[Objectives]This study was conducted to explore rapid and large-scale screening and detection of peste des petits ruminants(PPR),so as to provide important technical means for prevention,control and purification of PP...[Objectives]This study was conducted to explore rapid and large-scale screening and detection of peste des petits ruminants(PPR),so as to provide important technical means for prevention,control and purification of PPR.[Methods]Soluble N protein and NH fusion protein were successfully obtained in an Escherichia coli expression system by optimizing E.coli codon and expression conditions.Furthermore,based on purified soluble N protein and NH fusion protein,a double-antigen sandwich time-resolved fluorescence immunoassay method for detection of peste des petits ruminants virus(PPRV)was established.[Results]The method has high sensitivity and specificity and can specifically detect the antibody against PPRV in sheep serum,and it has no cross reaction with other related diseases.The method was used to detect 292 clinical samples,and compared with French IDVET competition ELISA kit.The coincidence rates of positive samples and negative samples from the two kinds of test kits were 92.47%and 97.26%,respectively,and the overall coincidence rate was 94.86%.The intra-group and inter-group coefficients of variation in the repeatability test were less than 10%.[Conclusions]Compared with the traditional ELISA method,the double-antigen sandwich time-resolved fluorescence immunoassay for detection of PPRV has equivalent sensitivity and specificity,and simple and rapid operation,and thus high application and popularization value.展开更多
The assembling of a coating of time-resolved fluorescent chelator BSPDA ( abbreviated for 4, 7-bis ( sulfhydrylphenyl)-1, 10-phenanthroline-2, 9-dicarboxylic acid) onto a nano-gold layer was demonstrated. First, B...The assembling of a coating of time-resolved fluorescent chelator BSPDA ( abbreviated for 4, 7-bis ( sulfhydrylphenyl)-1, 10-phenanthroline-2, 9-dicarboxylic acid) onto a nano-gold layer was demonstrated. First, BSPDA was synthesized by simple procedures, and then an approach was developed to immobilize BSPDA onto the nano-gold layer deposited on a silane modified glass substrate, whereby europium ion (Ⅲ, Eu^3+ ) was captured and released owing to the interactive process of complexation and dissociation between BSPDA functionalized coating and Eu^3+ solution. The fluorescence spectra and related lifetimes were determined. Also, the BSPDA functionalized coating's specific complexation with Eu^3+ on the BSPDA assembly layer and the nonspecific adsorption of Eu^3+ on the nano-gold layer were compared. These results allowed a selective complexation of Eu^3+ by assembling a BSPDA chelating layer on the nano-gold layer; thus, a tunable time-resolved fluorescent layer was covalently attached, The results of the nanoparticle assembling and probing (or labeling) processes to specific bio-systems were very interesting and had significant implications to time-resolved-fluorescence-based detection on biosensor surfaces such as DNA chip and to arrayed light display devices.展开更多
Edible oil is one major nutritional ingredient to human and widely consumed directly. The contamination of aflatoxin B1 (AFB1) in edible oils has been attracted exten-sive efforts due to its hazard to human health a...Edible oil is one major nutritional ingredient to human and widely consumed directly. The contamination of aflatoxin B1 (AFB1) in edible oils has been attracted exten-sive efforts due to its hazard to human health and life. To avoid the digestion of edible oils contaminated by AFB1 the development of rapid and sensitive sensing method for AFB1 is required. Herein, a quantitative, sensitive and rapid method for AFB1 detection in edible oils was proposed by using ultrasensitive time-resolved fluorescent immunosensing (TRFIS) method. This method poses unique advantages from both time-resolved fluorescent sens-ing method and immunochromatographic assay format. The nanospheres were modified with fluorescent europium and then captured the home-made monoclonal antibody against AFB1 (3G1). After optimization, by using a competitive immunosensing manner, this TRFIS method has a detectable linear range of 0.54-20.0 μg/kg with minimum detectable concen-tration of 0.18μg/kg. It can be completed merely within 10 min with recovery from 87.0% to 121.9%. The agreement was observed between the results by TRFIS and high perfor-mance liquid chromatography (HPLC) methods. This research provides a promising sens-ing method for sensitive and rapid determining AFB1 in edible oils.展开更多
