As the largest source of carbon emissions in China,the thermal power industry is the only emission-controlled industry in the first national carbon market compliance cycle.Its conversion to clean-energy generation tec...As the largest source of carbon emissions in China,the thermal power industry is the only emission-controlled industry in the first national carbon market compliance cycle.Its conversion to clean-energy generation technologies is also an important means of reducing CO_(2)emissions and achieving the carbon peak and carbon neutral commitments.This study used fractional Brownian motion to describe the energy-switching cost and constructed a stochastic optimization model on carbon allowance(CA)trading volume and emission-reduction strategy during compliance period with the Hurst exponent and volatility coefficient in the model estimated.We defined the optimal compliance cost of thermal power enterprises as the form of the unique solution of the Hamilton–Jacobi–Bellman equation by combining the dynamic optimization principle and the fractional It?’s formula.In this manner,we obtained the models for optimal emission reduction and equilibrium CA price.Our numerical analysis revealed that,within a compliance period of 2021–2030,the optimal reductions and desired equilibrium prices of CAs changed concurrently,with an increasing trend annually in different peak-year scenarios.Furthermore,sensitivity analysis revealed that the energy price indirectly affected the equilibrium CA price by influencing the Hurst exponent,the depreciation rate positively impacted the CA price,and increasing the initial CA reduced the optimal reduction and the CA price.Our findings can be used to develop optimal emission-reduction strategies for thermal power enterprises and carbon pricing in the carbon market.展开更多
This study reveals the inconsistencies between the negative externalities of carbon emissions and the recognition condition of accounting statements.Hence,the study identifies that heavily polluting enterprises in Chi...This study reveals the inconsistencies between the negative externalities of carbon emissions and the recognition condition of accounting statements.Hence,the study identifies that heavily polluting enterprises in China have severe off-balance sheet carbon reduction risks before implementing the carbon emission trading system(CETS).Through the staggered difference-in-difference(DID)model and the propen-sity score matching-DID model,the impact of CETS on reducing the risk of stock price crashes is examined using data from China’s A-share heavily polluting listed companies from 2007 to 2019.The results of this study are as follows:(1)CETS can significantly reduce the risk of stock price crashes for heavily polluting companies in the pilot areas.Specifically,CETS reduces the skewness(negative conditional skewness)and down-to-up volatility of the firm-specific weekly returns by 8.7%and 7.6%,respectively.(2)Heterogeneity analysis further shows that the impacts of CETS on the risk of stock price crashes are more significant for heavily polluting enterprises with the bear market condition,short-sighted management,and intensive air pollution.(3)Mechanism tests show that CETS can reduce analysts’coverage of heavy polluters,reducing the risk of stock price crashes.This study reveals the role of CETS from the stock price crash risk perspective and helps to clarify the relationship between climatic risk and corporate financial risk.展开更多
Accurate carbon price forecasting is essential to provide the guidance for production and investment.Current research is mainly dependent on plenty of historical samples of carbon prices,which is impractical for the n...Accurate carbon price forecasting is essential to provide the guidance for production and investment.Current research is mainly dependent on plenty of historical samples of carbon prices,which is impractical for the newly launched carbon market due to its short history.Based on the idea of transfer learning,this paper proposes a novel price forecasting model,which utilizes the correlation between the new and mature markets.The model is firstly pretrained on large data of mature market by gated recurrent unit algorithm,and then fine-tuned by the target market samples.An integral framework,including complexity decomposition method for data pre-processing,sample entropy for feature selection,and support vector regression for result post-processing,is provided.In the empirical analysis of new Chinese market,the root mean square error,mean absolute error,mean absolute percentage error,and determination coefficient of the model are 0.529,0.476,0.717%and 0.501 respectively,proving its validity.展开更多
