Objective:To introduce a new better contrast-enhanced MR angiographic metnod, named 3D time-resolved imaging of contrast kinetics (3D-TRICKS). Methods: TRICKS is a high temporal resolution (2-6 s) MR angiographi...Objective:To introduce a new better contrast-enhanced MR angiographic metnod, named 3D time-resolved imaging of contrast kinetics (3D-TRICKS). Methods: TRICKS is a high temporal resolution (2-6 s) MR angiographic technique using a short TR(4 ms) and TE(1.5 ms), partial echo sampling, in which central part of k-space is updated more frequently than the peripheral part. TRICKS pre-contrast mask 3D images are firstly scanned, and then the bolus injecting of Gd-DTPA, 15-20 sequential 3D images are acquired. The reconstructed 3D images, subtraction of contrast 3D images with mask images, are conceptually similar to a catheter-based intra-arterial digital subtraction angiographic series (DSA). Thirty patients underwent contrast-enhanced MR angiography using 3D-TRICKS. Results: Totally 12 vertebral arteries were well displayed on TRICKS, in which 7 were normal, 1 demonstrated bilateral vertebral artery stenosis, 4 had unilateral vertebral artery stenosis and 1 was accompanied with the same lateral carotid artery bifurcation stenosis. Four cases of bilateral renal arteries were normal, 1 transplanted kidney artery showed as normal and 1 transplanted kidney artery showed stenosis. 2 cerebral arteries were normal, 1 had sagittal sinus thrombosis and 1 displayed intracranial arteriovenous malformation. 3 pulmonary arteries were normal, 1 showed pulmonary artery thrombosis and 1 revealed pulmonary sequestration's abnormal feeding artery and draining vein. One left lower limb fibrolipoma showed feeding artery. One displayed radial-ulnar artery artificial fistula stenosis. One revealed left antebrachium hemangioma. Conclusion: TRICKS can clearly delineate most body vascular system and reveal most vascular abnormality. It possesses convenience and high successful rate, which make it the first choice of displaying most vascular abnormality.展开更多
Compared with the conventional first near-infrared(NIR-I,700900 nm)window,the short-wave infrared region(SWIR,900—1700nm)possesses the merits of the increasing tissue penetration depths and the suppression of scatter...Compared with the conventional first near-infrared(NIR-I,700900 nm)window,the short-wave infrared region(SWIR,900—1700nm)possesses the merits of the increasing tissue penetration depths and the suppression of scattering background,leading to great potential for in vivo imaging.Based on the limitations of the common spectral domain,and the superiority of the time-dimension,time-resolved imaging eliminates the auto-fuorescence in the biological tissue,thus supporting higher signal-to-noise ratio and sensitivities.The imaging technique is not affected by the difference in tissue composition or thickness and has the practical value of quan-titative in vivo detection.Almost all the relevant time-resolved imaging was carried out around lanthanide-doped upconversion nanomaterials,owing to the advantages of ultralong luminescence lifetime,excellent photostability,controllable morphology,easy surface modification and various strategies of regulating lifetime.Therefore,this review presents the research progress of SWIR time-resolved imaging technology based on nanomaterials doped with lanthanide ions as luminescence centers in recent years.展开更多
The ultrafast dynamics through conical intersections in 2,6-dimethylpyridine has been studied by femtosecond time-resolved photoelectron imaging coupled with time-resolved mass spectroscopy. Upon absorption of 266 nm ...The ultrafast dynamics through conical intersections in 2,6-dimethylpyridine has been studied by femtosecond time-resolved photoelectron imaging coupled with time-resolved mass spectroscopy. Upon absorption of 266 nm pump laser, 2,6-dimethylpyridine is excited to the S2 state with a ππ character from So state. The time evolution of the parent ion signals consists of two exponential decays. One is a fast component on a timescale of 635 fs and the other is a slow component with a timescale of 4.37 ps. Time-dependent photo- electron angular distributions and energy-resolved photoelectron spectroscopy are extracted from time-resolved photoelectron imaging and provide the evolutive information of S2 state. In brief, the ultrafast component is a population transfer from S2 to S1 through the S2/S1 conical intersections, the slow component is attributed to simultaneous IC from the S2 state and the higher vibrational levels of S1 state to So state, which involves the coupling of S2/S0 and S1/So conical intersections. Additionally, the observed ultrafast S2--+S1 transition occurs only with an 18% branching ratio.展开更多
Historically,psychiatric diagnoses have been made based on patient’s reported symptoms applying the criteria from diagnostic and statistical manual of mental disorders.The utilization of neuroimaging or biomarkers to...Historically,psychiatric diagnoses have been made based on patient’s reported symptoms applying the criteria from diagnostic and statistical manual of mental disorders.The utilization of neuroimaging or biomarkers to make the diagnosis and manage psychiatric disorders remains a distant goal.There have been several studies that examine brain imaging in psychiatric disorders,but more work is needed to elucidate the complexities of the human brain.In this editorial,we examine two articles by Xu et al and Stoyanov et al,that show developments in the direction of using neuroimaging to examine the brains of people with schizo-phrenia and depression.Xu et al used magnetic resonance imaging to examine the brain structure of patients with schizophrenia,in addition to examining neurotransmitter levels as biomarkers.Stoyanov et al used functional magnetic resonance imaging to look at modulation of different neural circuits by diagnostic-specific scales in patients with schizophrenia and depression.These two studies provide crucial evidence in advancing our understanding of the brain in prevalent psychiatric disorders.展开更多
Moderate to severe perinatal hypoxic-ischemic encephalopathy occurs in~1 to 3/1000 live births in high-income countries and is associated with a significant risk of death or neurodevelopmental disability.Detailed asse...Moderate to severe perinatal hypoxic-ischemic encephalopathy occurs in~1 to 3/1000 live births in high-income countries and is associated with a significant risk of death or neurodevelopmental disability.Detailed assessment is important to help identify highrisk infants,to help families,and to support appropriate interventions.A wide range of monitoring tools is available to assess changes over time,including urine and blood biomarkers,neurological examination,and electroencephalography.At present,magnetic resonance imaging is unique as although it is expensive and not suited to monitoring the early evolution of hypoxic-ischemic encephalopathy by a week of life it can provide direct insight into the anatomical changes in the brain after hypoxic-ischemic encephalopathy and so offers strong prognostic information on the long-term outcome after hypoxic-ischemic encephalopathy.This review investigated the temporal dynamics of neonatal hypoxic-ischemic encephalopathy injuries,with a particular emphasis on exploring the correlation between the prognostic implications of magnetic resonance imaging scans in the first week of life and their relationship to long-term outcome prediction,particularly for infants treated with therapeutic hypothermia.A comprehensive literature search,from 2016 to 2024,identified 20 pertinent articles.This review highlights that while the optimal timing of magnetic resonance imaging scans is not clear,overall,it suggests that magnetic resonance imaging within the first week of life provides strong prognostic accuracy.Many challenges limit the timing consistency,particularly the need for intensive care and clinical monitoring.Conversely,although most reports examined the prognostic value of scans taken between 4 and 10 days after birth,there is evidence from small numbers of cases that,at times,brain injury may continue to evolve for weeks after birth.This suggests that in the future it will be important to explore a wider range of times after hypoxic-ischemic encephalopathy to fully understand the optimal timing for predicting long-term outcomes.展开更多
