A hypersurface x(M)in Lorentzian space R41 is called conformal homogeneous,if for any two points p,q on M,there exists,a conformal transformation of R41,such that(x(M))=x(M),(x(p))=x(q).In this paper,the authors gi...A hypersurface x(M)in Lorentzian space R41 is called conformal homogeneous,if for any two points p,q on M,there exists,a conformal transformation of R41,such that(x(M))=x(M),(x(p))=x(q).In this paper,the authors give a complete classifica-tion for regular time-like conformal homogeneous hypersurfaces in R41 with three distinct principal curvatures.展开更多
基金supported by the Principal’s Fund(No.KJ2020002)the second is supported by the National Natural Science Foundation of China(Nos.11671330 and 11871405)the third is supported by the National Natural Science Foundation of China(Nos.11831005,1196131001).
文摘A hypersurface x(M)in Lorentzian space R41 is called conformal homogeneous,if for any two points p,q on M,there exists,a conformal transformation of R41,such that(x(M))=x(M),(x(p))=x(q).In this paper,the authors give a complete classifica-tion for regular time-like conformal homogeneous hypersurfaces in R41 with three distinct principal curvatures.