The launch of the carbon-allowance trading market has changed the cost structure of the power industry.There is an asynchronous coupling mechanism between the carbon-allowance-trading market and the day-ahead power-sy...The launch of the carbon-allowance trading market has changed the cost structure of the power industry.There is an asynchronous coupling mechanism between the carbon-allowance-trading market and the day-ahead power-system dispatch.In this study,a data-driven model of the uncertainty in the annual carbon price was created.Subsequently,a collaborative,robust dispatch model was constructed considering the annual uncertainty of the carbon price and the daily uncertainty of renewable-energy generation.The model is solved using the column-and-constraint generation algorithm.An operation and cost model of a carbon-capture power plant(CCPP)that couples the carbon market and the economic operation of the power system is also established.The critical,profitable conditions for the economic operation of the CCPP were derived.Case studies demonstrated that the proposed low-carbon,robust dispatch model reduced carbon emissions by 2.67%compared with the traditional,economic,dispatch method.The total fuel cost of generation decreases with decreasing,conservative,carbon-price-uncertainty levels,while total carbon emissions continue to increase.When the carbon-quota coefficient decreases,the system dispatch tends to increase low-carbon unit output.This study can provide important guidance for carbon-market design and the low-carbon-dispatch selection strategies.展开更多
Considering the widening of the peak-valley difference in the power grid and the difficulty of the existing fixed time-of-use electricity price mechanism in meeting the energy demand of heterogeneous users at various ...Considering the widening of the peak-valley difference in the power grid and the difficulty of the existing fixed time-of-use electricity price mechanism in meeting the energy demand of heterogeneous users at various moments or motivating users,the design of a reasonable dynamic pricing mechanism to actively engage users in demand response becomes imperative for power grid companies.For this purpose,a power grid-flexible load bilevel model is constructed based on dynamic pricing,where the leader is the dispatching center and the lower-level flexible load acts as the follower.Initially,an upper-level day-ahead dispatching model for the power grid is established,considering the lowest power grid dispatching cost as the objective function and incorporating the power grid-side constraints.Then,the lower level comprehensively considers the load characteristics of industrial load,energy storage,and data centers,and then establishes a lower-level flexible load operation model with the lowest user power-consuming cost as the objective function.Finally,the proposed method is validated using the IEEE-118 system,and the findings indicate that the dynamic pricing mechanism for peaking shaving and valley filling can effectively guide users to respond actively,thereby reducing the peak-valley difference and decreasing users’purchasing costs.展开更多
Under the pressure of sustained growth in energy consumption in China,the implementation of a carbon pricing mechanism is an effective economic policy measure for promoting emission reduction,as well as a hotspot of r...Under the pressure of sustained growth in energy consumption in China,the implementation of a carbon pricing mechanism is an effective economic policy measure for promoting emission reduction,as well as a hotspot of research among scholars and policy makers.In this paper,the effects of carbon prices on Beijing's economy are analyzed using input-output tables.The carbon price costs are levied in accordance with the products'embodied carbon emission.By calculation,given the carbon price rate of 10 RMB/t-CO_2,the total carbon costs of Beijing account for approximately 0.22-0.40%of its gross revenue the same year.Among all industries,construction bears the largest carbon cost Among export sectors,the coal mining and washing industry has much higher export carbon price intensity than other industries.Apart from traditional energy-intensive industries,tertiary industry,which accounts for more than 70%of Beijing's economy,also bears a major carbon cost because of its large economic size.However,from 2007 to 2010,adjustment of the investment structure has reduced the emission intensity in investment sectors,contributing to the reduction of overall emissions and carbon price intensity.展开更多
The international community has taken extensive actions to achieve carbon neutrality and sustainable development with the intensification of global warming and climate change.China has also carried out a long-term lay...The international community has taken extensive actions to achieve carbon neutrality and sustainable development with the intensification of global warming and climate change.China has also carried out a long-term layout,setting the goal of achieving a carbon peak by 2030 and carbon neutrality by 2060.In 2021,with the official launch of a unified national carbon emissions trading market,China’s nationwide carbon emissions trading kicked off.Carbon emission trading is an important policy tool for China’s carbon peak and carbon-neutral action and an essential part of the country’s promotion of a comprehensive green transformation of the economy and society.This study uses a VAR(Vector Autoregressive)model to analyze the influencing factors of the Beijing carbon emissions trading price from January 2014 to December 2019.The study found that coal prices have the most significant impact on Beijing’s carbon emissions trading prices.Oil prices,industrial development indexes,and AQI(Air Quality Index)impacted Beijing’s carbon emissions trading prices.In contrast,natural gas prices and economic indexes have the most negligible impact.These findings will help decision-makers determine a reasonable price for carbon emissions trading and contribute to the market’s healthy development.展开更多