Sotos syndrome is characterized by overgrowth features and is caused by alterations in the nuclear receptor binding SET domain protein 1 gene.Attentiondeficit/hyperactivity disorder(ADHD)is considered a neurodevelopme...Sotos syndrome is characterized by overgrowth features and is caused by alterations in the nuclear receptor binding SET domain protein 1 gene.Attentiondeficit/hyperactivity disorder(ADHD)is considered a neurodevelopment and psychiatric disorder in childhood.Genetic characteristics and clinical presentation could play an important role in the diagnosis of Sotos syndrome and ADHD.Magnetic resonance imaging(MRI)has been used to assess medical images in Sotos syndrome and ADHD.The images process is considered to display in MRI while wavelet fusion has been used to integrate distinct images for achieving more complete information in single image in this editorial.In the future,genetic mechanisms and artificial intelligence related to medical images could be used in the clinical diagnosis of Sotos syndrome and ADHD.展开更多
Nowadays,presynaptic dopaminergic positron emission tomography,which assesses deficiencies in dopamine synthesis,storage,and transport,is widely utilized for early diagnosis and differential diagnosis of parkinsonism....Nowadays,presynaptic dopaminergic positron emission tomography,which assesses deficiencies in dopamine synthesis,storage,and transport,is widely utilized for early diagnosis and differential diagnosis of parkinsonism.This review provides a comprehensive summary of the latest developments in the application of presynaptic dopaminergic positron emission tomography imaging in disorders that manifest parkinsonism.We conducted a thorough literature search using reputable databases such as PubMed and Web of Science.Selection criteria involved identifying peer-reviewed articles published within the last 5 years,with emphasis on their relevance to clinical applications.The findings from these studies highlight that presynaptic dopaminergic positron emission tomography has demonstrated potential not only in diagnosing and differentiating various Parkinsonian conditions but also in assessing disease severity and predicting prognosis.Moreover,when employed in conjunction with other imaging modalities and advanced analytical methods,presynaptic dopaminergic positron emission tomography has been validated as a reliable in vivo biomarker.This validation extends to screening and exploring potential neuropathological mechanisms associated with dopaminergic depletion.In summary,the insights gained from interpreting these studies are crucial for enhancing the effectiveness of preclinical investigations and clinical trials,ultimately advancing toward the goals of neuroregeneration in parkinsonian disorders.展开更多
A new velocity map imaging spectrometer is constructed for molecular reaction dynamics studies using time-resolved photoelectron/ion spectroscopy method. By combining a kHz pulsed valve and an ICCD camera, this veloci...A new velocity map imaging spectrometer is constructed for molecular reaction dynamics studies using time-resolved photoelectron/ion spectroscopy method. By combining a kHz pulsed valve and an ICCD camera, this velocity map imaging spectrometer can be run at a repetition rate of 1 kHz, totally compatible with the fs Ti:Sapphire laser system, facilitating time-resolved studies in gas phase which are usually time-consuming. Time-resolved velocity map imaging study of NH3 photodissociation at 200 nm was performed and the time-resolved total kinetic energy release spectrum of H+NH~ products provides rich information about the dissociation dynamics of NH3. These results show that this new apparatus is a powerful tool for investigating the molecular reaction dynamics using time-resolved methods.展开更多
N-ethylpyrrole is one of ethylsubstituted derivatives of pyrrole and its excited-state decay dynamics has never been explored.In this work,we investigate ultrafast decay dynamics of N-ethylpyrrole excited to the S_(1)...N-ethylpyrrole is one of ethylsubstituted derivatives of pyrrole and its excited-state decay dynamics has never been explored.In this work,we investigate ultrafast decay dynamics of N-ethylpyrrole excited to the S_(1)electronic state using a femtosecond time-resolved photoelectron imaging method.Two pump wavelengths of 241.9 and 237.7 nm are employed.At 241.9 nm,three time constants,5.0±0.7 ps,66.4±15.6 ps and 1.3±0.1 ns,are derived.For 237.7 nm,two time constants of 2.1±0.1 ps and 13.1±1.2 ps are derived.We assign all these time constants to be associated with different vibrational states in the S_(1)state.The possible decay mechanisms of different S_(1)vibrational states are briefly discussed.展开更多
We report the formation dynamics of periodic ripples on Ga As induced by femtosecond laser pulses(800 nm, 50 fs) via a collinear time-resolved imaging technique with a temporal resolution of 1 ps and a spatial resol...We report the formation dynamics of periodic ripples on Ga As induced by femtosecond laser pulses(800 nm, 50 fs) via a collinear time-resolved imaging technique with a temporal resolution of 1 ps and a spatial resolution of 440 nm. The onset of periodic ripples emerges in the initial tens of picoseconds in the timescale of material ejection. The periodic ripples appear after irradiation of at least two pump pulses at surface defects produced by the first pulse and the ripple positions kept stable until the formation processes complete. The formation mechanisms of laser-induced periodic ripples are also discussed.展开更多
The ultrafast dissociation dynamics of NO2 molecules was investigated by femtosecond laser pump-probe mass spectra and ion images.The results show that the kinetic energy release of NO+ions has two components,0.05 eV ...The ultrafast dissociation dynamics of NO2 molecules was investigated by femtosecond laser pump-probe mass spectra and ion images.The results show that the kinetic energy release of NO+ions has two components,0.05 eV and 0.25 eV,and the possible dissociation channels have been assigned.The channel resolved transient measurement of NO^+provides a method to disentangle the contribution of ultrafast dissociation pathways,and the transient curves of NO^+ions at different kinetic energy release are fitted by a biexponential function.The fast component with a decay time of 0.25 ps is generated from the evolution of Rydberg states.The slow component is generated from two competitive channels,one of the channel is absorbing one 400nm photon to the excited state A^2B2,which has a decay time of 30.0ps,and the other slow channel is absorbing three 400nm photons to valence type Rydberg states which have a decay time less than 7.2ps.The channel and time resolved experiment present the potential of sorting out the complex ultrafast dissociation dynamics of molecules.展开更多
The relationship between the in the logarithmic law (log-law) region of bursting event and the low/high-speed streak a turbulent boundary layer is investigated. A tomographic time-resolved particle image velocimetry...The relationship between the in the logarithmic law (log-law) region of bursting event and the low/high-speed streak a turbulent boundary layer is investigated. A tomographic time-resolved particle image velocimetry (TRPIV) system is used to measure the instantaneous three-dimensional-three-component (3D-3C) velocity field. The momentum thickness based Reynolds number is about 2 460. The topological information in the log-law region is obtained experimentally. It is found that the existence of the quadrupole topological structure implies a three-pair hairpin-like vortex packet, which is in connection with the low/high-speed streak. An idealized 3D topological model is then proposed to characterize the observed hairpin vortex packet and low/high-speed streak.展开更多