Objective To develop a rapid,highly sensitive quantitative method for detecting P24 antigen based on near-infrared fluorescent microsphere immunochromatography.Methods First,we prepared a lateral flow assay test strip...Objective To develop a rapid,highly sensitive quantitative method for detecting P24 antigen based on near-infrared fluorescent microsphere immunochromatography.Methods First,we prepared a lateral flow assay test strip,and labeled the detection antibody using a fluorescent microsphere.Second,we optimized the antibody labeling conditions.Third,we optimized the detection conditions.Fourth,we created a working curve.Fifth,we conducted a methodological assessment of the established fluorescent microsphere immunochromatography method.Sixty-six clinical samples were tested,and we compared the established fluorescent microsphere immunochromatography with the quantitative ELISA method.Results According to the working curve,the detection limit of the method is 3.4 pg/mL,and the detection range is 3.4 pg/mL to 10 ng/mL.The average intra-assay recovery was 99.6%,and the Coefficient of Variation(CV)was 5.4%–8.6%;the average inter-assay recovery was 97.3%,and the CV was 8.5%–11%.The detection rate of fluorescent microsphere immunochromatography was higher than ELISA method,and had a good correlation with ELISA.Conclusion The P24 antigen quantitative detection method based on near-infrared fluorescent microsphere immunochromatography has the advantages of rapid detection,high sensitivity,and wide detection range;thus,it is suitable for early clinical diagnosis and continuous monitoring of AIDS.展开更多
A new europium complex is descried as a time-resolved luminescence-based sensor for fluoride anion. The sensor is selective even in the presence of intensive background fluorescence.
Single-particle microbeam as a powerful tool can open a research field to find answers to many enigmas in radiobiology. A single-particle microbeam facility has been constructed at the Key Laboratory of Ion Beam Bioen...Single-particle microbeam as a powerful tool can open a research field to find answers to many enigmas in radiobiology. A single-particle microbeam facility has been constructed at the Key Laboratory of Ion Beam Bioengineering (LIBB), Chinese Academy of Sciences (CAS), China. However there has been less research activities in this field concerning the original process of the interaction between low-energy ions and complicated organisms. To address this challenge, an in situ multi-dimensional quantitative fluorescence microscopy system combined with the CAS-LIBB single-particle microbeam II endstation is proposed. In this article, the rationale, logistics and development of many aspects of the proposed system are discussed.展开更多
The fluorescence kinetics of 1,6-diphenyl-1,3,5-hexatriene (DPH) dissolved in cyclohexane was investigated as a function of temperature, concentration and 355 nm excitation pulse energy. At concentrations above 2.5 μ...The fluorescence kinetics of 1,6-diphenyl-1,3,5-hexatriene (DPH) dissolved in cyclohexane was investigated as a function of temperature, concentration and 355 nm excitation pulse energy. At concentrations above 2.5 μM and excitation energies above 1 mJ a long-lived, very intense emission, which appears within less than 5 ns and lasts up to 70 ns, is observed. During the first 50 ns the decay does not follow an exponential but rather a linear behaviour. In oxygen saturated solutions the long-lived emission is suppressed and solely short-lived fluorescence with τ 1-state and competes with the formation of DPH-O2 contact charge-transfer complexes and intersystem crossing which both quench the fluorescence. Our investigations show that even the small amount of oxygen dissolved in nitrogen saturated solutions has a distinct influence on the fluorescence kinetics of DPH.展开更多
