[Objectives]This study was conducted to explore rapid and large-scale screening and detection of peste des petits ruminants(PPR),so as to provide important technical means for prevention,control and purification of PP...[Objectives]This study was conducted to explore rapid and large-scale screening and detection of peste des petits ruminants(PPR),so as to provide important technical means for prevention,control and purification of PPR.[Methods]Soluble N protein and NH fusion protein were successfully obtained in an Escherichia coli expression system by optimizing E.coli codon and expression conditions.Furthermore,based on purified soluble N protein and NH fusion protein,a double-antigen sandwich time-resolved fluorescence immunoassay method for detection of peste des petits ruminants virus(PPRV)was established.[Results]The method has high sensitivity and specificity and can specifically detect the antibody against PPRV in sheep serum,and it has no cross reaction with other related diseases.The method was used to detect 292 clinical samples,and compared with French IDVET competition ELISA kit.The coincidence rates of positive samples and negative samples from the two kinds of test kits were 92.47%and 97.26%,respectively,and the overall coincidence rate was 94.86%.The intra-group and inter-group coefficients of variation in the repeatability test were less than 10%.[Conclusions]Compared with the traditional ELISA method,the double-antigen sandwich time-resolved fluorescence immunoassay for detection of PPRV has equivalent sensitivity and specificity,and simple and rapid operation,and thus high application and popularization value.展开更多
Objective To develop a rapid,highly sensitive quantitative method for detecting P24 antigen based on near-infrared fluorescent microsphere immunochromatography.Methods First,we prepared a lateral flow assay test strip...Objective To develop a rapid,highly sensitive quantitative method for detecting P24 antigen based on near-infrared fluorescent microsphere immunochromatography.Methods First,we prepared a lateral flow assay test strip,and labeled the detection antibody using a fluorescent microsphere.Second,we optimized the antibody labeling conditions.Third,we optimized the detection conditions.Fourth,we created a working curve.Fifth,we conducted a methodological assessment of the established fluorescent microsphere immunochromatography method.Sixty-six clinical samples were tested,and we compared the established fluorescent microsphere immunochromatography with the quantitative ELISA method.Results According to the working curve,the detection limit of the method is 3.4 pg/mL,and the detection range is 3.4 pg/mL to 10 ng/mL.The average intra-assay recovery was 99.6%,and the Coefficient of Variation(CV)was 5.4%–8.6%;the average inter-assay recovery was 97.3%,and the CV was 8.5%–11%.The detection rate of fluorescent microsphere immunochromatography was higher than ELISA method,and had a good correlation with ELISA.Conclusion The P24 antigen quantitative detection method based on near-infrared fluorescent microsphere immunochromatography has the advantages of rapid detection,high sensitivity,and wide detection range;thus,it is suitable for early clinical diagnosis and continuous monitoring of AIDS.展开更多
The mouse model of multiple cerebral infarctions,established by injecting fluorescent microspheres into the common carotid artery,is a recent development in animal models of cerebral ischemia.To investigate its effect...The mouse model of multiple cerebral infarctions,established by injecting fluorescent microspheres into the common carotid artery,is a recent development in animal models of cerebral ischemia.To investigate its effectiveness,mouse models of cerebral infarction were created by injecting fluorescent microspheres,45–53μm in diameter,into the common carotid artery.Six hours after modeling,fluorescent microspheres were observed directly through a fluorescence stereomicroscope,both on the brain surface and in brain sections.Changes in blood vessels,neurons and glial cells associated with microinfarcts were examined using fluorescence histochemistry and immunohistochemistry.The microspheres were distributed mainly in the cerebral cortex,striatum and hippocampus ipsilateral to the side of injection.Microinfarcts were found in the brain regions where the fluorescent microspheres were present.Here the lodged microspheres induced vascular and neuronal injury and the activation of astroglia and microglia.These histopathological changes indicate that this animal model of multiple cerebral infarctions effectively simulates the changes of various cell types observed in multifocal microinfarcts.This model is an effective,additional tool to study the pathogenesis of ischemic stroke and could be used to evaluate therapeutic interventions.This study was approved by the Animal Ethics Committee of the Institute of Acupuncture and Moxibustion,China Academy of Chinese Medical Sciences(approval No.D2021-03-16-1)on March 16,2021.展开更多