In this paper,self-designed multi-hollow needle electrodes are used as a high-voltage electrode in a packed bed dielectric barrier discharge reactor to facilitate fast gas flow through the active discharge area and ac...In this paper,self-designed multi-hollow needle electrodes are used as a high-voltage electrode in a packed bed dielectric barrier discharge reactor to facilitate fast gas flow through the active discharge area and achieve large-volume stable discharge.The dynamic characteristics of the plasma,the generated active species,and the energy transfer mechanisms in both positive discharge(PD)and negative discharge(ND)are investigated by using fast-exposure intensified charge coupled device(ICCD)images and time-resolved optical emission spectra.The experimental results show that the discharge intensity,number of discharge channels,and discharge volume are obviously enhanced when the multi-needle electrode is replaced by a multihollow needle electrode.During a single voltage pulse period,PD mainly develops in a streamer mode,which results in a stronger discharge current,luminous intensity,and E/N compared with the diffuse mode observed in ND.In PD,as the gap between dielectric beads changes from 0 to250μm,the discharge between the dielectric bead gap changes from a partial discharge to a standing filamentary micro-discharge,which allows the plasma to leave the local area and is conducive to the propagation of surface streamers.In ND,the discharge only appears as a diffusionlike mode between the gap of dielectric beads,regardless of whether there is a discharge gap.Moreover,the generation of excited states N_(2)^(+)(B^(2)∑_(u)^(+))and N2(C^(3)Π_(u))is mainly observed in PD,which is attributed to the higher E/N in PD than that in ND.However,the generation of the OH(A^(2)∑^(+))radical in ND is higher than in PD.It is not directly dominated by E/N,but mainly by the resonant energy transfer process between metastable N_(2)(A^(3)∑_(u)^(+))and OH(X^(2)Π).Furthermore,both PD and ND demonstrate obvious energy relaxation processes of electron-to-vibration and vibration-to-vibration,and no vibration-to-rotation energy relaxation process is observed.展开更多
Microwave-induced thermoacoustic imaging(MTI)has the advantages of high resolution,high contrast,non-ionization,and non-invasive.Recently,MTI was used in the¯eld of breast cancer screening.In this paper,based on ...Microwave-induced thermoacoustic imaging(MTI)has the advantages of high resolution,high contrast,non-ionization,and non-invasive.Recently,MTI was used in the¯eld of breast cancer screening.In this paper,based on the¯nite element method(FEM)and COMSOL Multiphysics software,a three-dimensional breast cancer model suitable for exploring the MTI process is proposed to investigate the in°uence of Young's modulus(YM)of breast cancer tissue on MTI.It is found that the process of electromagnetic heating and initial pressure generation of the entire breast tissue is earlier in time than the thermal expansion process.Besides,compared with normal breast tissue,tumor tissue has a greater temperature rise,displacement,and pressure rise.In particular,YM of the tumor is related to the speed of thermal expansion.In particular,the larger the YM of the tumor is,the higher the heating and contraction frequency is,and the greater the maximum pressure is.Di®erent Young's moduli correspond to di®erent thermoacoustic signal spectra.In MTI,this study can be used to judge di®erent degrees of breast cancer based on elastic imaging.In addition,this study is helpful in exploring the possibility of microwave-induced thermoacoustic elastic imaging(MTAE).展开更多
This study reviews the recent advances in data-driven polarimetric imaging technologies based on a wide range of practical applications.The widespread international research and activity in polarimetric imaging techni...This study reviews the recent advances in data-driven polarimetric imaging technologies based on a wide range of practical applications.The widespread international research and activity in polarimetric imaging techniques demonstrate their broad applications and interest.Polarization information is increasingly incorporated into convolutional neural networks(CNN)as a supplemental feature of objects to improve performance in computer vision task applications.Polarimetric imaging and deep learning can extract abundant information to address various challenges.Therefore,this article briefly reviews recent developments in data-driven polarimetric imaging,including polarimetric descattering,3D imaging,reflection removal,target detection,and biomedical imaging.Furthermore,we synthetically analyze the input,datasets,and loss functions and list the existing datasets and loss functions with an evaluation of their advantages and disadvantages.We also highlight the significance of data-driven polarimetric imaging in future research and development.展开更多
BACKGROUND Perineural invasion(PNI)has been used as an important pathological indicator and independent prognostic factor for patients with rectal cancer(RC).Preoperative prediction of PNI status is helpful for indivi...BACKGROUND Perineural invasion(PNI)has been used as an important pathological indicator and independent prognostic factor for patients with rectal cancer(RC).Preoperative prediction of PNI status is helpful for individualized treatment of RC.Recently,several radiomics studies have been used to predict the PNI status in RC,demonstrating a good predictive effect,but the results lacked generalizability.The preoperative prediction of PNI status is still challenging and needs further study.AIM To establish and validate an optimal radiomics model for predicting PNI status preoperatively in RC patients.METHODS This retrospective study enrolled 244 postoperative patients with pathologically confirmed RC from two independent centers.The patients underwent preoperative high-resolution magnetic resonance imaging(MRI)between May 2019 and August 2022.Quantitative radiomics features were extracted and selected from oblique axial T2-weighted imaging(T2WI)and contrast-enhanced T1WI(T1CE)sequences.The radiomics signatures were constructed using logistic regression analysis and the predictive potential of various sequences was compared(T2WI,T1CE and T2WI+T1CE fusion sequences).A clinical-radiomics(CR)model was established by combining the radiomics features and clinical risk factors.The internal and external validation groups were used to validate the proposed models.The area under the receiver operating characteristic curve(AUC),DeLong test,net reclassification improvement(NRI),integrated discrimination improvement(IDI),calibration curve,and decision curve analysis(DCA)were used to evaluate the model performance.RESULTS Among the radiomics models,the T2WI+T1CE fusion sequences model showed the best predictive performance,in the training and internal validation groups,the AUCs of the fusion sequence model were 0.839[95%confidence interval(CI):0.757-0.921]and 0.787(95%CI:0.650-0.923),which were higher than those of the T2WI and T1CE sequence models.The CR model constructed by combining clinical risk factors had the best predictive performance.In the training and internal and external validation groups,the AUCs of the CR model were 0.889(95%CI:0.824-0.954),0.889(95%CI:0.803-0.976)and 0.894(95%CI:0.814-0.974).Delong test,NRI,and IDI showed that the CR model had significant differences from other models(P<0.05).Calibration curves demonstrated good agreement,and DCA revealed significant benefits of the CR model.CONCLUSION The CR model based on preoperative MRI radiomics features and clinical risk factors can preoperatively predict the PNI status of RC noninvasively,which facilitates individualized treatment of RC patients.展开更多