The UK government implements carbon price floor to provide long-term incentive to invest in low-carbon technology, thus, fossil-fuel power plants have to face increasing carbon price. This report addresses the effect ...The UK government implements carbon price floor to provide long-term incentive to invest in low-carbon technology, thus, fossil-fuel power plants have to face increasing carbon price. This report addresses the effect of carbon price floor on levelised cost of gas-fired generation technology through the levelised cost of electricity (LCOE) ap-proach with the estimation of carbon price floor. Finally, the comparison of levelised cost of electricity for all generation technology in the UK will be shown and discussed.展开更多
The high overlap of participants in the carbon emissions trading and electricity markets couples the operations of the two markets.The carbon emission cost(CEC)of coal-fired units becomes part of the power generation ...The high overlap of participants in the carbon emissions trading and electricity markets couples the operations of the two markets.The carbon emission cost(CEC)of coal-fired units becomes part of the power generation cost through market coupling.The accuracy of CEC calculation affects the clearing capacity of coal-fired units in the electric power market.Study of carbon–electricity market interaction and CEC calculations is still in its initial stages.This study analyzes the impact of carbon emissions trading and compliance on the operation of the electric power market and defines the cost transmission mode between the carbon emissions trading and electric power markets.A long-period interactive operation simulation mechanism for the carbon–electricity market is established,and operation and trading models of the carbon emissions trading market and electric power market are established.A daily rolling estimation method for the CEC of coal-fired units is proposed,along with the CEC per unit electric quantity of the coal-fired units.The feasibility and effectiveness of the proposed method are verified through an example simulation,and the factors influencing the CEC are analyzed.展开更多
为有效提高碳排放配额分配的合理性,并且避免年度结算时碳排放量超标导致环境污染加剧问题,提出基于奖惩因子的季节性碳交易机制,以园区综合能源系统(park integrated energy system,PIES)为对象进行低碳经济调度。首先,构建包含能量层...为有效提高碳排放配额分配的合理性,并且避免年度结算时碳排放量超标导致环境污染加剧问题,提出基于奖惩因子的季节性碳交易机制,以园区综合能源系统(park integrated energy system,PIES)为对象进行低碳经济调度。首先,构建包含能量层–碳流层–管理层的综合能源系统(integrated energy system,IES)运行框架,建立电气热多能流供需动态一致性模型;其次,分析系统内“日–季节–年度”碳排放特性,打破传统应用指标法的配额分配方法,采用灰色关联分析法建立碳排放配额分配模型,并基于奖惩阶梯碳价制定季节性碳交易机制;最后,以系统内全寿命周期运行成本及碳交易成本最小为目标,对执行季节性碳交易机制的PIES进行低碳经济调度,分析长时间尺度下季节性储能参与调度的减碳量。搭建IEEE 33节点电网5节点气网7节点热网的PIES,并基于多场景进行算例分析,验证此调度方法能够实现零碳经济运行,保证系统供能可靠性,为建立零碳园区奠定理论基础。展开更多
基金like to thank Major Program of National Philosophy and Social Science Foundation of China(Grant No.21ZDA086)National Natural Science Foundation of China(Grant No.71974188),and Jiangsu Soft Science Fund(Grant No.BR2022007).
文摘As the largest source of carbon emissions in China,the thermal power industry is the only emission-controlled industry in the first national carbon market compliance cycle.Its conversion to clean-energy generation technologies is also an important means of reducing CO_(2)emissions and achieving the carbon peak and carbon neutral commitments.This study used fractional Brownian motion to describe the energy-switching cost and constructed a stochastic optimization model on carbon allowance(CA)trading volume and emission-reduction strategy during compliance period with the Hurst exponent and volatility coefficient in the model estimated.We defined the optimal compliance cost of thermal power enterprises as the form of the unique solution of the Hamilton–Jacobi–Bellman equation by combining the dynamic optimization principle and the fractional It?’s formula.In this manner,we obtained the models for optimal emission reduction and equilibrium CA price.Our numerical analysis revealed that,within a compliance period of 2021–2030,the optimal reductions and desired equilibrium prices of CAs changed concurrently,with an increasing trend annually in different peak-year scenarios.Furthermore,sensitivity analysis revealed that the energy price indirectly affected the equilibrium CA price by influencing the Hurst exponent,the depreciation rate positively impacted the CA price,and increasing the initial CA reduced the optimal reduction and the CA price.Our findings can be used to develop optimal emission-reduction strategies for thermal power enterprises and carbon pricing in the carbon market.
基金supports from the National Natural Science Foundation of China(under Grants No.72073105,71903002,and 71774122)the Natural Science Foundation of Anhui Province,China(under Grant No.1908085QG309)are greatly acknowledged.