Polyacrylamide microspheres have been suc- cessfully used to reduce water production in reservoirs, but it is impossible to distinguish polyacrylamide microspheres from polyacrylamide that is used to enhance oil recov...Polyacrylamide microspheres have been suc- cessfully used to reduce water production in reservoirs, but it is impossible to distinguish polyacrylamide microspheres from polyacrylamide that is used to enhance oil recovery and is already present in production fluids. In order to detect polyacrylamide microspheres in the reservoir pro- duced fluid, fluorescent polyacrylamide microspheres P(AM-BA-AMCO), which fluoresce under ultraviolet irradiation, were synthesized via an inverse suspension polymerization. In order to keep the particle size distribu- tion in a narrow range, the synthesis conditions of the polymerization were studied, including the stirring speed and the concentrations of initiator, NaaCO3, and dispersant. The bonding characteristics of microspheres were deter- mined by Fourier transform infrared spectroscopy. The surface morphology of these microspheres was observed under ultraviolet irradiation with an inverse fluorescence microscope. A laboratory evaluation test showed that the fluorescent polymer microspheres had good water swelling capability, thus they had the ability to plug and migrate in a sand pack. The plugging rate was 99.8 % and the residual resistance coefficient was 800 after microsphere treatment in the sand pack. Furthermore, the fluorescent microspheres and their fragments were accurately detected under ultra- violet irradiation in the produced fluid, even though theyhad experienced extrusion and deformation in the sand pack.展开更多
Edible oil is one major nutritional ingredient to human and widely consumed directly. The contamination of aflatoxin B1 (AFB1) in edible oils has been attracted exten-sive efforts due to its hazard to human health a...Edible oil is one major nutritional ingredient to human and widely consumed directly. The contamination of aflatoxin B1 (AFB1) in edible oils has been attracted exten-sive efforts due to its hazard to human health and life. To avoid the digestion of edible oils contaminated by AFB1 the development of rapid and sensitive sensing method for AFB1 is required. Herein, a quantitative, sensitive and rapid method for AFB1 detection in edible oils was proposed by using ultrasensitive time-resolved fluorescent immunosensing (TRFIS) method. This method poses unique advantages from both time-resolved fluorescent sens-ing method and immunochromatographic assay format. The nanospheres were modified with fluorescent europium and then captured the home-made monoclonal antibody against AFB1 (3G1). After optimization, by using a competitive immunosensing manner, this TRFIS method has a detectable linear range of 0.54-20.0 μg/kg with minimum detectable concen-tration of 0.18μg/kg. It can be completed merely within 10 min with recovery from 87.0% to 121.9%. The agreement was observed between the results by TRFIS and high perfor-mance liquid chromatography (HPLC) methods. This research provides a promising sens-ing method for sensitive and rapid determining AFB1 in edible oils.展开更多
Accurate and sensitive strategies for Concanavalin A(Con A)sensing are conducive to the better cognition of various important biological and physiological processes.Here,by designing dextran-functionalized fluorescent...Accurate and sensitive strategies for Concanavalin A(Con A)sensing are conducive to the better cognition of various important biological and physiological processes.Here,by designing dextran-functionalized fluorescent microspheres(DxFMs)and boric acid-modified carbon dots(BCDs)as recognition unit and built-in signal reference respectively,a ratiometric fluorescent detection platform was proposed for Con A detection with high reliability.In this protocol,the BCDs/DxFMs precipitation was formed due to the covalent interactions between cis-diol of DxFMs and boronic acid groups of BCDs,thus only fluorescence of BCDs could be detected in the supernatant.When Con A was presented,it could