Over the past decade,a growing number of studies have reported transcription factor-based in situ reprogramming that can directly conve rt endogenous glial cells into functional neurons as an alternative approach for ...Over the past decade,a growing number of studies have reported transcription factor-based in situ reprogramming that can directly conve rt endogenous glial cells into functional neurons as an alternative approach for n euro regeneration in the adult mammalian central ne rvous system.Howeve r,many questions remain regarding how a terminally differentiated glial cell can transform into a delicate neuron that forms part of the intricate brain circuitry.In addition,concerns have recently been raised around the absence of astrocyte-to-neuron conversion in astrocytic lineage-tra cing mice.In this study,we employed repetitive two-photon imaging to continuously capture the in situ astrocyte-to-neuron conversion process following ecto pic expression of the neural transcription factor NeuroD1 in both prolife rating reactive astrocytes and lineage-tra ced astrocytes in the mouse cortex.Time-lapse imaging over several wee ks revealed the ste p-by-step transition from a typical astrocyte with numero us short,tapered branches to a typical neuro n with a few long neurites and dynamic growth cones that actively explored the local environment.In addition,these lineage-converting cells were able to migrate ra dially or to ngentially to relocate to suitable positions.Furthermore,two-photon Ca2+imaging and patch-clamp recordings confirmed that the newly generated neuro ns exhibited synchronous calcium signals,repetitive action potentials,and spontaneous synaptic responses,suggesting that they had made functional synaptic connections within local neural circuits.In conclusion,we directly visualized the step-by-step lineage conversion process from astrocytes to functional neurons in vivo and unambiguously demonstrated that adult mammalian brains are highly plastic with respect to their potential for neuro regeneration and neural circuit reconstruction.展开更多
BACKGROUND Radiomics is a promising tool that may increase the value of magnetic resonance imaging(MRI)for different tasks related to the management of patients with hepatocellular carcinoma(HCC).However,its implement...BACKGROUND Radiomics is a promising tool that may increase the value of magnetic resonance imaging(MRI)for different tasks related to the management of patients with hepatocellular carcinoma(HCC).However,its implementation in clinical practice is still far,with many issues related to the methodological quality of radiomic studies.AIM To systematically review the current status of MRI radiomic studies concerning HCC using the Radiomics Quality Score(RQS).METHODS A systematic literature search of PubMed,Google Scholar,and Web of Science databases was performed to identify original articles focusing on the use of MRI radiomics for HCC management published between 2017 and 2023.The methodological quality of radiomic studies was assessed using the RQS tool.Spearman’s correlation(ρ)analysis was performed to explore if RQS was correlated with journal metrics and characteristics of the studies.The level of statistical significance was set at P<0.05.RESULTS One hundred and twenty-seven articles were included,of which 43 focused on HCC prognosis,39 on prediction of pathological findings,16 on prediction of the expression of molecular markers outcomes,18 had a diagnostic purpose,and 11 had multiple purposes.The mean RQS was 8±6.22,and the corresponding percentage was 24.15%±15.25%(ranging from 0.0% to 58.33%).RQS was positively correlated with journal impact factor(IF;ρ=0.36,P=2.98×10^(-5)),5-years IF(ρ=0.33,P=1.56×10^(-4)),number of patients included in the study(ρ=0.51,P<9.37×10^(-10))and number of radiomics features extracted in the study(ρ=0.59,P<4.59×10^(-13)),and time of publication(ρ=-0.23,P<0.0072).CONCLUSION Although MRI radiomics in HCC represents a promising tool to develop adequate personalized treatment as a noninvasive approach in HCC patients,our study revealed that studies in this field still lack the quality required to allow its introduction into clinical practice.展开更多
Laser spectroscopic imaging techniques have received tremendous attention in the-eld of cancer diagnosis due to their high sensitivity,high temporal resolution,and short acquisition time.However,the limited tissue pen...Laser spectroscopic imaging techniques have received tremendous attention in the-eld of cancer diagnosis due to their high sensitivity,high temporal resolution,and short acquisition time.However,the limited tissue penetration of the laser is still a challenge for the in vivo diagnosis of deep-seated lesions.Nanomaterials have been universally integrated with spectroscopic imaging techniques for deeper cancer diagnosis in vivo.The components,morphology,and sizes of nanomaterials are delicately designed,which could realize cancer diagnosis in vivo or in situ.Considering the enhanced signal emitting from the nanomaterials,we emphasized their combination with spectroscopic imaging techniques for cancer diagnosis,like the surface-enhanced Raman scattering(SERS),photoacoustic,fluorescence,and laser-induced breakdown spectroscopy(LIBS).Applications ofthe above spectroscopic techniques offer new prospectsfor cancer diagnosis.展开更多
In liver tumor surgery,the recognition of tumor margin and radical resection of microcancer focis have always been the crucial points to reduce postoperative recurrence of tumor.However,naked-eye inspection and palpat...In liver tumor surgery,the recognition of tumor margin and radical resection of microcancer focis have always been the crucial points to reduce postoperative recurrence of tumor.However,naked-eye inspection and palpation have limited effectiveness in identifying tumor boundaries,and traditional imaging techniques cannot consistently locate tumors in real time.As an intraoperative real-time navigation imaging method,NIRfluorescence imaging has been extensively studied for its simplicity,reliable safety,and superior sensitivity,and is expected to improve the accuracy of liver tumor surgery.In recent years,the research focus of NIRfluorescence has gradually shifted from the-rst near-infrared window(NIR-I,700–900 nm)to the second near-infrared window(NIR-II,1000–1700 nm).Fluorescence imaging in NIR-II reduces the scattering effect of deep tissue,providing a preferable detection depth and spatial resolution while signi-cantly eliminating liver autofluorescence background to clarify tumor margin.Developingfluorophores combined with tumor antibodies will further improve the precision offluorescence-guided surgical navigation.With the development of a bunch offluorophores with phototherapy ability,NIR-II can integrate tumor detection and treatment to explore a new therapeutic strategy for liver cancer.Here,we review the recent progress of NIR-IIfluorescence technology in liver tumor surgery and discuss its challenges and potential development direction.展开更多
文摘Objective:To introduce a new better contrast-enhanced MR angiographic metnod, named 3D time-resolved imaging of contrast kinetics (3D-TRICKS). Methods: TRICKS is a high temporal resolution (2-6 s) MR angiographic technique using a short TR(4 ms) and TE(1.5 ms), partial echo sampling, in which central part of k-space is updated more frequently than the peripheral part. TRICKS pre-contrast mask 3D images are firstly scanned, and then the bolus injecting of Gd-DTPA, 15-20 sequential 3D images are acquired. The reconstructed 3D images, subtraction of contrast 3D images with mask images, are conceptually similar to a catheter-based intra-arterial digital subtraction angiographic series (DSA). Thirty patients underwent contrast-enhanced MR angiography using 3D-TRICKS. Results: Totally 12 vertebral arteries were well displayed on TRICKS, in which 7 were normal, 1 demonstrated bilateral vertebral artery stenosis, 4 had unilateral vertebral artery stenosis and 1 was accompanied with the same lateral carotid artery bifurcation stenosis. Four cases of bilateral renal arteries were normal, 1 transplanted kidney artery showed as normal and 1 transplanted kidney artery showed stenosis. 2 cerebral arteries were normal, 1 had sagittal sinus thrombosis and 1 displayed intracranial arteriovenous malformation. 3 pulmonary arteries were normal, 1 showed pulmonary artery thrombosis and 1 revealed pulmonary sequestration's abnormal feeding artery and draining vein. One left lower limb fibrolipoma showed feeding artery. One displayed radial-ulnar artery artificial fistula stenosis. One revealed left antebrachium hemangioma. Conclusion: TRICKS can clearly delineate most body vascular system and reveal most vascular abnormality. It possesses convenience and high successful rate, which make it the first choice of displaying most vascular abnormality.
