Time-Sensitive Network(TSN)with deterministic transmission capability is increasingly used in many emerging fields.It mainly guarantees the Quality of Service(QoS)of applications with strict requirements on time and s...Time-Sensitive Network(TSN)with deterministic transmission capability is increasingly used in many emerging fields.It mainly guarantees the Quality of Service(QoS)of applications with strict requirements on time and security.One of the core features of TSN is traffic scheduling with bounded low delay in the network.However,traffic scheduling schemes in TSN are usually synthesized offline and lack dynamism.To implement incremental scheduling of newly arrived traffic in TSN,we propose a Dynamic Response Incremental Scheduling(DR-IS)method for time-sensitive traffic and deploy it on a software-defined time-sensitive network architecture.Under the premise of meeting the traffic scheduling requirements,we adopt two modes,traffic shift and traffic exchange,to dynamically adjust the time slot injection position of the traffic in the original scheme,and determine the sending offset time of the new timesensitive traffic to minimize the global traffic transmission jitter.The evaluation results show that DRIS method can effectively control the large increase of traffic transmission jitter in incremental scheduling without affecting the transmission delay,thus realizing the dynamic incremental scheduling of time-sensitive traffic in TSN.展开更多
In the upcoming sixth-generation(6G)era,the demand for constructing a wide-area time-sensitive Internet of Things(IoT)continues to increase.As conventional cellular technologies are difficult to directly use for wide-...In the upcoming sixth-generation(6G)era,the demand for constructing a wide-area time-sensitive Internet of Things(IoT)continues to increase.As conventional cellular technologies are difficult to directly use for wide-area time-sensitive IoT,it is beneficial to use non-terrestrial infrastructures,including satellites and unmanned aerial vehicles(UAVs).Thus,we can build a non-terrestrial network(NTN)using a cell-free architecture.Driven by the time-sensitive requirements and uneven distribution of IoT devices,the NTN must be empowered using mobile edge computing(MEC)while providing oasisoriented on-demand coverage for devices.Nevertheless,communication and MEC systems are coupled with each other under the influence of a complex propagation environment in the MEC-empowered NTN,which makes it difficult to coordinate the resources.In this study,we propose a process-oriented framework to design communication and MEC systems in a time-division manner.In this framework,large-scale channel state information(CSI)is used to characterize the complex propagation environment at an affordable cost,where a nonconvex latency minimization problem is formulated.Subsequently,the approximated problem is provided,and it can be decomposed into sub-problems.These sub-problems are then solved iteratively.The simulation results demonstrated the superiority of the proposed process-oriented scheme over other algorithms,implied that the payload deployments of UAVs should be appropriately predesigned to improve the efficiency of using resources,and confirmed that it is advantageous to integrate NTN with MEC for wide-area time-sensitive IoT.展开更多
To improve the effect of destroying time-sensitive target (TST), a method of operational effectiveness evaluation is presented and some influential factors are analyzed based on the combat flow of system for destroy...To improve the effect of destroying time-sensitive target (TST), a method of operational effectiveness evaluation is presented and some influential factors are analyzed based on the combat flow of system for destroying TST. Considering the possible operation modes of the system, a waved operation mode and a continuous operation mode are put forward at first. At the same time, some relative formulas are modified. In examples, the influential factors and operation modes are analyzed based on the system effectiveness. From simulation results, some design and operation strategies of the system for destroying time sensitive targets are concluded, which benefit to the improvement of the system effectiveness.展开更多
Time-sensitive networking(TSN)is an important research area for updating the infrastructure of industrial Internet of Things.As a product of the integration of the operation technology(OT)and the information technolog...Time-sensitive networking(TSN)is an important research area for updating the infrastructure of industrial Internet of Things.As a product of the integration of the operation technology(OT)and the information technology(IT),it meets the real-time and deterministic nature of industrial control and is compatible with Ethernet to support the mixed transmission of industrial control data and Ethernet data.This paper systematically summarizes and analyzes the shortcomings of the current mixed transmission technologies of the bursty flows and the periodic flows.To conquer these shortages,we propose a predictive mixed-transmission scheme of the bursty flows and the periodic flows.The core idea is to use the predictability of timetriggered transmission of TSN to further reduce bandwidth loss of the previous mixed-transmission methods.This paper formalizes the probabilistic model of the predictive mixed transmission mechanism and proves that the proposed mecha⁃nism can effectively reduce the loss of bandwidth.Finally,based on the formalized probabilistic model,we simulate the bandwidth loss of the proposed mechanism.The results demonstrate that compared with the previous mixed-transmission method,the bandwidth loss of the pro⁃posed mechanism achieves a 79.48%reduction on average.展开更多