To study the effect of different deposition temperatures on the optical properties of porous SiC films,single crystal Si was used as the substrate,a layer of anodic aluminum oxide(AAO)film was transferred on the Si su...To study the effect of different deposition temperatures on the optical properties of porous SiC films,single crystal Si was used as the substrate,a layer of anodic aluminum oxide(AAO)film was transferred on the Si substrate by chemical method,and then a layer of SiC was deposited on anodic aluminum oxide(AAO)template to prepare porous fluorescent SiC film by magnetron sputtering.The deposition temperature was ranged from 373 to 873 K.The thickness of the porous SiC film coated on the AAO surface was around 283 nm.It is found that the porous SiC with the deposition temperature of 873 K has the strongest photoluminescence(PL)intensity excited by 375 nm laser.The time-resolved PL spectra prove that the PL is mainly from intrinsic light emitting of SiC.With the optimized process,porous amorphous SiC film may have potential applications in the field of warm white LEDs.展开更多
Compared with the conventional first near-infrared(NIR-I,700900 nm)window,the short-wave infrared region(SWIR,900—1700nm)possesses the merits of the increasing tissue penetration depths and the suppression of scatter...Compared with the conventional first near-infrared(NIR-I,700900 nm)window,the short-wave infrared region(SWIR,900—1700nm)possesses the merits of the increasing tissue penetration depths and the suppression of scattering background,leading to great potential for in vivo imaging.Based on the limitations of the common spectral domain,and the superiority of the time-dimension,time-resolved imaging eliminates the auto-fuorescence in the biological tissue,thus supporting higher signal-to-noise ratio and sensitivities.The imaging technique is not affected by the difference in tissue composition or thickness and has the practical value of quan-titative in vivo detection.Almost all the relevant time-resolved imaging was carried out around lanthanide-doped upconversion nanomaterials,owing to the advantages of ultralong luminescence lifetime,excellent photostability,controllable morphology,easy surface modification and various strategies of regulating lifetime.Therefore,this review presents the research progress of SWIR time-resolved imaging technology based on nanomaterials doped with lanthanide ions as luminescence centers in recent years.展开更多
目的:研究细菌培养法、免疫层析法及实时荧光定量PCR法在孕晚期B族链球菌(Group B Streptococcus,GBS)筛查中的应用价值。方法:选取2021年3月至2023年5月在我院接受产检的孕晚期孕妇154例。以病理活检为金标准,分析GBS筛查结果;对比细...目的:研究细菌培养法、免疫层析法及实时荧光定量PCR法在孕晚期B族链球菌(Group B Streptococcus,GBS)筛查中的应用价值。方法:选取2021年3月至2023年5月在我院接受产检的孕晚期孕妇154例。以病理活检为金标准,分析GBS筛查结果;对比细菌培养法、免疫层析法及实时荧光定量PCR法单独及联合诊断孕晚期GBS的效能;分析细菌培养法、免疫层析法及实时荧光定量PCR法单独及联合筛查与病理筛查结果的一致性。结果:154例孕晚期孕妇中,经病理活检检出39例孕妇GBS为阳性;三者联合诊断GBS的灵敏度、特异度、准确率、阳性预测值以及阴性预测值均高于细菌培养法、免疫层析法与实时荧光定量PCR法单独检测(P<0.05);三者联合检测与病理结果的Kappa值为0.936,均高于细菌培养法、免疫层析法、实时荧光定量PCR法单独检测。结论:在筛查孕晚期孕妇GBS中,实时荧光定量PCR法联合细菌培养法、免疫层析法诊断效能高于单独检测,可通过三者联合检测为早期诊断孕妇是否感染GBS提供依据。展开更多
An enhancement method of rapid lifetime determination is proposed for time-resolved fluorescence imaging to discriminate substances with approximate fluorescence lifetime in forensic examination. In the method, an ima...An enhancement method of rapid lifetime determination is proposed for time-resolved fluorescence imaging to discriminate substances with approximate fluorescence lifetime in forensic examination. In the method, an image-exclusive-OR treatment with filter threshold adaptively chosen is presented to extract the region of interest from dual-gated fluorescence intensity images, and then the fluorescence lifetime image is reconstructed based on the rapid lifetime determination algorithm. Furthermore, a maximum and minimum threshold filtering is developed to automatically realize visualization enhancement of the lifetime image. In proof experiments, compared with traditional fluorescence intensity imaging and rapid lifetime determination method, the proposed method automatically distinguishes altered and obliterated documents written by two brands of highlighters with the same color and close fluorescence lifetime.展开更多
基金Supported by National Key R&D Program for the Prevention and Control of Major Exotic Animal Diseases(2022YFD1800500)National Mutton Sheep Industrial Technology System(CARS39)+2 种基金Key Research and Development Program of Shandong Province(Major Science and Technology Innovation Project)(2021CXGC011306)Scientific Research Project of General Administration of Customs(2024HK033)Scientific Research Project of Jinan Customs(2023JK005).