基金the National Natural Science Foundation of China(No.81971704)the National Key ResearchandDevelopment Program of China(No.2017YFA0205304)the Translational Medicine Research Fund of National Facility for Translational Medicine(Shanghai)(No.TMSK-2021-117)。
文摘Compared with the conventional first near-infrared(NIR-I,700900 nm)window,the short-wave infrared region(SWIR,900—1700nm)possesses the merits of the increasing tissue penetration depths and the suppression of scattering background,leading to great potential for in vivo imaging.Based on the limitations of the common spectral domain,and the superiority of the time-dimension,time-resolved imaging eliminates the auto-fuorescence in the biological tissue,thus supporting higher signal-to-noise ratio and sensitivities.The imaging technique is not affected by the difference in tissue composition or thickness and has the practical value of quan-titative in vivo detection.Almost all the relevant time-resolved imaging was carried out around lanthanide-doped upconversion nanomaterials,owing to the advantages of ultralong luminescence lifetime,excellent photostability,controllable morphology,easy surface modification and various strategies of regulating lifetime.Therefore,this review presents the research progress of SWIR time-resolved imaging technology based on nanomaterials doped with lanthanide ions as luminescence centers in recent years.
基金This work was supported by the National Natural Science Foundation of China (No.10704083),the Innovation Foundation of Chinese Academyof Sciences (No.KJCX1-YW-N30), and the Public Science and Technology Program of Shenzhen (No.SY200806260026A).
文摘The ultrafast dynamics through conical intersections in 2,6-dimethylpyridine has been studied by femtosecond time-resolved photoelectron imaging coupled with time-resolved mass spectroscopy. Upon absorption of 266 nm pump laser, 2,6-dimethylpyridine is excited to the S2 state with a ππ character from So state. The time evolution of the parent ion signals consists of two exponential decays. One is a fast component on a timescale of 635 fs and the other is a slow component with a timescale of 4.37 ps. Time-dependent photo- electron angular distributions and energy-resolved photoelectron spectroscopy are extracted from time-resolved photoelectron imaging and provide the evolutive information of S2 state. In brief, the ultrafast component is a population transfer from S2 to S1 through the S2/S1 conical intersections, the slow component is attributed to simultaneous IC from the S2 state and the higher vibrational levels of S1 state to So state, which involves the coupling of S2/S0 and S1/So conical intersections. Additionally, the observed ultrafast S2--+S1 transition occurs only with an 18% branching ratio.
文摘Historically,psychiatric diagnoses have been made based on patient’s reported symptoms applying the criteria from diagnostic and statistical manual of mental disorders.The utilization of neuroimaging or biomarkers to make the diagnosis and manage psychiatric disorders remains a distant goal.There have been several studies that examine brain imaging in psychiatric disorders,but more work is needed to elucidate the complexities of the human brain.In this editorial,we examine two articles by Xu et al and Stoyanov et al,that show developments in the direction of using neuroimaging to examine the brains of people with schizo-phrenia and depression.Xu et al used magnetic resonance imaging to examine the brain structure of patients with schizophrenia,in addition to examining neurotransmitter levels as biomarkers.Stoyanov et al used functional magnetic resonance imaging to look at modulation of different neural circuits by diagnostic-specific scales in patients with schizophrenia and depression.These two studies provide crucial evidence in advancing our understanding of the brain in prevalent psychiatric disorders.
基金supported by a grant from the Health Research New Zealand(HRC)22/559(to AJG and LB)。
文摘Moderate to severe perinatal hypoxic-ischemic encephalopathy occurs in~1 to 3/1000 live births in high-income countries and is associated with a significant risk of death or neurodevelopmental disability.Detailed assessment is important to help identify highrisk infants,to help families,and to support appropriate interventions.A wide range of monitoring tools is available to assess changes over time,including urine and blood biomarkers,neurological examination,and electroencephalography.At present,magnetic resonance imaging is unique as although it is expensive and not suited to monitoring the early evolution of hypoxic-ischemic encephalopathy by a week of life it can provide direct insight into the anatomical changes in the brain after hypoxic-ischemic encephalopathy and so offers strong prognostic information on the long-term outcome after hypoxic-ischemic encephalopathy.This review investigated the temporal dynamics of neonatal hypoxic-ischemic encephalopathy injuries,with a particular emphasis on exploring the correlation between the prognostic implications of magnetic resonance imaging scans in the first week of life and their relationship to long-term outcome prediction,particularly for infants treated with therapeutic hypothermia.A comprehensive literature search,from 2016 to 2024,identified 20 pertinent articles.This review highlights that while the optimal timing of magnetic resonance imaging scans is not clear,overall,it suggests that magnetic resonance imaging within the first week of life provides strong prognostic accuracy.Many challenges limit the timing consistency,particularly the need for intensive care and clinical monitoring.Conversely,although most reports examined the prognostic value of scans taken between 4 and 10 days after birth,there is evidence from small numbers of cases that,at times,brain injury may continue to evolve for weeks after birth.This suggests that in the future it will be important to explore a wider range of times after hypoxic-ischemic encephalopathy to fully understand the optimal timing for predicting long-term outcomes.
基金Supported by Natural Science Foundation of Shanghai,No.17ZR1431400National Key R and D Program of China,No.2017YFA0103902.