bind to DxFMs through its carbohydrate recognition ability and suppress the subsequent assembly between DxFMs and BCDs,leading to the simultaneous capture of DxFMs and BCDs fluorescence in the supernatant.Since the BCDs content was superfluous,their fluorescence intensities were basically constant in all cases.Based on the unchanged BCDs fluorescence signal and target-dependent DxFMs fluorescence signal in supernatant,the ratiometric detection of Con A was realized.Under optimized conditions,this ratiometric fluorescent platform displayed a linear detection range from 0.125μg/mL to 12.5μg/mL with a detection limit of 0.089μg/mL.Moreover,satisfied analytical outcomes for Con A detection in serum samples were obtained,manifesting huge application potential of this ratiometric fluorescent platform in clinical diagnosis.展开更多
Here, we report an efficient fluorescence biosensor for chondroitin sulfate(CHS) based on polyelectrolyte microspheres of carboxymethyl cellulose(CMC) and chitosan(CS) composites inducing the aggregation of grap...Here, we report an efficient fluorescence biosensor for chondroitin sulfate(CHS) based on polyelectrolyte microspheres of carboxymethyl cellulose(CMC) and chitosan(CS) composites inducing the aggregation of graphene quantum dots(GQDs), calling CMC/CS-GQDs. The polyelectrolyte microspheres(CMC/CS microspheres) were fabricated by using anioniccationic electrostatic attraction between CMC and CS by high voltage electrostatic spray technology. The aggregating process of GQDs was based on the anionic-cationic electrostatic attraction as well. After combing with the polyelectrolyte microspheres, the fluorescence of GQDs disappeared. CHS, which widely consists in the cell surface of human beings and animals, carries a large number of negative charges on the surface. The addition of CHS enabled CHS and GQDs to compete with each other to composite with the CMC/CS microshpheres. As a result of the higher surface charge density of CHS, CMC/CS-CHS formed accompanied by the release of GQDs, and the fluorescence of the system recovered. The CHS content was detected by analyzing the system's fluorescence recovery, which suggested that the obtained fluorescence biosensor can accurately detect the concentration of CHS. The test results showed that the linear range of the fluorescence recovery for this biosensor with respect to CHS was 0~12.00 mg/mL, and the detection limit was 10-8 M. Besides, to test the stability of the biosensor, the CMC/CS-GQDs micropsheres persisted for one month, with a low fluorescence quenching of 9.48%. These results suggested that CMC/CS-GQDs can be utilized as efficient fluorescence biosensor for the detection of CHS. Moreover, the detection method was simple and efficient, and could be widely popularized.展开更多
The assembling of a coating of time-resolved fluorescent chelator BSPDA ( abbreviated for 4, 7-bis ( sulfhydrylphenyl)-1, 10-phenanthroline-2, 9-dicarboxylic acid) onto a nano-gold layer was demonstrated. First, B...The assembling of a coating of time-resolved fluorescent chelator BSPDA ( abbreviated for 4, 7-bis ( sulfhydrylphenyl)-1, 10-phenanthroline-2, 9-dicarboxylic acid) onto a nano-gold layer was demonstrated. First, BSPDA was synthesized by simple procedures, and then an approach was developed to immobilize BSPDA onto the nano-gold layer deposited on a silane modified glass substrate, whereby europium ion (Ⅲ, Eu^3+ ) was captured and released owing to the interactive process of complexation and dissociation between BSPDA functionalized coating and Eu^3+ solution. The fluorescence spectra and related lifetimes were determined. Also, the BSPDA functionalized coating's specific complexation with Eu^3+ on the BSPDA assembly layer and the nonspecific adsorption of Eu^3+ on the nano-gold layer were compared. These results allowed a selective complexation of Eu^3+ by assembling a BSPDA chelating layer on the nano-gold layer; thus, a tunable time-resolved fluorescent layer was covalently attached, The results of the nanoparticle assembling and probing (or labeling) processes to specific bio-systems were very interesting and had significant implications to time-resolved-fluorescence-based detection on biosensor surfaces such as DNA chip and to arrayed light display devices.展开更多