基于角色的协同RBC(Role-Based Collaboration)是一套研究角色及它们之间复杂关系的方法、理论和技术。在RBC中,群组角色分配GRA(Group Role Assignment)既是一个关键问题,也是一个难题。已有许多研究探讨了基于Q(Qualification)矩阵来...基于角色的协同RBC(Role-Based Collaboration)是一套研究角色及它们之间复杂关系的方法、理论和技术。在RBC中,群组角色分配GRA(Group Role Assignment)既是一个关键问题,也是一个难题。已有许多研究探讨了基于Q(Qualification)矩阵来处理GRA问题,但仅利用Q矩阵难以描述问题中的复杂约束关系。因此,将约束集(Constraint)引进E-CARGO模型,提出了带约束的EC-CARGO模型,研究了RBC、GRA、SAT(SATisfaction)和CSP(Constraint Satisfaction Problem)之间的联系,建立了RBC-GRA-SAT-CSP问题求解转换关系;提出应用EC-CARGO模型求解经典CSP约束满足问题的方法,进而描述了应用GRA求解CSP约束满足问题的通用框架。最后以N皇后问题为例,验证了通过GRA的约束指派求解CSP问题的有效性。展开更多
To study the characteristics of cargo extraction, the initial phase of airdrop process, a high fidelity and extendibility simulation model with uniform motion equations for all states during extraction is developed on...To study the characteristics of cargo extraction, the initial phase of airdrop process, a high fidelity and extendibility simulation model with uniform motion equations for all states during extraction is developed on the basis of dynamics methods and contact models between cargo and aircraft. Simulation results agree well with tests data. Cargo exit parameters, which contribute to cargo pitch after extraction, are studied. Simplified computation model of dimensionless exit time is developed and used to evaluate the relation between extraction phase and landing accuracy. Safe interval model is introduced to evaluate the safety of extraction process. Also, relations between initial parameters, including pull coefficient, aircraft pitch and CG coefficient, etc, and result parameters, including exit time, cargo safety, pitch, etc, are developed to help design of airdrop system, especially the selection of extraction parachute and cargo deployment.展开更多
Evacuated Tube Transport Technologies (ET3) offers the potential for more than an order of magnitude improvement in transportation efficiency, speed, cost, and effectiveness. An ET3 network may be optimized to susta...Evacuated Tube Transport Technologies (ET3) offers the potential for more than an order of magnitude improvement in transportation efficiency, speed, cost, and effectiveness. An ET3 network may be optimized to sustainably displace most global transportation by car, ship, truck, train, and jet aircraft. To do this, ET3 standards should adhere to certain key principals: maximum value through efficiency, reliability, and simplicity; equal consideration for passenger and cargo loads; optimum size; high speed/high frequency operation; demand oriented; random accessibility; scalability; high granularity; automated control; full speed passive switching; open standards of implementation; and maximum use of existing capacities, materials, and processes.展开更多
Fuel consumption has always been a matter of concern for ships propulsion. In this research we aim to develop computer models of several containership cargo stacking configurations and discuss an optimal configuration...Fuel consumption has always been a matter of concern for ships propulsion. In this research we aim to develop computer models of several containership cargo stacking configurations and discuss an optimal configuration at a constant front wind speed. The paper presents the simulation results by using ANSYS CFX for a 1:4 scale PostPanamax 9000 TEU containership. The ship is modelled in a cubic domain that contains unstructured mesh with details, in such a way that can demonstrate the influence of the container configuration on wind force. Also the numerical results are verified versus wind tunnel test data. An optimal stack configuration led to about 25%reduction in air resistance. It is proposed that in order to reduce the wind drag force and consequently reduce the fuel consumption and pollutant emissions, empty spaces between the cargo containers and unbalanced cargo distribution over the deck should be inhibited. Also, it is advised to make the cargo distribution on the most forward and aftward deck areas more streamlined.展开更多