文摘Sotos syndrome is characterized by overgrowth features and is caused by alterations in the nuclear receptor binding SET domain protein 1 gene.Attentiondeficit/hyperactivity disorder(ADHD)is considered a neurodevelopment and psychiatric disorder in childhood.Genetic characteristics and clinical presentation could play an important role in the diagnosis of Sotos syndrome and ADHD.Magnetic resonance imaging(MRI)has been used to assess medical images in Sotos syndrome and ADHD.The images process is considered to display in MRI while wavelet fusion has been used to integrate distinct images for achieving more complete information in single image in this editorial.In the future,genetic mechanisms and artificial intelligence related to medical images could be used in the clinical diagnosis of Sotos syndrome and ADHD.
基金supported by the Research Project of the Shanghai Health Commission,No.2020YJZX0111(to CZ)the National Natural Science Foundation of China,Nos.82021002(to CZ),82272039(to CZ),82171252(to FL)+1 种基金a grant from the National Health Commission of People’s Republic of China(PRC),No.Pro20211231084249000238(to JW)Medical Innovation Research Project of Shanghai Science and Technology Commission,No.21Y11903300(to JG).
文摘Nowadays,presynaptic dopaminergic positron emission tomography,which assesses deficiencies in dopamine synthesis,storage,and transport,is widely utilized for early diagnosis and differential diagnosis of parkinsonism.This review provides a comprehensive summary of the latest developments in the application of presynaptic dopaminergic positron emission tomography imaging in disorders that manifest parkinsonism.We conducted a thorough literature search using reputable databases such as PubMed and Web of Science.Selection criteria involved identifying peer-reviewed articles published within the last 5 years,with emphasis on their relevance to clinical applications.The findings from these studies highlight that presynaptic dopaminergic positron emission tomography has demonstrated potential not only in diagnosing and differentiating various Parkinsonian conditions but also in assessing disease severity and predicting prognosis.Moreover,when employed in conjunction with other imaging modalities and advanced analytical methods,presynaptic dopaminergic positron emission tomography has been validated as a reliable in vivo biomarker.This validation extends to screening and exploring potential neuropathological mechanisms associated with dopaminergic depletion.In summary,the insights gained from interpreting these studies are crucial for enhancing the effectiveness of preclinical investigations and clinical trials,ultimately advancing toward the goals of neuroregeneration in parkinsonian disorders.
基金This work was supported by the National Basic Research Program of China (No.2013CB922200), the Ministry of Science and Technology of China (No.2012YQ12004704), and the National Natural Science Foundation of China (No.21573228).
文摘A new velocity map imaging spectrometer is constructed for molecular reaction dynamics studies using time-resolved photoelectron/ion spectroscopy method. By combining a kHz pulsed valve and an ICCD camera, this velocity map imaging spectrometer can be run at a repetition rate of 1 kHz, totally compatible with the fs Ti:Sapphire laser system, facilitating time-resolved studies in gas phase which are usually time-consuming. Time-resolved velocity map imaging study of NH3 photodissociation at 200 nm was performed and the time-resolved total kinetic energy release spectrum of H+NH~ products provides rich information about the dissociation dynamics of NH3. These results show that this new apparatus is a powerful tool for investigating the molecular reaction dynamics using time-resolved methods.
基金This work was supported by the National Natural Science Foundation of China(No.21833003 and No.21773213)the Strategic Priority Research Program of the Chinese Academy of Sciences(No.XDB17000000)Chinese Academy of Sciences(GJJSTD20190002).
文摘N-ethylpyrrole is one of ethylsubstituted derivatives of pyrrole and its excited-state decay dynamics has never been explored.In this work,we investigate ultrafast decay dynamics of N-ethylpyrrole excited to the S_(1)electronic state using a femtosecond time-resolved photoelectron imaging method.Two pump wavelengths of 241.9 and 237.7 nm are employed.At 241.9 nm,three time constants,5.0±0.7 ps,66.4±15.6 ps and 1.3±0.1 ns,are derived.For 237.7 nm,two time constants of 2.1±0.1 ps and 13.1±1.2 ps are derived.We assign all these time constants to be associated with different vibrational states in the S_(1)state.The possible decay mechanisms of different S_(1)vibrational states are briefly discussed.
基金supported by the National Natural Science Foundation of China(Nos.11104178,11274116,and 51132004)the National Special Science Research Program of China(Nos.2010CB923203 and 2011CB808105)+2 种基金the Innovation Program of Shanghai Municipal Education Commission(Nos.14YZ156,11JC1403500,and 10XD1401800)the Young Teacher Program of Shanghai University(No.shdj006)the Discipline Foundation Project of Shanghai Dianji University(No.12XKJC01)
文摘We report the formation dynamics of periodic ripples on Ga As induced by femtosecond laser pulses(800 nm, 50 fs) via a collinear time-resolved imaging technique with a temporal resolution of 1 ps and a spatial resolution of 440 nm. The onset of periodic ripples emerges in the initial tens of picoseconds in the timescale of material ejection. The periodic ripples appear after irradiation of at least two pump pulses at surface defects produced by the first pulse and the ripple positions kept stable until the formation processes complete. The formation mechanisms of laser-induced periodic ripples are also discussed.
基金supported by the National Natural Science Foundation of China(No.11704148,No.11847039,No.11534004)
文摘The ultrafast dissociation dynamics of NO2 molecules was investigated by femtosecond laser pump-probe mass spectra and ion images.The results show that the kinetic energy release of NO+ions has two components,0.05 eV and 0.25 eV,and the possible dissociation channels have been assigned.The channel resolved transient measurement of NO^+provides a method to disentangle the contribution of ultrafast dissociation pathways,and the transient curves of NO^+ions at different kinetic energy release are fitted by a biexponential function.The fast component with a decay time of 0.25 ps is generated from the evolution of Rydberg states.The slow component is generated from two competitive channels,one of the channel is absorbing one 400nm photon to the excited state A^2B2,which has a decay time of 30.0ps,and the other slow channel is absorbing three 400nm photons to valence type Rydberg states which have a decay time less than 7.2ps.The channel and time resolved experiment present the potential of sorting out the complex ultrafast dissociation dynamics of molecules.
基金Project supported by the National Natural Science Foundation of China(Nos.1332006,11272233,11202122,and 11411130150)the National Fundamental Research Program of China(973 Program)(No.2012CB720101)
文摘The relationship between the in the logarithmic law (log-law) region of bursting event and the low/high-speed streak a turbulent boundary layer is investigated. A tomographic time-resolved particle image velocimetry (TRPIV) system is used to measure the instantaneous three-dimensional-three-component (3D-3C) velocity field. The momentum thickness based Reynolds number is about 2 460. The topological information in the log-law region is obtained experimentally. It is found that the existence of the quadrupole topological structure implies a three-pair hairpin-like vortex packet, which is in connection with the low/high-speed streak. An idealized 3D topological model is then proposed to characterize the observed hairpin vortex packet and low/high-speed streak.