Polystyrene microspheres with sulfo- or aldehyde- surface were synthesized through dispersion polymerization. Functional polystyrene fluorescent microspheres were prepared by the way of adding 2, 5-diphenyloxazole (P...Polystyrene microspheres with sulfo- or aldehyde- surface were synthesized through dispersion polymerization. Functional polystyrene fluorescent microspheres were prepared by the way of adding 2, 5-diphenyloxazole (PPO) into the reaction system directly and dying the blank microspheres in the ethanol solution of PPO. The influence of preparing matters on the encapsulating rate of PPO, and the influence of functional groups on the adsorbability to human serum albumin (HSA) were investigated.展开更多
In this paper, zinc acetate, manganese acetate and thiacetamide are used as raw materials to successfully synthesize monodispersed ZnS:Mn^2+ microspheres by using hydrothermal method and taking P123 surfactant as a ...In this paper, zinc acetate, manganese acetate and thiacetamide are used as raw materials to successfully synthesize monodispersed ZnS:Mn^2+ microspheres by using hydrothermal method and taking P123 surfactant as a template. The products were characterized by XRD, STEM, FT-IR and N2 adsorption-desorption. And the results show that the diameter of this microsphere is 1.0 μm or so, which is larger than that of ZnS microsphere without Mn^2+ doping, and it has monodispersion, smooth surface and uniform size, The doping of Mn^2+ does not obviously change the structure of monodispersed ZnS microsphere. The photoluminescence peak lies in a wide band ranging from 450 to 650 nm, and the microspheres emit orange light; with the increase of Mn^2+ concentration, fluorescence intensity of ZnS:Mn^2+ microsphere changes, and when the mole ratio of Mn^2+:Zn^2+ is 0.3:1, the fluorescence intensity is the strongest.展开更多
A new europium complex is descried as a time-resolved luminescence-based sensor for fluoride anion. The sensor is selective even in the presence of intensive background fluorescence.
AIM: To observe the dynamic changes of liver microcirculation in vivo after arterial embolization with degradable starch microspheres (DSM). METHODS: DSM were injected into the proper hepatic artery through a sila...AIM: To observe the dynamic changes of liver microcirculation in vivo after arterial embolization with degradable starch microspheres (DSM). METHODS: DSM were injected into the proper hepatic artery through a silastic tube inserted retrogradely in gastroduodenal artery (GDA) of SD rats. Fluorescent microscopy was used to evaluate the dynamic changes of blood flow through the terminal portal venules (TPVs), sinusoids and terminal hepatic venules (THVs). The movements of DSM debris were also recorded. Six hours after injection of DSM, percentages of THVs with completely stagnant blood flow were recorded. RESULTS: Two phases of blood flow change were recorded. In phase one: after intra-arterial injection of DSM, slow or stagnant blood flow was immediately recorded in TPVs, sinusoids and THVs. This change was reversible, and blood flow resumed completely. In phase two: after phase one, blood flow in TPVs changed again and three patterns of blood flow were recorded. Six hours after DSM injection, 36.9% ± 9.2% of THVs were found with completely stagnant blood flow. CONCLUSION: DSM can stop the microcirculatory blood flow in some areas of liver parenchyma. Liver parenchyma supplied by arteries with larger A-P shunt is considered at a higher risk of total microcirculatory blood stagnation after injection of DSM through hepatic artery.展开更多
Due to photoluminescence intermittency of single tional exponential fluorescence lifetime analysis is colloidal quantum dots (QDs), the tradinot perfect to characterize QDs' fluores- cent emission behavior. In this...Due to photoluminescence intermittency of single tional exponential fluorescence lifetime analysis is colloidal quantum dots (QDs), the tradinot perfect to characterize QDs' fluores- cent emission behavior. In this work we used the time-tagged time-resolved (TTTR) mode to record the fluorescent photons from single QDs. We showed that this method is compatible with the traditional lifetime analysis. In addition, by constructing the trajectory over time and the distribution of average arrival time (AAT) of the fluorescent photons, inore details about the emission behavior of QDs were revealed.展开更多
基金Supported by National Key R&D Program for the Prevention and Control of Major Exotic Animal Diseases(2022YFD1800500)National Mutton Sheep Industrial Technology System(CARS39)+2 种基金Key Research and Development Program of Shandong Province(Major Science and Technology Innovation Project)(2021CXGC011306)Scientific Research Project of General Administration of Customs(2024HK033)Scientific Research Project of Jinan Customs(2023JK005).
