物理技术是地球物理在油气开发与生产中的应用技术。以《The Leading Edge》的"开发与生产地球物理"专栏为窗口,系统回顾了油藏地球物理技术的发展历程,分析了该技术的特点与现状,并对其中的井间地震与时延地震两项特色技术的发展趋势进行了评估。与勘探地球物理相比,多学科综合研究是油藏地球物理技术的主要特征之一,而高精度三维地震则是多学科综合的核心技术。此外,油藏地球物理研究的精细程度也要比勘探地球物理高很多。在技术方面,除了高精度三维地震外,时延(四维)地震、井中地震、多波地震、随钻测量及微地震等,也是油藏地球物理的重要技术组成部分。目前,油气地球物理探测技术正处在由勘探阶段向开发与生产阶段跨越的时代,油藏地球物理的出现赋予了地球物理技术新的生命力,代表了油气地球物理的发展趋势,是未来石油工业界地球物理技术发展的主流。使其在油气开发与生产中发挥应有的作用,是新一代地球物理学家肩负的历史使命。展开更多
Ordovician fracture-cavity carbonate reservoir beds are the major type of producing formations in the Tahe oilfield, Tarim Basin. The seismic responses of these beds clearly changes depending on the different distance...Ordovician fracture-cavity carbonate reservoir beds are the major type of producing formations in the Tahe oilfield, Tarim Basin. The seismic responses of these beds clearly changes depending on the different distance of the fracture-cavity reservoir bed from the top of the section. The seismic reflection becomes weak or is absent when the fracture-cavity reservoir beds are less than 20 ms below the top Ordovician. The effect on top Ordovician reflection became weaker with deeper burial of fracture-cavity reservoir beds but the developed deep fracture-cavity reservoir beds caused stronger reflection in the interior of the Ordovician. This interior reflection can be divided into strong long-axis, irregular and bead string reflections, and was present 80 ms below the top Ordovician. Aimed at understanding reflection characteristics, the spectral decomposition technique, which uses frequency to "tune-in" bed thickness, was used to predict Ordovician fracture-cavity carbonate formations in the Tahe oilfield. Through finely adjusting the processing parameters of spectral decomposition, it was found that the slice at 30 Hz of the tuned data cube can best represent reservoir bed development. Two large N-S-trending strong reflection belts in the mid-western part of the study area along wells TK440- TK427-TK417B and in the eastern part along wells TK404-TK409 were observed distinctly on the 30 Hz slice and 4-D time-frequency data cube carving. A small N-S trending reflection belt in the southern part along wells T403-TK446B was also clearly identified. The predicted reservoir bed development area coincides with the fracture-cavities connection area confirmed by drilling pressure testing results. Deep karst cavities occur basically in three reservoir bed-development belts identified by the Ordovician interior strong reflection. Spectral decomposition proved to be a useful technique in identifying fracture-cavity reservoir beds.展开更多
Geophysical techniques play key roles in the measuring, monitoring, and verifying the safety of CO2 sequestration and in identifying the efficiency of CO2-enhanced oil recovery. Although geophysical monitoring techniq...Geophysical techniques play key roles in the measuring, monitoring, and verifying the safety of CO2 sequestration and in identifying the efficiency of CO2-enhanced oil recovery. Although geophysical monitoring techniques for CO2 sequestration have grown out of conventional oil and gas geophysical exploration techniques, it takes a long time to conduct geophysical monitoring, and there are many barriers and challenges. In this paper, with the initial objective of performing CO2 sequestration, we studied the geophysical tasks associated with evaluating geological storage sites and monitoring CO2 sequestration. Based on our review of the scope of geophysical monitoring techniques and our experience in domestic and international carbon capture and sequestration projects, we analyzed the inherent difficulties and our experiences in geophysical monitoring techniques, especially, with respect to 4D seismic acquisition, processing, and interpretation.展开更多
The recent proliferation of the 3D reflection seismic method into the near-surface area of geophysical applications, especially in response to the emergence of the need to comprehensively characterize and monitor near...The recent proliferation of the 3D reflection seismic method into the near-surface area of geophysical applications, especially in response to the emergence of the need to comprehensively characterize and monitor near-surface carbon dioxide sequestration in shallow saline aquifers around the world, justifies the emphasis on cost-effective and robust quality control and assurance (QC/QA) workflow of 3D seismic data preprocessing that is suitable for near-surface applications. The main purpose of our seismic data preprocessing QC is to enable the use of appropriate header information, data that are free of noise-dominated traces, and/or flawed vertical stacking in subsequent processing steps. In this article, I provide an account of utilizing survey design specifications, noise properties, first breaks, and normal moveout for rapid and thorough graphical QC/QA diagnostics, which are easy to apply and efficient in the diagnosis of inconsistencies. A correlated vibroseis time-lapse 3D-seismic data set from a CO2-flood monitoring survey is used for demonstrating QC diagnostics. An important by-product of the QC workflow is establishing the number of layers for a refraction statics model in a data-driven graphical manner that capitalizes on the spatial coverage of the 3D seismic data.展开更多
基金funded by the National Key Research and Development Program Subject(No.2018YFC0807804)。
文摘The range of coal-mine underground goaf has continuously expanded over time.Caving,fracture,and deformation zones have also changed,thereby inducing coal-mine water inrush and other environmental disasters.In this study,4 D seismic monitoring technology that is effective in reservoir development was used to monitor abnormal changes in coal-mine underground goaf to explore the feasibility of the method.Taking a coal mine in Hancheng,Shaanxi as an example,we used the aforementioned technology to dynamically monitor the abnormal changes in the goaf.Based on the 4 D seismic data obtained in the experiment and the abnormal change characteristics of the coal-mine goaf,the method of 4 D seismic data processing in reservoir was improved.A set of 4 D data processing flow for the goaf was established,and the anomalies in the surface elevation and overlying strata velocity caused by collapse were corrected.We have made the following improvements to the method of 4 D seismic data processing in the reservoir:(1)the static correction problem caused by the changes of surface elevation and destruction of the low-velocity layer has been solved through fusion static correction to comb the low-frequency components of elevation statics with the high-frequency components of refraction statics;(2)the problem of overlying strata velocity changes in the goaf caused by collapse has been solved through the velocity consistency method;(3)the problem of reflection event pull-down in the disturbance area has been solved through space-varying moveout correction based on cross-correlation;and(4)amplitude anomalies in the coal seam caused by the goaf have been addressed using the correction method of space-varying amplitude.Results show that the 4 D seismic data processing and interpretation method established in this study is reasonable and effective.