In response to the development of deep-sea oil and gas resources,which require a high degree of cooperation by crude oil transportation equipment,a new type of ship known as the cargo transfer vessel(CTV)has been deve...In response to the development of deep-sea oil and gas resources,which require a high degree of cooperation by crude oil transportation equipment,a new type of ship known as the cargo transfer vessel(CTV)has been developed.To provide a theoretical reference for the design and equipment of the CTV’s dynamic positioning system,in this paper,we take the new deepwater CTVas the study object and theoretically and numerically analyze its operation,wind load,current load,wave load,and navigational resistance in a range of Brazilian sea conditions with respect to its positioning and towing modes.We confirm that our proposed method can successfully calculate the total environmental load of the CTVand that the CTV is able to operate normally under the designed sea conditions.展开更多
In this study, we optimize the loading and discharging operations of the Liquefied Natural Gas(LNG) carrier. First, we identify the required precautions for LNG carrier cargo operations. Next, we prioritize these prec...In this study, we optimize the loading and discharging operations of the Liquefied Natural Gas(LNG) carrier. First, we identify the required precautions for LNG carrier cargo operations. Next, we prioritize these precautions using the analytic hierarchy process(AHP) and experts' judgments, in order to optimize the operational loading and discharging exercises of the LNG carrier, prevent system failure and human error, and reduce the risk of marine accidents. Thus, the objective of our study is to increase the level of safety during cargo operations.展开更多
The advance of transportation technology depends on science and economics. During the 1930s, airships and airplanes competed head-to-head for the Atlantic passenger market. When World War 2 broke out, everything chang...The advance of transportation technology depends on science and economics. During the 1930s, airships and airplanes competed head-to-head for the Atlantic passenger market. When World War 2 broke out, everything changed. Over the next five years, the combined combatants built over half of a million military airplanes. By the end of the war, four-engine, high-altitude bombers and jet engines were developed. Further investment in airplane technology was stimulated by the Cold War. All this public investment was adapted to civilian passenger jet airplanes. By 1980, dedicated jet airplanes were in use as cargo carriers. Despite the growth of the cargojet market over the past three decades, rising fuel costs and environmental concerns are changing the economics of airships and airplanes again. Investment in large cargo airships is returning. Much of the technology developed for fixed-wing aircraft can be applied to cargo airships. New materials, better engines, control systems and engineering eliminate the need for large ground crews and improve airship reliability and safety. However, two fundamental design issues have yet to be resolved: structural integrity and buoyancy control. A worldwide competition is underway on three continents to develop the dominant design for a cargo airship. This paper examines the alternative design approaches and presents the status of the international competition.展开更多
After the space lab missions and extended experiments were completed,the Tianzhou 1 cargo spacecraft effectively put on its'breaks'twice,thus continuously lowering its altitude before burning-up in the atmosph...After the space lab missions and extended experiments were completed,the Tianzhou 1 cargo spacecraft effectively put on its'breaks'twice,thus continuously lowering its altitude before burning-up in the atmosphere around 6p.m.on September 22.Tianzhou 1 was China’s first cargo spacecraft developed by CASC,launched on April 20 from the Hainan Wenchang Spacecraft Launch Site.Tianzhou 1,signified the end of展开更多
基金supported by the Innovation Scientists and Technicians Troop Construction Projects of Henan Province(224000510002)。
文摘Time-Sensitive Network(TSN)with deterministic transmission capability is increasingly used in many emerging fields.It mainly guarantees the Quality of Service(QoS)of applications with strict requirements on time and security.One of the core features of TSN is traffic scheduling with bounded low delay in the network.However,traffic scheduling schemes in TSN are usually synthesized offline and lack dynamism.To implement incremental scheduling of newly arrived traffic in TSN,we propose a Dynamic Response Incremental Scheduling(DR-IS)method for time-sensitive traffic and deploy it on a software-defined time-sensitive network architecture.Under the premise of meeting the traffic scheduling requirements,we adopt two modes,traffic shift and traffic exchange,to dynamically adjust the time slot injection position of the traffic in the original scheme,and determine the sending offset time of the new timesensitive traffic to minimize the global traffic transmission jitter.The evaluation results show that DRIS method can effectively control the large increase of traffic transmission jitter in incremental scheduling without affecting the transmission delay,thus realizing the dynamic incremental scheduling of time-sensitive traffic in TSN.
