期刊文献+
共找到33篇文章
< 1 2 >
每页显示 20 50 100
全尺度密集卷积U型网络的视网膜血管分割算法
1
作者 夏平 何志豪 +2 位作者 雷帮军 彭程 王雨蝶 《计算机工程与设计》 北大核心 2024年第3期866-873,共8页
针对视网膜图像中血管尺度跨度大、细小血管与背景高度相似导致误分割和未分割等问题,提出一种全尺度密集卷积U型网络的视网膜血管分割方法。为提取更复杂的特征信息,构建级联卷积融合密集块(cascade convolutional fusion dense blocks... 针对视网膜图像中血管尺度跨度大、细小血管与背景高度相似导致误分割和未分割等问题,提出一种全尺度密集卷积U型网络的视网膜血管分割方法。为提取更复杂的特征信息,构建级联卷积融合密集块(cascade convolutional fusion dense blocks, CCF-DB)作为U型网络的编解码器用以提取视网膜血管的特征信息;在网络最底端嵌入混合注意力级联卷积密集块(mixed attention cascaded convolutional dense block, MACC-DB),进一步提升感受野,获取更高维的语义特征信息;在模型的解码部分采用全尺度的跳跃连接,捕获不同尺度下的血管特征信息,提升模型的分割精度。实验结果表明,在DRIVE数据集上,相比于U-Net、U-Net3+、SA-Unet、FR-Unet等算法,此算法的AUC值达到了98.26%,准确率为95.82%;在CHASE-DB1数据集上,此算法的AUC值达98.84%,准确率达96.66%。采用此算法进行视网膜血管分割,分割的精度和鲁棒性均有不同程度的提升,对细小血管分割达到了优良的效果。 展开更多
关键词 医学图像分割 深度学习 视网膜血管分割 全尺度密集卷积 编解码结构 混合注意力 级联卷积
下载PDF
结合密集注意力的自适应特征融合图像去雾网络
2
作者 王燕 他雪 卢鹏屹 《计算机系统应用》 2024年第2期72-82,共11页
目前,大多数图像去雾算法忽视图像的局部细节信息,无法充分利用不同层次的特征,导致恢复的无雾图像仍存在颜色失真、对比度下降和雾霾残留现象,针对这一问题,提出结合密集注意力的自适应特征融合图像去雾网络.该网络以编码器-解码器结... 目前,大多数图像去雾算法忽视图像的局部细节信息,无法充分利用不同层次的特征,导致恢复的无雾图像仍存在颜色失真、对比度下降和雾霾残留现象,针对这一问题,提出结合密集注意力的自适应特征融合图像去雾网络.该网络以编码器-解码器结构为基本框架,中间嵌入特征增强部分与特征融合部分,通过在特征增强部分叠加由密集残差网络与CS联合注意模块构成的密集特征注意块,使网络可以关注图像的局部细节信息,同时增强特征的重复利用,有效防止梯度消失;在特征融合部分构建自适应特征融合模块融合低级与高级特征,防止因网络加深而造成浅层特征退化.实验结果表明,所提算法在合成有雾图像数据集和真实有雾图像数据集上均表现优异,在SOTS室内合成数据集上的峰值信噪比和结构相似性分别达到了35.81 dB和0.9889,在真实图像数据集O-HAZE上的峰值信噪比和结构相似性分别达到了22.75 dB和0.7788,有效解决了颜色失真、对比度下降和雾霾残留等问题. 展开更多
关键词 图像去雾 深度学习 编码器-解码器 密集连接 注意力机制 特征融合
下载PDF
基于密集残差网络的图像隐藏方案
3
作者 陈立峰 刘佳 +2 位作者 潘晓中 孙文权 董炜娜 《科学技术与工程》 北大核心 2024年第9期3719-3726,共8页
针对基于编-解码器网络的图像隐写方案生成的含密图像和消息图像质量不高的问题,提出了一种新的基于密集残差连接的编码器-解码器隐写方案,与现有的端到端图像隐写网络不同,所提方案无须对图像进行预处理,采用密集残差连接,将浅层网络... 针对基于编-解码器网络的图像隐写方案生成的含密图像和消息图像质量不高的问题,提出了一种新的基于密集残差连接的编码器-解码器隐写方案,与现有的端到端图像隐写网络不同,所提方案无须对图像进行预处理,采用密集残差连接,将浅层网络的特征输送到深层网络结构的每一层,有效地保留了特征图的细节信息,并使用通道和空间注意力模块对特征进行筛选,提高了编-解码器对图像复杂纹理区域的关注度。在LFW、PASCAL-VOC12和ImageNet数据集的实验结果表明,在保证算法安全性的前提下,所提方法能够有效提高图像质量,含密图像和载体图像的峰值信噪比(peak signal-to-noise ratio,PSNR)和结构相似性(structural similarity,SSIM)的平均值最高达到了36.2 dB和0.98。 展开更多
关键词 信息隐藏 深度学习 注意力机制 编码-解码结构 密集残差网络