文摘[Objectives]This study was conducted to explore rapid and large-scale screening and detection of peste des petits ruminants(PPR),so as to provide important technical means for prevention,control and purification of PPR.[Methods]Soluble N protein and NH fusion protein were successfully obtained in an Escherichia coli expression system by optimizing E.coli codon and expression conditions.Furthermore,based on purified soluble N protein and NH fusion protein,a double-antigen sandwich time-resolved fluorescence immunoassay method for detection of peste des petits ruminants virus(PPRV)was established.[Results]The method has high sensitivity and specificity and can specifically detect the antibody against PPRV in sheep serum,and it has no cross reaction with other related diseases.The method was used to detect 292 clinical samples,and compared with French IDVET competition ELISA kit.The coincidence rates of positive samples and negative samples from the two kinds of test kits were 92.47%and 97.26%,respectively,and the overall coincidence rate was 94.86%.The intra-group and inter-group coefficients of variation in the repeatability test were less than 10%.[Conclusions]Compared with the traditional ELISA method,the double-antigen sandwich time-resolved fluorescence immunoassay for detection of PPRV has equivalent sensitivity and specificity,and simple and rapid operation,and thus high application and popularization value.
基金supported by the National Natural Science Foundation of China[no.21677006]National Key Research and Development Project[2017YFC1200500].
文摘Objective To develop a rapid,highly sensitive quantitative method for detecting P24 antigen based on near-infrared fluorescent microsphere immunochromatography.Methods First,we prepared a lateral flow assay test strip,and labeled the detection antibody using a fluorescent microsphere.Second,we optimized the antibody labeling conditions.Third,we optimized the detection conditions.Fourth,we created a working curve.Fifth,we conducted a methodological assessment of the established fluorescent microsphere immunochromatography method.Sixty-six clinical samples were tested,and we compared the established fluorescent microsphere immunochromatography with the quantitative ELISA method.Results According to the working curve,the detection limit of the method is 3.4 pg/mL,and the detection range is 3.4 pg/mL to 10 ng/mL.The average intra-assay recovery was 99.6%,and the Coefficient of Variation(CV)was 5.4%–8.6%;the average inter-assay recovery was 97.3%,and the CV was 8.5%–11%.The detection rate of fluorescent microsphere immunochromatography was higher than ELISA method,and had a good correlation with ELISA.Conclusion The P24 antigen quantitative detection method based on near-infrared fluorescent microsphere immunochromatography has the advantages of rapid detection,high sensitivity,and wide detection range;thus,it is suitable for early clinical diagnosis and continuous monitoring of AIDS.