文摘[Objectives]This study was conducted to explore rapid and large-scale screening and detection of peste des petits ruminants(PPR),so as to provide important technical means for prevention,control and purification of PPR.[Methods]Soluble N protein and NH fusion protein were successfully obtained in an Escherichia coli expression system by optimizing E.coli codon and expression conditions.Furthermore,based on purified soluble N protein and NH fusion protein,a double-antigen sandwich time-resolved fluorescence immunoassay method for detection of peste des petits ruminants virus(PPRV)was established.[Results]The method has high sensitivity and specificity and can specifically detect the antibody against PPRV in sheep serum,and it has no cross reaction with other related diseases.The method was used to detect 292 clinical samples,and compared with French IDVET competition ELISA kit.The coincidence rates of positive samples and negative samples from the two kinds of test kits were 92.47%and 97.26%,respectively,and the overall coincidence rate was 94.86%.The intra-group and inter-group coefficients of variation in the repeatability test were less than 10%.[Conclusions]Compared with the traditional ELISA method,the double-antigen sandwich time-resolved fluorescence immunoassay for detection of PPRV has equivalent sensitivity and specificity,and simple and rapid operation,and thus high application and popularization value.
基金Project supported by the National Natural Science Foundation of China (20505020) the Natural Science Foundation ofGuangdong Province (06300086) +2 种基金 China Postdoctoral Science Foundation (20060390202) Scientific Research Fund ofHunan Provincial Education Department (05C508) Skeleton Youth Faculty Programof Hunan Higher Educational School
文摘The assembling of a coating of time-resolved fluorescent chelator BSPDA ( abbreviated for 4, 7-bis ( sulfhydrylphenyl)-1, 10-phenanthroline-2, 9-dicarboxylic acid) onto a nano-gold layer was demonstrated. First, BSPDA was synthesized by simple procedures, and then an approach was developed to immobilize BSPDA onto the nano-gold layer deposited on a silane modified glass substrate, whereby europium ion (Ⅲ, Eu^3+ ) was captured and released owing to the interactive process of complexation and dissociation between BSPDA functionalized coating and Eu^3+ solution. The fluorescence spectra and related lifetimes were determined. Also, the BSPDA functionalized coating's specific complexation with Eu^3+ on the BSPDA assembly layer and the nonspecific adsorption of Eu^3+ on the nano-gold layer were compared. These results allowed a selective complexation of Eu^3+ by assembling a BSPDA chelating layer on the nano-gold layer; thus, a tunable time-resolved fluorescent layer was covalently attached, The results of the nanoparticle assembling and probing (or labeling) processes to specific bio-systems were very interesting and had significant implications to time-resolved-fluorescence-based detection on biosensor surfaces such as DNA chip and to arrayed light display devices.
基金This work was supported by Special Fund for Grain -scientific Research in the Public Interest (201513006-02), Special Fund for Agro -scientific Research in the Public Interest (201203094), Natural Science Foundation of China (31401601).