文摘油藏地球物理技术是地球物理在油气开发与生产中的应用技术。以《The Leading Edge》的"开发与生产地球物理"专栏为窗口,系统回顾了油藏地球物理技术的发展历程,分析了该技术的特点与现状,并对其中的井间地震与时延地震两项特色技术的发展趋势进行了评估。与勘探地球物理相比,多学科综合研究是油藏地球物理技术的主要特征之一,而高精度三维地震则是多学科综合的核心技术。此外,油藏地球物理研究的精细程度也要比勘探地球物理高很多。在技术方面,除了高精度三维地震外,时延(四维)地震、井中地震、多波地震、随钻测量及微地震等,也是油藏地球物理的重要技术组成部分。目前,油气地球物理探测技术正处在由勘探阶段向开发与生产阶段跨越的时代,油藏地球物理的出现赋予了地球物理技术新的生命力,代表了油气地球物理的发展趋势,是未来石油工业界地球物理技术发展的主流。使其在油气开发与生产中发挥应有的作用,是新一代地球物理学家肩负的历史使命。
文摘Ordovician fracture-cavity carbonate reservoir beds are the major type of producing formations in the Tahe oilfield, Tarim Basin. The seismic responses of these beds clearly changes depending on the different distance of the fracture-cavity reservoir bed from the top of the section. The seismic reflection becomes weak or is absent when the fracture-cavity reservoir beds are less than 20 ms below the top Ordovician. The effect on top Ordovician reflection became weaker with deeper burial of fracture-cavity reservoir beds but the developed deep fracture-cavity reservoir beds caused stronger reflection in the interior of the Ordovician. This interior reflection can be divided into strong long-axis, irregular and bead string reflections, and was present 80 ms below the top Ordovician. Aimed at understanding reflection characteristics, the spectral decomposition technique, which uses frequency to "tune-in" bed thickness, was used to predict Ordovician fracture-cavity carbonate formations in the Tahe oilfield. Through finely adjusting the processing parameters of spectral decomposition, it was found that the slice at 30 Hz of the tuned data cube can best represent reservoir bed development. Two large N-S-trending strong reflection belts in the mid-western part of the study area along wells TK440- TK427-TK417B and in the eastern part along wells TK404-TK409 were observed distinctly on the 30 Hz slice and 4-D time-frequency data cube carving. A small N-S trending reflection belt in the southern part along wells T403-TK446B was also clearly identified. The predicted reservoir bed development area coincides with the fracture-cavities connection area confirmed by drilling pressure testing results. Deep karst cavities occur basically in three reservoir bed-development belts identified by the Ordovician interior strong reflection. Spectral decomposition proved to be a useful technique in identifying fracture-cavity reservoir beds.
基金supported by National 863 Program Grant 2012AA050103 and Grant 2011KTCQ03-09
文摘Geophysical techniques play key roles in the measuring, monitoring, and verifying the safety of CO2 sequestration and in identifying the efficiency of CO2-enhanced oil recovery. Although geophysical monitoring techniques for CO2 sequestration have grown out of conventional oil and gas geophysical exploration techniques, it takes a long time to conduct geophysical monitoring, and there are many barriers and challenges. In this paper, with the initial objective of performing CO2 sequestration, we studied the geophysical tasks associated with evaluating geological storage sites and monitoring CO2 sequestration. Based on our review of the scope of geophysical monitoring techniques and our experience in domestic and international carbon capture and sequestration projects, we analyzed the inherent difficulties and our experiences in geophysical monitoring techniques, especially, with respect to 4D seismic acquisition, processing, and interpretation.
基金supported by the U.S. Department of Energy (No. DE-FC26-03NT15414)
文摘The recent proliferation of the 3D reflection seismic method into the near-surface area of geophysical applications, especially in response to the emergence of the need to comprehensively characterize and monitor near-surface carbon dioxide sequestration in shallow saline aquifers around the world, justifies the emphasis on cost-effective and robust quality control and assurance (QC/QA) workflow of 3D seismic data preprocessing that is suitable for near-surface applications. The main purpose of our seismic data preprocessing QC is to enable the use of appropriate header information, data that are free of noise-dominated traces, and/or flawed vertical stacking in subsequent processing steps. In this article, I provide an account of utilizing survey design specifications, noise properties, first breaks, and normal moveout for rapid and thorough graphical QC/QA diagnostics, which are easy to apply and efficient in the diagnosis of inconsistencies. A correlated vibroseis time-lapse 3D-seismic data set from a CO2-flood monitoring survey is used for demonstrating QC diagnostics. An important by-product of the QC workflow is establishing the number of layers for a refraction statics model in a data-driven graphical manner that capitalizes on the spatial coverage of the 3D seismic data.