基金supported by the Project of National Key R&D Program of China,No.2019YFC1709103(to WZB)the National Natural Science Foundation of China,Nos.81774211(to WZB),81873040(to MJY),81774432(to JJC),81801561(to DSX),82004492(to JW)。
文摘The mouse model of multiple cerebral infarctions,established by injecting fluorescent microspheres into the common carotid artery,is a recent development in animal models of cerebral ischemia.To investigate its effectiveness,mouse models of cerebral infarction were created by injecting fluorescent microspheres,45–53μm in diameter,into the common carotid artery.Six hours after modeling,fluorescent microspheres were observed directly through a fluorescence stereomicroscope,both on the brain surface and in brain sections.Changes in blood vessels,neurons and glial cells associated with microinfarcts were examined using fluorescence histochemistry and immunohistochemistry.The microspheres were distributed mainly in the cerebral cortex,striatum and hippocampus ipsilateral to the side of injection.Microinfarcts were found in the brain regions where the fluorescent microspheres were present.Here the lodged microspheres induced vascular and neuronal injury and the activation of astroglia and microglia.These histopathological changes indicate that this animal model of multiple cerebral infarctions effectively simulates the changes of various cell types observed in multifocal microinfarcts.This model is an effective,additional tool to study the pathogenesis of ischemic stroke and could be used to evaluate therapeutic interventions.This study was approved by the Animal Ethics Committee of the Institute of Acupuncture and Moxibustion,China Academy of Chinese Medical Sciences(approval No.D2021-03-16-1)on March 16,2021.
基金supported by the National Natural Science Foundation of China (No.21273286)Doctoral Program Foundation of the Education Ministry (No.20130133110005)
文摘Polyacrylamide microspheres have been suc- cessfully used to reduce water production in reservoirs, but it is impossible to distinguish polyacrylamide microspheres from polyacrylamide that is used to enhance oil recovery and is already present in production fluids. In order to detect polyacrylamide microspheres in the reservoir pro- duced fluid, fluorescent polyacrylamide microspheres P(AM-BA-AMCO), which fluoresce under ultraviolet irradiation, were synthesized via an inverse suspension polymerization. In order to keep the particle size distribu- tion in a narrow range, the synthesis conditions of the polymerization were studied, including the stirring speed and the concentrations of initiator, NaaCO3, and dispersant. The bonding characteristics of microspheres were deter- mined by Fourier transform infrared spectroscopy. The surface morphology of these microspheres was observed under ultraviolet irradiation with an inverse fluorescence microscope. A laboratory evaluation test showed that the fluorescent polymer microspheres had good water swelling capability, thus they had the ability to plug and migrate in a sand pack. The plugging rate was 99.8 % and the residual resistance coefficient was 800 after microsphere treatment in the sand pack. Furthermore, the fluorescent microspheres and their fragments were accurately detected under ultra- violet irradiation in the produced fluid, even though theyhad experienced extrusion and deformation in the sand pack.
基金This work was supported by Special Fund for Grain -scientific Research in the Public Interest (201513006-02), Special Fund for Agro -scientific Research in the Public Interest (201203094), Natural Science Foundation of China (31401601).
文摘Edible oil is one major nutritional ingredient to human and widely consumed directly. The contamination of aflatoxin B1 (AFB1) in edible oils has been attracted exten-sive efforts due to its hazard to human health and life. To avoid the digestion of edible oils contaminated by AFB1 the development of rapid and sensitive sensing method for AFB1 is required. Herein, a quantitative, sensitive and rapid method for AFB1 detection in edible oils was proposed by using ultrasensitive time-resolved fluorescent immunosensing (TRFIS) method. This method poses unique advantages from both time-resolved fluorescent sens-ing method and immunochromatographic assay format. The nanospheres were modified with fluorescent europium and then captured the home-made monoclonal antibody against AFB1 (3G1). After optimization, by using a competitive immunosensing manner, this TRFIS method has a detectable linear range of 0.54-20.0 μg/kg with minimum detectable concen-tration of 0.18μg/kg. It can be completed merely within 10 min with recovery from 87.0% to 121.9%. The agreement was observed between the results by TRFIS and high perfor-mance liquid chromatography (HPLC) methods. This research provides a promising sens-ing method for sensitive and rapid determining AFB1 in edible oils.
基金supported by the Key Project of Science and Technology of Henan Province(No.212102310334)National Natural Science Foundation of China(Nos.21974125,22174131).
