Optimal gliding guidance for a guided bomb unit in the vertical plane is studied based on nonlinear dynamics and kinematics.The guidance law is designed under minimum energy loss index.To avoid the complexity in solvi...Optimal gliding guidance for a guided bomb unit in the vertical plane is studied based on nonlinear dynamics and kinematics.The guidance law is designed under minimum energy loss index.To avoid the complexity in solving two-point-boundary-value problems,the steady-state solutions of the adjoint states in regular equations are suggested to be used.With these considerations,a quasi-closed,optimal gliding guidance law is obtained.The guidance law is described by the angle of attack in a simple nonlinear equation.An iterative computation method can be easily used to get the optimal angle of attack.The further simplified direct computation algorithm for the optimal angle of attack is also given.The guidance properties are compared with those of maximum lift-to-drag angle of attack control.The simulation results demonstrate that the quasi-closed,optimal gliding guidance law can improve the gliding phase terminal performance with significant increase in the altitude and much little decrease in the speed.展开更多
Aim To study the effect of aerodynamically stabilized seeker dynamics on guided bomb system analysis. Methods A thorough analysis of aerodynamically stabilized seeker dynamics was made to show that because of the mu...Aim To study the effect of aerodynamically stabilized seeker dynamics on guided bomb system analysis. Methods A thorough analysis of aerodynamically stabilized seeker dynamics was made to show that because of the much smaller time constant, its dynamic model can be greatly simplified. Results and Conclusion In guided bomb guidance/control digital simulation, with the use of the simplified seeker model, simulation time can be reduced without the loss of simulation accuracy.展开更多
文摘Optimal gliding guidance for a guided bomb unit in the vertical plane is studied based on nonlinear dynamics and kinematics.The guidance law is designed under minimum energy loss index.To avoid the complexity in solving two-point-boundary-value problems,the steady-state solutions of the adjoint states in regular equations are suggested to be used.With these considerations,a quasi-closed,optimal gliding guidance law is obtained.The guidance law is described by the angle of attack in a simple nonlinear equation.An iterative computation method can be easily used to get the optimal angle of attack.The further simplified direct computation algorithm for the optimal angle of attack is also given.The guidance properties are compared with those of maximum lift-to-drag angle of attack control.The simulation results demonstrate that the quasi-closed,optimal gliding guidance law can improve the gliding phase terminal performance with significant increase in the altitude and much little decrease in the speed.
文摘Aim To study the effect of aerodynamically stabilized seeker dynamics on guided bomb system analysis. Methods A thorough analysis of aerodynamically stabilized seeker dynamics was made to show that because of the much smaller time constant, its dynamic model can be greatly simplified. Results and Conclusion In guided bomb guidance/control digital simulation, with the use of the simplified seeker model, simulation time can be reduced without the loss of simulation accuracy.