文摘Edible oil is one major nutritional ingredient to human and widely consumed directly. The contamination of aflatoxin B1 (AFB1) in edible oils has been attracted exten-sive efforts due to its hazard to human health and life. To avoid the digestion of edible oils contaminated by AFB1 the development of rapid and sensitive sensing method for AFB1 is required. Herein, a quantitative, sensitive and rapid method for AFB1 detection in edible oils was proposed by using ultrasensitive time-resolved fluorescent immunosensing (TRFIS) method. This method poses unique advantages from both time-resolved fluorescent sens-ing method and immunochromatographic assay format. The nanospheres were modified with fluorescent europium and then captured the home-made monoclonal antibody against AFB1 (3G1). After optimization, by using a competitive immunosensing manner, this TRFIS method has a detectable linear range of 0.54-20.0 μg/kg with minimum detectable concen-tration of 0.18μg/kg. It can be completed merely within 10 min with recovery from 87.0% to 121.9%. The agreement was observed between the results by TRFIS and high perfor-mance liquid chromatography (HPLC) methods. This research provides a promising sens-ing method for sensitive and rapid determining AFB1 in edible oils.
基金supported by the National Natural Science Foundation of China[no.21677006]National Key Research and Development Project[2017YFC1200500].
文摘Objective To develop a rapid,highly sensitive quantitative method for detecting P24 antigen based on near-infrared fluorescent microsphere immunochromatography.Methods First,we prepared a lateral flow assay test strip,and labeled the detection antibody using a fluorescent microsphere.Second,we optimized the antibody labeling conditions.Third,we optimized the detection conditions.Fourth,we created a working curve.Fifth,we conducted a methodological assessment of the established fluorescent microsphere immunochromatography method.Sixty-six clinical samples were tested,and we compared the established fluorescent microsphere immunochromatography with the quantitative ELISA method.Results According to the working curve,the detection limit of the method is 3.4 pg/mL,and the detection range is 3.4 pg/mL to 10 ng/mL.The average intra-assay recovery was 99.6%,and the Coefficient of Variation(CV)was 5.4%–8.6%;the average inter-assay recovery was 97.3%,and the CV was 8.5%–11%.The detection rate of fluorescent microsphere immunochromatography was higher than ELISA method,and had a good correlation with ELISA.Conclusion The P24 antigen quantitative detection method based on near-infrared fluorescent microsphere immunochromatography has the advantages of rapid detection,high sensitivity,and wide detection range;thus,it is suitable for early clinical diagnosis and continuous monitoring of AIDS.
基金the National Natural Science Foundation of China(20490210)Shanghai Sci.Tech.Comm.(03QB14006,03DZ12031 and 05DJ14004)for financial support.
文摘A new europium complex is descried as a time-resolved luminescence-based sensor for fluoride anion. The sensor is selective even in the presence of intensive background fluorescence.
文摘Single-particle microbeam as a powerful tool can open a research field to find answers to many enigmas in radiobiology. A single-particle microbeam facility has been constructed at the Key Laboratory of Ion Beam Bioengineering (LIBB), Chinese Academy of Sciences (CAS), China. However there has been less research activities in this field concerning the original process of the interaction between low-energy ions and complicated organisms. To address this challenge, an in situ multi-dimensional quantitative fluorescence microscopy system combined with the CAS-LIBB single-particle microbeam II endstation is proposed. In this article, the rationale, logistics and development of many aspects of the proposed system are discussed.
文摘The fluorescence kinetics of 1,6-diphenyl-1,3,5-hexatriene (DPH) dissolved in cyclohexane was investigated as a function of temperature, concentration and 355 nm excitation pulse energy. At concentrations above 2.5 μM and excitation energies above 1 mJ a long-lived, very intense emission, which appears within less than 5 ns and lasts up to 70 ns, is observed. During the first 50 ns the decay does not follow an exponential but rather a linear behaviour. In oxygen saturated solutions the long-lived emission is suppressed and solely short-lived fluorescence with τ 1-state and competes with the formation of DPH-O2 contact charge-transfer complexes and intersystem crossing which both quench the fluorescence. Our investigations show that even the small amount of oxygen dissolved in nitrogen saturated solutions has a distinct influence on the fluorescence kinetics of DPH.