下载PDF
基于时间序列对齐和TCNformer的重介精煤灰分多步预测
4
作者 王珺 王然风 +2 位作者 魏凯 韩杰 张茜 《工矿自动化》 CSCD 北大核心 2024年第5期60-66,共7页
由于在重介分选过程中各个传感器位置不同,导致重介分选主要工艺参数与灰分存在时间滞后,影响了精煤灰分结果。基于回归模型的灰分预测方法缺乏对时间序列信息的利用,无法捕捉重介生产过程随时间变化的动态特性;基于时间序列的灰分预测... 由于在重介分选过程中各个传感器位置不同,导致重介分选主要工艺参数与灰分存在时间滞后,影响了精煤灰分结果。基于回归模型的灰分预测方法缺乏对时间序列信息的利用,无法捕捉重介生产过程随时间变化的动态特性;基于时间序列的灰分预测方法未能充分考虑灰分和重介分选主要工艺参数之间的时间依赖关系。针对上述问题,提出了一种基于时间序列对齐和TCNformer的重介精煤灰分多步预测方法。通过滞后相关性分析来量化灰分与重介分选主要工艺参数之间的滞后步长,依此对重介分选主要工艺参数在时间维度上进行移动,使得灰分和重介分选主要工艺参数时间序列对齐,消除灰分和重介分选主要工艺参数之间的时间滞后。在Transformer模型的基础上,引入时间卷积网络(TCN)提取特征,并将单向编码器扩展为双向编码器,构建了TCNformer模型来实现精煤灰分多步预测。将时间序列对齐得到的与未来时刻灰分数据对应的过程变量序列作为解码器的输入,以提升模型预测精度。实验结果表明:该方法的平均绝对误差为0.1579%,均方根误差为0.2152%,平均皮尔逊相关系数为0.5051,能有效提升精煤灰分预测精度。 展开更多
关键词 重介分选 精煤灰分预测 滞后相关性 时间序列 TCNformer 双向编码器
下载PDF
基于RDE-GAN算法的多阶段壁画图像修复 被引量:1
5
作者 冉娅琴 张乾 《湖北民族大学学报(自然科学版)》 CAS 2024年第2期219-225,共7页
针对现存的壁画图像修复方法仍存在纹理细节缺失及图像输入像素尺寸不合适的问题,提出了一种多阶段密集残差和高效注意力机制的壁画图像修复(multi stage mural image restoration based on residual dense efficient-generative advers... 针对现存的壁画图像修复方法仍存在纹理细节缺失及图像输入像素尺寸不合适的问题,提出了一种多阶段密集残差和高效注意力机制的壁画图像修复(multi stage mural image restoration based on residual dense efficient-generative adversarial networks,RDE-GAN)算法。整个网络采用编码器-解码器架构,使网络具有足够大的感受野,便于充分利用图像的特征信息。首先,利用全局感知网络得到粗略的初始结果;其次,引入较小感受野的密集残差局部过渡网络;最后,利用高效细化网络增强图像的结构信息及图像语义的连贯性。将该算法分别与其他相关算法在定性定量分析上进行比较,结果表明,在[50%,60%)掩码比例中,RDE-GAN算法的峰值信噪比(peak signal-to-noise ratio,PSNR)为32.5655 dB、结构相似性指数(structural similarity index measure,SSIM)为0.9690、学习感知图像块相似度(learned perceptual image patch similarity,LPIPS)为0.0141、生成图像与真实图像越相似指标(Fréchet inception distance,FID)为11.3027,且在其他5种掩码比例中RDE-GAN算法均优于对比算法。该研究成果能用于壁画等文化遗产的保护。 展开更多
关键词 深度学习 壁画图像 编码器-解码器 局部密集残差模块 图像修复
下载PDF
基于混合注意力残差密集网络的红外与可见光图像融合
6
作者 刘培培 张宇晓 +2 位作者 袁硕智 王烁 徐湖洋 《激光杂志》 北大核心 2024年第12期106-115,共10页
针对红外与可见光图像融合算法在融合过程中细节信息特征易丢失的问题,提出了一种基于混合注意力残差密集网络的红外与可见光图像融合算法。首先编码网络对源图像进行不同尺度的下采样,得到带有丰富语义信息的特征图;然后混合注意力残... 针对红外与可见光图像融合算法在融合过程中细节信息特征易丢失的问题,提出了一种基于混合注意力残差密集网络的红外与可见光图像融合算法。首先编码网络对源图像进行不同尺度的下采样,得到带有丰富语义信息的特征图;然后混合注意力残差融合网络对编码网络提取的特征图进行融合,混合注意力机制通过通道注意力和空间注意力混洗对特征图进行聚合,并利用残差密集连接对聚合的特征图最大程度地保留图像有效信息;最后在解码网络通过上采样进行重构得到融合图像。与其他融合算法相比,在主观评价中,所提算法的融合图像在清晰度方面表现出明显的优势,尤其在处理模糊、受挡光和烟雾等复杂情况下的图像时,融合效果良好;在客观指标对比中,所提算法的融合图像在信息熵、互信息、峰值信噪比等指标均有不同程度的提升并取得最优值,分别为6.930、13.860、17.144、0.574。 展开更多