基金supported by National Natural Science Foundations of China(Nos.51977023 and 52077026)the Fundamental Research Funds for the Central Universities(No.DUT23YG227)。
文摘In this paper,self-designed multi-hollow needle electrodes are used as a high-voltage electrode in a packed bed dielectric barrier discharge reactor to facilitate fast gas flow through the active discharge area and achieve large-volume stable discharge.The dynamic characteristics of the plasma,the generated active species,and the energy transfer mechanisms in both positive discharge(PD)and negative discharge(ND)are investigated by using fast-exposure intensified charge coupled device(ICCD)images and time-resolved optical emission spectra.The experimental results show that the discharge intensity,number of discharge channels,and discharge volume are obviously enhanced when the multi-needle electrode is replaced by a multihollow needle electrode.During a single voltage pulse period,PD mainly develops in a streamer mode,which results in a stronger discharge current,luminous intensity,and E/N compared with the diffuse mode observed in ND.In PD,as the gap between dielectric beads changes from 0 to250μm,the discharge between the dielectric bead gap changes from a partial discharge to a standing filamentary micro-discharge,which allows the plasma to leave the local area and is conducive to the propagation of surface streamers.In ND,the discharge only appears as a diffusionlike mode between the gap of dielectric beads,regardless of whether there is a discharge gap.Moreover,the generation of excited states N_(2)^(+)(B^(2)∑_(u)^(+))and N2(C^(3)Π_(u))is mainly observed in PD,which is attributed to the higher E/N in PD than that in ND.However,the generation of the OH(A^(2)∑^(+))radical in ND is higher than in PD.It is not directly dominated by E/N,but mainly by the resonant energy transfer process between metastable N_(2)(A^(3)∑_(u)^(+))and OH(X^(2)Π).Furthermore,both PD and ND demonstrate obvious energy relaxation processes of electron-to-vibration and vibration-to-vibration,and no vibration-to-rotation energy relaxation process is observed.
基金supported by the National Natural Science Foundation of China(Nos.12174208 and 32227802)National Key Research and Development Program of China(No.2022YFC3400600)+2 种基金Guangdong Major Project of Basic and Applied Basic Research(No.2020B0301030009)Fundamental Research Funds for the Central Universities(Nos.2122021337 and 2122021405)the 111 Project(No.B23045).
文摘Microwave-induced thermoacoustic imaging(MTI)has the advantages of high resolution,high contrast,non-ionization,and non-invasive.Recently,MTI was used in the¯eld of breast cancer screening.In this paper,based on the¯nite element method(FEM)and COMSOL Multiphysics software,a three-dimensional breast cancer model suitable for exploring the MTI process is proposed to investigate the in°uence of Young's modulus(YM)of breast cancer tissue on MTI.It is found that the process of electromagnetic heating and initial pressure generation of the entire breast tissue is earlier in time than the thermal expansion process.Besides,compared with normal breast tissue,tumor tissue has a greater temperature rise,displacement,and pressure rise.In particular,YM of the tumor is related to the speed of thermal expansion.In particular,the larger the YM of the tumor is,the higher the heating and contraction frequency is,and the greater the maximum pressure is.Di®erent Young's moduli correspond to di®erent thermoacoustic signal spectra.In MTI,this study can be used to judge di®erent degrees of breast cancer based on elastic imaging.In addition,this study is helpful in exploring the possibility of microwave-induced thermoacoustic elastic imaging(MTAE).
基金support from the National Natural Science Foundation of China(Nos.62205259,62075175,61975254,62375212,62005203 and 62105254)the Open Research Fund of CAS Key Laboratory of Space Precision Measurement Technology(No.B022420004)the Fundamental Research Funds for the Central Universities(No.ZYTS23125).
文摘This study reviews the recent advances in data-driven polarimetric imaging technologies based on a wide range of practical applications.The widespread international research and activity in polarimetric imaging techniques demonstrate their broad applications and interest.Polarization information is increasingly incorporated into convolutional neural networks(CNN)as a supplemental feature of objects to improve performance in computer vision task applications.Polarimetric imaging and deep learning can extract abundant information to address various challenges.Therefore,this article briefly reviews recent developments in data-driven polarimetric imaging,including polarimetric descattering,3D imaging,reflection removal,target detection,and biomedical imaging.Furthermore,we synthetically analyze the input,datasets,and loss functions and list the existing datasets and loss functions with an evaluation of their advantages and disadvantages.We also highlight the significance of data-driven polarimetric imaging in future research and development.
文摘BACKGROUND Perineural invasion(PNI)has been used as an important pathological indicator and independent prognostic factor for patients with rectal cancer(RC).Preoperative prediction of PNI status is helpful for individualized treatment of RC.Recently,several radiomics studies have been used to predict the PNI status in RC,demonstrating a good predictive effect,but the results lacked generalizability.The preoperative prediction of PNI status is still challenging and needs further study.AIM To establish and validate an optimal radiomics model for predicting PNI status preoperatively in RC patients.METHODS This retrospective study enrolled 244 postoperative patients with pathologically confirmed RC from two independent centers.The patients underwent preoperative high-resolution magnetic resonance imaging(MRI)between May 2019 and August 2022.Quantitative radiomics features were extracted and selected from oblique axial T2-weighted imaging(T2WI)and contrast-enhanced T1WI(T1CE)sequences.The radiomics signatures were constructed using logistic regression analysis and the predictive potential of various sequences was compared(T2WI,T1CE and T2WI+T1CE fusion sequences).A clinical-radiomics(CR)model was established by combining the radiomics features and clinical risk factors.The internal and external validation groups were used to validate the proposed models.The area under the receiver operating characteristic curve(AUC),DeLong test,net reclassification improvement(NRI),integrated discrimination improvement(IDI),calibration curve,and decision curve analysis(DCA)were used to evaluate the model performance.RESULTS Among the radiomics models,the T2WI+T1CE fusion sequences model showed the best predictive performance,in the training and internal validation groups,the AUCs of the fusion sequence model were 0.839[95%confidence interval(CI):0.757-0.921]and 0.787(95%CI:0.650-0.923),which were higher than those of the T2WI and T1CE sequence models.The CR model constructed by combining clinical risk factors had the best predictive performance.In the training and internal and external validation groups,the AUCs of the CR model were 0.889(95%CI:0.824-0.954),0.889(95%CI:0.803-0.976)and 0.894(95%CI:0.814-0.974).Delong test,NRI,and IDI showed that the CR model had significant differences from other models(P<0.05).Calibration curves demonstrated good agreement,and DCA revealed significant benefits of the CR model.CONCLUSION The CR model based on preoperative MRI radiomics features and clinical risk factors can preoperatively predict the PNI status of RC noninvasively,which facilitates individualized treatment of RC patients.