基金Funded by the National Natural Science Foundation of China(No.11747133)the Fundamental Research Funds for the Central Universities(No.195209019)。
文摘To study the effect of different deposition temperatures on the optical properties of porous SiC films,single crystal Si was used as the substrate,a layer of anodic aluminum oxide(AAO)film was transferred on the Si substrate by chemical method,and then a layer of SiC was deposited on anodic aluminum oxide(AAO)template to prepare porous fluorescent SiC film by magnetron sputtering.The deposition temperature was ranged from 373 to 873 K.The thickness of the porous SiC film coated on the AAO surface was around 283 nm.It is found that the porous SiC with the deposition temperature of 873 K has the strongest photoluminescence(PL)intensity excited by 375 nm laser.The time-resolved PL spectra prove that the PL is mainly from intrinsic light emitting of SiC.With the optimized process,porous amorphous SiC film may have potential applications in the field of warm white LEDs.
基金the National Natural Science Foundation of China(No.81971704)the National Key ResearchandDevelopment Program of China(No.2017YFA0205304)the Translational Medicine Research Fund of National Facility for Translational Medicine(Shanghai)(No.TMSK-2021-117)。
文摘Compared with the conventional first near-infrared(NIR-I,700900 nm)window,the short-wave infrared region(SWIR,900—1700nm)possesses the merits of the increasing tissue penetration depths and the suppression of scattering background,leading to great potential for in vivo imaging.Based on the limitations of the common spectral domain,and the superiority of the time-dimension,time-resolved imaging eliminates the auto-fuorescence in the biological tissue,thus supporting higher signal-to-noise ratio and sensitivities.The imaging technique is not affected by the difference in tissue composition or thickness and has the practical value of quan-titative in vivo detection.Almost all the relevant time-resolved imaging was carried out around lanthanide-doped upconversion nanomaterials,owing to the advantages of ultralong luminescence lifetime,excellent photostability,controllable morphology,easy surface modification and various strategies of regulating lifetime.Therefore,this review presents the research progress of SWIR time-resolved imaging technology based on nanomaterials doped with lanthanide ions as luminescence centers in recent years.
文摘目的:研究细菌培养法、免疫层析法及实时荧光定量PCR法在孕晚期B族链球菌(Group B Streptococcus,GBS)筛查中的应用价值。方法:选取2021年3月至2023年5月在我院接受产检的孕晚期孕妇154例。以病理活检为金标准,分析GBS筛查结果;对比细菌培养法、免疫层析法及实时荧光定量PCR法单独及联合诊断孕晚期GBS的效能;分析细菌培养法、免疫层析法及实时荧光定量PCR法单独及联合筛查与病理筛查结果的一致性。结果:154例孕晚期孕妇中,经病理活检检出39例孕妇GBS为阳性;三者联合诊断GBS的灵敏度、特异度、准确率、阳性预测值以及阴性预测值均高于细菌培养法、免疫层析法与实时荧光定量PCR法单独检测(P<0.05);三者联合检测与病理结果的Kappa值为0.936,均高于细菌培养法、免疫层析法、实时荧光定量PCR法单独检测。结论:在筛查孕晚期孕妇GBS中,实时荧光定量PCR法联合细菌培养法、免疫层析法诊断效能高于单独检测,可通过三者联合检测为早期诊断孕妇是否感染GBS提供依据。
基金supported by the National Natural Science Foundation of China (NSFC) (No. U1736101)the Youth Innovation Promotion Association CAS (No. 2017155)。
文摘An enhancement method of rapid lifetime determination is proposed for time-resolved fluorescence imaging to discriminate substances with approximate fluorescence lifetime in forensic examination. In the method, an image-exclusive-OR treatment with filter threshold adaptively chosen is presented to extract the region of interest from dual-gated fluorescence intensity images, and then the fluorescence lifetime image is reconstructed based on the rapid lifetime determination algorithm. Furthermore, a maximum and minimum threshold filtering is developed to automatically realize visualization enhancement of the lifetime image. In proof experiments, compared with traditional fluorescence intensity imaging and rapid lifetime determination method, the proposed method automatically distinguishes altered and obliterated documents written by two brands of highlighters with the same color and close fluorescence lifetime.