基金the National Key R&D Program of China(2018YFA0701601 and 2020YFA0711301)the National Natural Science Foundation of China(61771286,61941104,and 61922049)the Tsinghua University-China Mobile Communications Group Co.,Ltd.Joint Institute.
文摘In the upcoming sixth-generation(6G)era,the demand for constructing a wide-area time-sensitive Internet of Things(IoT)continues to increase.As conventional cellular technologies are difficult to directly use for wide-area time-sensitive IoT,it is beneficial to use non-terrestrial infrastructures,including satellites and unmanned aerial vehicles(UAVs).Thus,we can build a non-terrestrial network(NTN)using a cell-free architecture.Driven by the time-sensitive requirements and uneven distribution of IoT devices,the NTN must be empowered using mobile edge computing(MEC)while providing oasisoriented on-demand coverage for devices.Nevertheless,communication and MEC systems are coupled with each other under the influence of a complex propagation environment in the MEC-empowered NTN,which makes it difficult to coordinate the resources.In this study,we propose a process-oriented framework to design communication and MEC systems in a time-division manner.In this framework,large-scale channel state information(CSI)is used to characterize the complex propagation environment at an affordable cost,where a nonconvex latency minimization problem is formulated.Subsequently,the approximated problem is provided,and it can be decomposed into sub-problems.These sub-problems are then solved iteratively.The simulation results demonstrated the superiority of the proposed process-oriented scheme over other algorithms,implied that the payload deployments of UAVs should be appropriately predesigned to improve the efficiency of using resources,and confirmed that it is advantageous to integrate NTN with MEC for wide-area time-sensitive IoT.
基金supported by the National Natural Science Foundation of China (60774064)the Aerospace Science Foundation (05D53022)the Youth for NPU Teachers Scientific and Technological Innovation Foundation (W016210)
文摘To improve the effect of destroying time-sensitive target (TST), a method of operational effectiveness evaluation is presented and some influential factors are analyzed based on the combat flow of system for destroying TST. Considering the possible operation modes of the system, a waved operation mode and a continuous operation mode are put forward at first. At the same time, some relative formulas are modified. In examples, the influential factors and operation modes are analyzed based on the system effectiveness. From simulation results, some design and operation strategies of the system for destroying time sensitive targets are concluded, which benefit to the improvement of the system effectiveness.
基金sponsored in part by the National Key Research and Development Project under Grants Nos. 2018YFB1308601 and 2017YFE0119300the National Natural Science Foundation of China under Grant No. 62002013+1 种基金the Project funded by China Postdoctoral Science Foundation Grants Nos. 2019M660439 and 2020T130049the Industry-University-Research Cooperation Fund of ZTE Corporation.
文摘Time-sensitive networking(TSN)is an important research area for updating the infrastructure of industrial Internet of Things.As a product of the integration of the operation technology(OT)and the information technology(IT),it meets the real-time and deterministic nature of industrial control and is compatible with Ethernet to support the mixed transmission of industrial control data and Ethernet data.This paper systematically summarizes and analyzes the shortcomings of the current mixed transmission technologies of the bursty flows and the periodic flows.To conquer these shortages,we propose a predictive mixed-transmission scheme of the bursty flows and the periodic flows.The core idea is to use the predictability of timetriggered transmission of TSN to further reduce bandwidth loss of the previous mixed-transmission methods.This paper formalizes the probabilistic model of the predictive mixed transmission mechanism and proves that the proposed mecha⁃nism can effectively reduce the loss of bandwidth.Finally,based on the formalized probabilistic model,we simulate the bandwidth loss of the proposed mechanism.The results demonstrate that compared with the previous mixed-transmission method,the bandwidth loss of the pro⁃posed mechanism achieves a 79.48%reduction on average.
基金Aeronautical Science Foundation of China (04E51046)
文摘To study the characteristics of cargo extraction, the initial phase of airdrop process, a high fidelity and extendibility simulation model with uniform motion equations for all states during extraction is developed on the basis of dynamics methods and contact models between cargo and aircraft. Simulation results agree well with tests data. Cargo exit parameters, which contribute to cargo pitch after extraction, are studied. Simplified computation model of dimensionless exit time is developed and used to evaluate the relation between extraction phase and landing accuracy. Safe interval model is introduced to evaluate the safety of extraction process. Also, relations between initial parameters, including pull coefficient, aircraft pitch and CG coefficient, etc, and result parameters, including exit time, cargo safety, pitch, etc, are developed to help design of airdrop system, especially the selection of extraction parachute and cargo deployment.