基金supported by the National Natural Science Foundation of China,No.31970906(to WLei)the Natural Science Foundation of Guangdong Province,No.2020A1515011079(to WLei)+4 种基金Key Technologies R&D Program of Guangdong Province,No.2018B030332001(to GC)Science and Technology Projects of Guangzhou,No.202206060002(to GC)the Youth Science Program of the National Natural Science Foundation of China,No.32100793(to ZX)the Pearl River Innovation and Entrepreneurship Team,No.2021ZT09 Y552Yi-Liang Liu Endowment Fund from Jinan University Education Development Foundation。
文摘Over the past decade,a growing number of studies have reported transcription factor-based in situ reprogramming that can directly conve rt endogenous glial cells into functional neurons as an alternative approach for n euro regeneration in the adult mammalian central ne rvous system.Howeve r,many questions remain regarding how a terminally differentiated glial cell can transform into a delicate neuron that forms part of the intricate brain circuitry.In addition,concerns have recently been raised around the absence of astrocyte-to-neuron conversion in astrocytic lineage-tra cing mice.In this study,we employed repetitive two-photon imaging to continuously capture the in situ astrocyte-to-neuron conversion process following ecto pic expression of the neural transcription factor NeuroD1 in both prolife rating reactive astrocytes and lineage-tra ced astrocytes in the mouse cortex.Time-lapse imaging over several wee ks revealed the ste p-by-step transition from a typical astrocyte with numero us short,tapered branches to a typical neuro n with a few long neurites and dynamic growth cones that actively explored the local environment.In addition,these lineage-converting cells were able to migrate ra dially or to ngentially to relocate to suitable positions.Furthermore,two-photon Ca2+imaging and patch-clamp recordings confirmed that the newly generated neuro ns exhibited synchronous calcium signals,repetitive action potentials,and spontaneous synaptic responses,suggesting that they had made functional synaptic connections within local neural circuits.In conclusion,we directly visualized the step-by-step lineage conversion process from astrocytes to functional neurons in vivo and unambiguously demonstrated that adult mammalian brains are highly plastic with respect to their potential for neuro regeneration and neural circuit reconstruction.
基金Supported by the“Ricerca Corrente”Grant from Italian Ministry of Health,No.IRCCS SYNLAB SDN.
文摘BACKGROUND Radiomics is a promising tool that may increase the value of magnetic resonance imaging(MRI)for different tasks related to the management of patients with hepatocellular carcinoma(HCC).However,its implementation in clinical practice is still far,with many issues related to the methodological quality of radiomic studies.AIM To systematically review the current status of MRI radiomic studies concerning HCC using the Radiomics Quality Score(RQS).METHODS A systematic literature search of PubMed,Google Scholar,and Web of Science databases was performed to identify original articles focusing on the use of MRI radiomics for HCC management published between 2017 and 2023.The methodological quality of radiomic studies was assessed using the RQS tool.Spearman’s correlation(ρ)analysis was performed to explore if RQS was correlated with journal metrics and characteristics of the studies.The level of statistical significance was set at P<0.05.RESULTS One hundred and twenty-seven articles were included,of which 43 focused on HCC prognosis,39 on prediction of pathological findings,16 on prediction of the expression of molecular markers outcomes,18 had a diagnostic purpose,and 11 had multiple purposes.The mean RQS was 8±6.22,and the corresponding percentage was 24.15%±15.25%(ranging from 0.0% to 58.33%).RQS was positively correlated with journal impact factor(IF;ρ=0.36,P=2.98×10^(-5)),5-years IF(ρ=0.33,P=1.56×10^(-4)),number of patients included in the study(ρ=0.51,P<9.37×10^(-10))and number of radiomics features extracted in the study(ρ=0.59,P<4.59×10^(-13)),and time of publication(ρ=-0.23,P<0.0072).CONCLUSION Although MRI radiomics in HCC represents a promising tool to develop adequate personalized treatment as a noninvasive approach in HCC patients,our study revealed that studies in this field still lack the quality required to allow its introduction into clinical practice.
基金support from the Sichuan Science and Technology Program(2019ZDZX0036)the support from the Analytical&Testing Center of Sichuan University.
文摘Laser spectroscopic imaging techniques have received tremendous attention in the-eld of cancer diagnosis due to their high sensitivity,high temporal resolution,and short acquisition time.However,the limited tissue penetration of the laser is still a challenge for the in vivo diagnosis of deep-seated lesions.Nanomaterials have been universally integrated with spectroscopic imaging techniques for deeper cancer diagnosis in vivo.The components,morphology,and sizes of nanomaterials are delicately designed,which could realize cancer diagnosis in vivo or in situ.Considering the enhanced signal emitting from the nanomaterials,we emphasized their combination with spectroscopic imaging techniques for cancer diagnosis,like the surface-enhanced Raman scattering(SERS),photoacoustic,fluorescence,and laser-induced breakdown spectroscopy(LIBS).Applications ofthe above spectroscopic techniques offer new prospectsfor cancer diagnosis.
基金supported by the National Key R&D Program of China(No.2020YFA0710700)the National Natural Science Foundation of China(Nos.51873201 and 82172071)+2 种基金Key Research and Development Program of Anhui Province(No.202104b11020025)the Fundamental Research Funds for the Central Universities(No.YD2060002015)the CAS Youth Interdisciplinary Team(No.JCTD-2021-08).
文摘In liver tumor surgery,the recognition of tumor margin and radical resection of microcancer focis have always been the crucial points to reduce postoperative recurrence of tumor.However,naked-eye inspection and palpation have limited effectiveness in identifying tumor boundaries,and traditional imaging techniques cannot consistently locate tumors in real time.As an intraoperative real-time navigation imaging method,NIRfluorescence imaging has been extensively studied for its simplicity,reliable safety,and superior sensitivity,and is expected to improve the accuracy of liver tumor surgery.In recent years,the research focus of NIRfluorescence has gradually shifted from the-rst near-infrared window(NIR-I,700–900 nm)to the second near-infrared window(NIR-II,1000–1700 nm).Fluorescence imaging in NIR-II reduces the scattering effect of deep tissue,providing a preferable detection depth and spatial resolution while signi-cantly eliminating liver autofluorescence background to clarify tumor margin.Developingfluorophores combined with tumor antibodies will further improve the precision offluorescence-guided surgical navigation.With the development of a bunch offluorophores with phototherapy ability,NIR-II can integrate tumor detection and treatment to explore a new therapeutic strategy for liver cancer.Here,we review the recent progress of NIR-IIfluorescence technology in liver tumor surgery and discuss its challenges and potential development direction.