文摘Accurate and sensitive strategies for Concanavalin A(Con A)sensing are conducive to the better cognition of various important biological and physiological processes.Here,by designing dextran-functionalized fluorescent microspheres(DxFMs)and boric acid-modified carbon dots(BCDs)as recognition unit and built-in signal reference respectively,a ratiometric fluorescent detection platform was proposed for Con A detection with high reliability.In this protocol,the BCDs/DxFMs precipitation was formed due to the covalent interactions between cis-diol of DxFMs and boronic acid groups of BCDs,thus only fluorescence of BCDs could be detected in the supernatant.When Con A was presented,it could bind to DxFMs through its carbohydrate recognition ability and suppress the subsequent assembly between DxFMs and BCDs,leading to the simultaneous capture of DxFMs and BCDs fluorescence in the supernatant.Since the BCDs content was superfluous,their fluorescence intensities were basically constant in all cases.Based on the unchanged BCDs fluorescence signal and target-dependent DxFMs fluorescence signal in supernatant,the ratiometric detection of Con A was realized.Under optimized conditions,this ratiometric fluorescent platform displayed a linear detection range from 0.125μg/mL to 12.5μg/mL with a detection limit of 0.089μg/mL.Moreover,satisfied analytical outcomes for Con A detection in serum samples were obtained,manifesting huge application potential of this ratiometric fluorescent platform in clinical diagnosis.
文摘Here, we report an efficient fluorescence biosensor for chondroitin sulfate(CHS) based on polyelectrolyte microspheres of carboxymethyl cellulose(CMC) and chitosan(CS) composites inducing the aggregation of graphene quantum dots(GQDs), calling CMC/CS-GQDs. The polyelectrolyte microspheres(CMC/CS microspheres) were fabricated by using anioniccationic electrostatic attraction between CMC and CS by high voltage electrostatic spray technology. The aggregating process of GQDs was based on the anionic-cationic electrostatic attraction as well. After combing with the polyelectrolyte microspheres, the fluorescence of GQDs disappeared. CHS, which widely consists in the cell surface of human beings and animals, carries a large number of negative charges on the surface. The addition of CHS enabled CHS and GQDs to compete with each other to composite with the CMC/CS microshpheres. As a result of the higher surface charge density of CHS, CMC/CS-CHS formed accompanied by the release of GQDs, and the fluorescence of the system recovered. The CHS content was detected by analyzing the system's fluorescence recovery, which suggested that the obtained fluorescence biosensor can accurately detect the concentration of CHS. The test results showed that the linear range of the fluorescence recovery for this biosensor with respect to CHS was 0~12.00 mg/mL, and the detection limit was 10-8 M. Besides, to test the stability of the biosensor, the CMC/CS-GQDs micropsheres persisted for one month, with a low fluorescence quenching of 9.48%. These results suggested that CMC/CS-GQDs can be utilized as efficient fluorescence biosensor for the detection of CHS. Moreover, the detection method was simple and efficient, and could be widely popularized.
基金Project supported by the National Natural Science Foundation of China (20505020) the Natural Science Foundation ofGuangdong Province (06300086) +2 种基金 China Postdoctoral Science Foundation (20060390202) Scientific Research Fund ofHunan Provincial Education Department (05C508) Skeleton Youth Faculty Programof Hunan Higher Educational School
文摘The assembling of a coating of time-resolved fluorescent chelator BSPDA ( abbreviated for 4, 7-bis ( sulfhydrylphenyl)-1, 10-phenanthroline-2, 9-dicarboxylic acid) onto a nano-gold layer was demonstrated. First, BSPDA was synthesized by simple procedures, and then an approach was developed to immobilize BSPDA onto the nano-gold layer deposited on a silane modified glass substrate, whereby europium ion (Ⅲ, Eu^3+ ) was captured and released owing to the interactive process of complexation and dissociation between BSPDA functionalized coating and Eu^3+ solution. The fluorescence spectra and related lifetimes were determined. Also, the BSPDA functionalized coating's specific complexation with Eu^3+ on the BSPDA assembly layer and the nonspecific adsorption of Eu^3+ on the nano-gold layer were compared. These results allowed a selective complexation of Eu^3+ by assembling a BSPDA chelating layer on the nano-gold layer; thus, a tunable time-resolved fluorescent layer was covalently attached, The results of the nanoparticle assembling and probing (or labeling) processes to specific bio-systems were very interesting and had significant implications to time-resolved-fluorescence-based detection on biosensor surfaces such as DNA chip and to arrayed light display devices.