文摘This study reveals the inconsistencies between the negative externalities of carbon emissions and the recognition condition of accounting statements.Hence,the study identifies that heavily polluting enterprises in China have severe off-balance sheet carbon reduction risks before implementing the carbon emission trading system(CETS).Through the staggered difference-in-difference(DID)model and the propen-sity score matching-DID model,the impact of CETS on reducing the risk of stock price crashes is examined using data from China’s A-share heavily polluting listed companies from 2007 to 2019.The results of this study are as follows:(1)CETS can significantly reduce the risk of stock price crashes for heavily polluting companies in the pilot areas.Specifically,CETS reduces the skewness(negative conditional skewness)and down-to-up volatility of the firm-specific weekly returns by 8.7%and 7.6%,respectively.(2)Heterogeneity analysis further shows that the impacts of CETS on the risk of stock price crashes are more significant for heavily polluting enterprises with the bear market condition,short-sighted management,and intensive air pollution.(3)Mechanism tests show that CETS can reduce analysts’coverage of heavy polluters,reducing the risk of stock price crashes.This study reveals the role of CETS from the stock price crash risk perspective and helps to clarify the relationship between climatic risk and corporate financial risk.
文摘Accurate carbon price forecasting is essential to provide the guidance for production and investment.Current research is mainly dependent on plenty of historical samples of carbon prices,which is impractical for the newly launched carbon market due to its short history.Based on the idea of transfer learning,this paper proposes a novel price forecasting model,which utilizes the correlation between the new and mature markets.The model is firstly pretrained on large data of mature market by gated recurrent unit algorithm,and then fine-tuned by the target market samples.An integral framework,including complexity decomposition method for data pre-processing,sample entropy for feature selection,and support vector regression for result post-processing,is provided.In the empirical analysis of new Chinese market,the root mean square error,mean absolute error,mean absolute percentage error,and determination coefficient of the model are 0.529,0.476,0.717%and 0.501 respectively,proving its validity.
基金supported by the Science and Technology Project of State Grid Liaoning Electric Power Co.,Ltd.(No.2023YF-82).
文摘The launch of the carbon-allowance trading market has changed the cost structure of the power industry.There is an asynchronous coupling mechanism between the carbon-allowance-trading market and the day-ahead power-system dispatch.In this study,a data-driven model of the uncertainty in the annual carbon price was created.Subsequently,a collaborative,robust dispatch model was constructed considering the annual uncertainty of the carbon price and the daily uncertainty of renewable-energy generation.The model is solved using the column-and-constraint generation algorithm.An operation and cost model of a carbon-capture power plant(CCPP)that couples the carbon market and the economic operation of the power system is also established.The critical,profitable conditions for the economic operation of the CCPP were derived.Case studies demonstrated that the proposed low-carbon,robust dispatch model reduced carbon emissions by 2.67%compared with the traditional,economic,dispatch method.The total fuel cost of generation decreases with decreasing,conservative,carbon-price-uncertainty levels,while total carbon emissions continue to increase.When the carbon-quota coefficient decreases,the system dispatch tends to increase low-carbon unit output.This study can provide important guidance for carbon-market design and the low-carbon-dispatch selection strategies.
基金supported in part by Technology Project of State Grid Jiangsu Electric Power Co.,Ltd.,China,under Grant J2022011.
文摘Considering the widening of the peak-valley difference in the power grid and the difficulty of the existing fixed time-of-use electricity price mechanism in meeting the energy demand of heterogeneous users at various moments or motivating users,the design of a reasonable dynamic pricing mechanism to actively engage users in demand response becomes imperative for power grid companies.For this purpose,a power grid-flexible load bilevel model is constructed based on dynamic pricing,where the leader is the dispatching center and the lower-level flexible load acts as the follower.Initially,an upper-level day-ahead dispatching model for the power grid is established,considering the lowest power grid dispatching cost as the objective function and incorporating the power grid-side constraints.Then,the lower level comprehensively considers the load characteristics of industrial load,energy storage,and data centers,and then establishes a lower-level flexible load operation model with the lowest user power-consuming cost as the objective function.Finally,the proposed method is validated using the IEEE-118 system,and the findings indicate that the dynamic pricing mechanism for peaking shaving and valley filling can effectively guide users to respond actively,thereby reducing the peak-valley difference and decreasing users’purchasing costs.