文摘Evacuated Tube Transport Technologies (ET3) offers the potential for more than an order of magnitude improvement in transportation efficiency, speed, cost, and effectiveness. An ET3 network may be optimized to sustainably displace most global transportation by car, ship, truck, train, and jet aircraft. To do this, ET3 standards should adhere to certain key principals: maximum value through efficiency, reliability, and simplicity; equal consideration for passenger and cargo loads; optimum size; high speed/high frequency operation; demand oriented; random accessibility; scalability; high granularity; automated control; full speed passive switching; open standards of implementation; and maximum use of existing capacities, materials, and processes.
文摘Fuel consumption has always been a matter of concern for ships propulsion. In this research we aim to develop computer models of several containership cargo stacking configurations and discuss an optimal configuration at a constant front wind speed. The paper presents the simulation results by using ANSYS CFX for a 1:4 scale PostPanamax 9000 TEU containership. The ship is modelled in a cubic domain that contains unstructured mesh with details, in such a way that can demonstrate the influence of the container configuration on wind force. Also the numerical results are verified versus wind tunnel test data. An optimal stack configuration led to about 25%reduction in air resistance. It is proposed that in order to reduce the wind drag force and consequently reduce the fuel consumption and pollutant emissions, empty spaces between the cargo containers and unbalanced cargo distribution over the deck should be inhibited. Also, it is advised to make the cargo distribution on the most forward and aftward deck areas more streamlined.
基金supported by the National Natural Science Foundation of China(Grant No.51509046)Foundation of Ministry of Industry and Information Technology High-tech Ship Scientific Research(Grant No.2016-26)
文摘In response to the development of deep-sea oil and gas resources,which require a high degree of cooperation by crude oil transportation equipment,a new type of ship known as the cargo transfer vessel(CTV)has been developed.To provide a theoretical reference for the design and equipment of the CTV’s dynamic positioning system,in this paper,we take the new deepwater CTVas the study object and theoretically and numerically analyze its operation,wind load,current load,wave load,and navigational resistance in a range of Brazilian sea conditions with respect to its positioning and towing modes.We confirm that our proposed method can successfully calculate the total environmental load of the CTVand that the CTV is able to operate normally under the designed sea conditions.
文摘In this study, we optimize the loading and discharging operations of the Liquefied Natural Gas(LNG) carrier. First, we identify the required precautions for LNG carrier cargo operations. Next, we prioritize these precautions using the analytic hierarchy process(AHP) and experts' judgments, in order to optimize the operational loading and discharging exercises of the LNG carrier, prevent system failure and human error, and reduce the risk of marine accidents. Thus, the objective of our study is to increase the level of safety during cargo operations.
文摘The advance of transportation technology depends on science and economics. During the 1930s, airships and airplanes competed head-to-head for the Atlantic passenger market. When World War 2 broke out, everything changed. Over the next five years, the combined combatants built over half of a million military airplanes. By the end of the war, four-engine, high-altitude bombers and jet engines were developed. Further investment in airplane technology was stimulated by the Cold War. All this public investment was adapted to civilian passenger jet airplanes. By 1980, dedicated jet airplanes were in use as cargo carriers. Despite the growth of the cargojet market over the past three decades, rising fuel costs and environmental concerns are changing the economics of airships and airplanes again. Investment in large cargo airships is returning. Much of the technology developed for fixed-wing aircraft can be applied to cargo airships. New materials, better engines, control systems and engineering eliminate the need for large ground crews and improve airship reliability and safety. However, two fundamental design issues have yet to be resolved: structural integrity and buoyancy control. A worldwide competition is underway on three continents to develop the dominant design for a cargo airship. This paper examines the alternative design approaches and presents the status of the international competition.
文摘After the space lab missions and extended experiments were completed,the Tianzhou 1 cargo spacecraft effectively put on its'breaks'twice,thus continuously lowering its altitude before burning-up in the atmosphere around 6p.m.on September 22.Tianzhou 1 was China’s first cargo spacecraft developed by CASC,launched on April 20 from the Hainan Wenchang Spacecraft Launch Site.Tianzhou 1,signified the end of