文摘Polystyrene microspheres with sulfo- or aldehyde- surface were synthesized through dispersion polymerization. Functional polystyrene fluorescent microspheres were prepared by the way of adding 2, 5-diphenyloxazole (PPO) into the reaction system directly and dying the blank microspheres in the ethanol solution of PPO. The influence of preparing matters on the encapsulating rate of PPO, and the influence of functional groups on the adsorbability to human serum albumin (HSA) were investigated.
基金the Fujian Hi-tech Project Foundation (No. 2004H008)
文摘In this paper, zinc acetate, manganese acetate and thiacetamide are used as raw materials to successfully synthesize monodispersed ZnS:Mn^2+ microspheres by using hydrothermal method and taking P123 surfactant as a template. The products were characterized by XRD, STEM, FT-IR and N2 adsorption-desorption. And the results show that the diameter of this microsphere is 1.0 μm or so, which is larger than that of ZnS microsphere without Mn^2+ doping, and it has monodispersion, smooth surface and uniform size, The doping of Mn^2+ does not obviously change the structure of monodispersed ZnS microsphere. The photoluminescence peak lies in a wide band ranging from 450 to 650 nm, and the microspheres emit orange light; with the increase of Mn^2+ concentration, fluorescence intensity of ZnS:Mn^2+ microsphere changes, and when the mole ratio of Mn^2+:Zn^2+ is 0.3:1, the fluorescence intensity is the strongest.
基金the National Natural Science Foundation of China(20490210)Shanghai Sci.Tech.Comm.(03QB14006,03DZ12031 and 05DJ14004)for financial support.
文摘A new europium complex is descried as a time-resolved luminescence-based sensor for fluoride anion. The sensor is selective even in the presence of intensive background fluorescence.
文摘AIM: To observe the dynamic changes of liver microcirculation in vivo after arterial embolization with degradable starch microspheres (DSM). METHODS: DSM were injected into the proper hepatic artery through a silastic tube inserted retrogradely in gastroduodenal artery (GDA) of SD rats. Fluorescent microscopy was used to evaluate the dynamic changes of blood flow through the terminal portal venules (TPVs), sinusoids and terminal hepatic venules (THVs). The movements of DSM debris were also recorded. Six hours after injection of DSM, percentages of THVs with completely stagnant blood flow were recorded. RESULTS: Two phases of blood flow change were recorded. In phase one: after intra-arterial injection of DSM, slow or stagnant blood flow was immediately recorded in TPVs, sinusoids and THVs. This change was reversible, and blood flow resumed completely. In phase two: after phase one, blood flow in TPVs changed again and three patterns of blood flow were recorded. Six hours after DSM injection, 36.9% ± 9.2% of THVs were found with completely stagnant blood flow. CONCLUSION: DSM can stop the microcirculatory blood flow in some areas of liver parenchyma. Liver parenchyma supplied by arteries with larger A-P shunt is considered at a higher risk of total microcirculatory blood stagnation after injection of DSM through hepatic artery.
基金supported by the National Science Foundation CAREER award(CHE-1554800)
文摘Due to photoluminescence intermittency of single tional exponential fluorescence lifetime analysis is colloidal quantum dots (QDs), the tradinot perfect to characterize QDs' fluores- cent emission behavior. In this work we used the time-tagged time-resolved (TTTR) mode to record the fluorescent photons from single QDs. We showed that this method is compatible with the traditional lifetime analysis. In addition, by constructing the trajectory over time and the distribution of average arrival time (AAT) of the fluorescent photons, inore details about the emission behavior of QDs were revealed.