基金The authors would like to thank Key Projects in the National Science&Technology Pillar Program during the Twelfth Five Year Plan Period[grant number 2012BAC20B03]Beijing Natural Science Foundation[grant number 9112008]for supporting this research
文摘Under the pressure of sustained growth in energy consumption in China,the implementation of a carbon pricing mechanism is an effective economic policy measure for promoting emission reduction,as well as a hotspot of research among scholars and policy makers.In this paper,the effects of carbon prices on Beijing's economy are analyzed using input-output tables.The carbon price costs are levied in accordance with the products'embodied carbon emission.By calculation,given the carbon price rate of 10 RMB/t-CO_2,the total carbon costs of Beijing account for approximately 0.22-0.40%of its gross revenue the same year.Among all industries,construction bears the largest carbon cost Among export sectors,the coal mining and washing industry has much higher export carbon price intensity than other industries.Apart from traditional energy-intensive industries,tertiary industry,which accounts for more than 70%of Beijing's economy,also bears a major carbon cost because of its large economic size.However,from 2007 to 2010,adjustment of the investment structure has reduced the emission intensity in investment sectors,contributing to the reduction of overall emissions and carbon price intensity.
基金financially supported by the National Natural Sciences Foundation of China(NSFC-71672009.71972011).
文摘The international community has taken extensive actions to achieve carbon neutrality and sustainable development with the intensification of global warming and climate change.China has also carried out a long-term layout,setting the goal of achieving a carbon peak by 2030 and carbon neutrality by 2060.In 2021,with the official launch of a unified national carbon emissions trading market,China’s nationwide carbon emissions trading kicked off.Carbon emission trading is an important policy tool for China’s carbon peak and carbon-neutral action and an essential part of the country’s promotion of a comprehensive green transformation of the economy and society.This study uses a VAR(Vector Autoregressive)model to analyze the influencing factors of the Beijing carbon emissions trading price from January 2014 to December 2019.The study found that coal prices have the most significant impact on Beijing’s carbon emissions trading prices.Oil prices,industrial development indexes,and AQI(Air Quality Index)impacted Beijing’s carbon emissions trading prices.In contrast,natural gas prices and economic indexes have the most negligible impact.These findings will help decision-makers determine a reasonable price for carbon emissions trading and contribute to the market’s healthy development.
文摘The UK government implements carbon price floor to provide long-term incentive to invest in low-carbon technology, thus, fossil-fuel power plants have to face increasing carbon price. This report addresses the effect of carbon price floor on levelised cost of gas-fired generation technology through the levelised cost of electricity (LCOE) ap-proach with the estimation of carbon price floor. Finally, the comparison of levelised cost of electricity for all generation technology in the UK will be shown and discussed.
基金supported by Anhui Provincial Natural Science Foundation(No.2208085UD02)National Natural Science Foundation of China(No.52077061).
文摘The high overlap of participants in the carbon emissions trading and electricity markets couples the operations of the two markets.The carbon emission cost(CEC)of coal-fired units becomes part of the power generation cost through market coupling.The accuracy of CEC calculation affects the clearing capacity of coal-fired units in the electric power market.Study of carbon–electricity market interaction and CEC calculations is still in its initial stages.This study analyzes the impact of carbon emissions trading and compliance on the operation of the electric power market and defines the cost transmission mode between the carbon emissions trading and electric power markets.A long-period interactive operation simulation mechanism for the carbon–electricity market is established,and operation and trading models of the carbon emissions trading market and electric power market are established.A daily rolling estimation method for the CEC of coal-fired units is proposed,along with the CEC per unit electric quantity of the coal-fired units.The feasibility and effectiveness of the proposed method are verified through an example simulation,and the factors influencing the CEC are analyzed.
文摘为有效提高碳排放配额分配的合理性,并且避免年度结算时碳排放量超标导致环境污染加剧问题,提出基于奖惩因子的季节性碳交易机制,以园区综合能源系统(park integrated energy system,PIES)为对象进行低碳经济调度。首先,构建包含能量层–碳流层–管理层的综合能源系统(integrated energy system,IES)运行框架,建立电气热多能流供需动态一致性模型;其次,分析系统内“日–季节–年度”碳排放特性,打破传统应用指标法的配额分配方法,采用灰色关联分析法建立碳排放配额分配模型,并基于奖惩阶梯碳价制定季节性碳交易机制;最后,以系统内全寿命周期运行成本及碳交易成本最小为目标,对执行季节性碳交易机制的PIES进行低碳经济调度,分析长时间尺度下季节性储能参与调度的减碳量。搭建IEEE 33节点电网5节点气网7节点热网的PIES,并基于多场景进行算例分析,验证此调度方法能够实现零碳经济运行,保证系统供能可靠性,为建立零碳园区奠定理论基础。