关键词 红外与可见光图像融合 自编码网络 混合注意力 残差密集网络
下载PDF
混合模糊信息粒化和时间序列密集编码器的锂离子电池剩余寿命区间预测方法
7
作者 李辉 崔方舒 +1 位作者 史元浩 王博辉 《中国测试》 CAS 北大核心 2024年第9期29-36,45,共9页
锂离子电池的剩余使用寿命(remaining useful life,RUL)是电池健康状态的关键指标,对其进行预测具有重要的现实意义。该工作将模糊信息粒化(fuzzy information granulation,FIG)技术与时间序列密集编码器模型(timeseries dense encoder,... 锂离子电池的剩余使用寿命(remaining useful life,RUL)是电池健康状态的关键指标,对其进行预测具有重要的现实意义。该工作将模糊信息粒化(fuzzy information granulation,FIG)技术与时间序列密集编码器模型(timeseries dense encoder,TiDE)相结合,提出了一种对锂离子电池的RUL进行区间预测的模型。首先将锂离子电池容量退化时间序列通过FIG技术转化为粒子序列信息,以此得到模糊信息粒子的上下界序列。其次,分别对上下界序列使用TiDE模型进行训练预测,从而得到区间预测的结果。实验结果表明,与基于支持向量回归(support vector regression,SVR)和长短期记忆网络(long short term memory network,LSTM)的区间预测模型以及不使用狐狸优化算法(fox-inspired optimization algorithm,FOA)优化的TiDE模型相比,该工作提出的基于FIG技术结合TiDE模型与FOA的区间预测方法在锂离子电池RUL预测性能上具有更高的可靠性。 展开更多
关键词 锂离子电池 剩余使用寿命 区间预测 时间序列密集编码器
下载PDF
基于多重感受野UNet的仪表图像分割方法 被引量:14
8
作者 耿磊 史瑞资 +3 位作者 刘彦北 肖志涛 吴骏 张芳 《计算机工程与设计》 北大核心 2022年第3期771-777,共7页
为解决现有深度学习图像分割算法不能有效分割指针仪表图像中密集小目标的问题,提出基于多重感受野UNet的仪表图像分割方法。将自编码器结构和空洞卷积结构结合,使多尺度浅层特征和深层语义信息融合;以多种光照强度下采集的指针仪表数... 为解决现有深度学习图像分割算法不能有效分割指针仪表图像中密集小目标的问题,提出基于多重感受野UNet的仪表图像分割方法。将自编码器结构和空洞卷积结构结合,使多尺度浅层特征和深层语义信息融合;以多种光照强度下采集的指针仪表数据训练模型,充分提升神经网络的泛化能力;并行调节空洞卷积参数,使神经网络学习到最优模型。实验结果表明,算法显著提升了指针仪表图像中密集小目标的分割效果,有效泛化于不同光照强度下采集的同种指针仪表图像,验证了该模型的有效性。 展开更多
关键词 卷积神经网络 图像分割 自编码器 多尺度感受野 密集小目标
下载PDF
一种密集相机阵列的低复杂度视频压缩方法 被引量:3
9
作者 金智鹏 郁梅 +2 位作者 蒋刚毅 刘尉悦 蒋志迪 《中国图象图形学报》 CSCD 北大核心 2006年第11期1592-1595,共4页
为了降低多视点视频压缩的复杂度,根据密集相机阵列系统与Wyner-Ziv编码的特点,提出了基于Wyner-Ziv编码的密集相机阵列低复杂度视频压缩算法。该算法首先在各相机之间相互独立地采用基于感兴趣区提取的低复杂度来进行Wyner-Ziv编码,然... 为了降低多视点视频压缩的复杂度,根据密集相机阵列系统与Wyner-Ziv编码的特点,提出了基于Wyner-Ziv编码的密集相机阵列低复杂度视频压缩算法。该算法首先在各相机之间相互独立地采用基于感兴趣区提取的低复杂度来进行Wyner-Ziv编码,然后在中心解码端利用各视点间的相关性进行联合解码。该算法是通过对DCT量化系数进行相似性判断来提取感兴趣区,以有效地避免对背景和平坦等区域进行编码,从而降低了编码复杂度。实验证明,该算法具有极低的编码复杂度特性和良好的率失真性能,编码复杂度仅为H.264帧间预测编码的1/22。 展开更多
关键词 视频压缩 密集相机阵列 Wyner—Ziv编码 低复杂度编码
下载PDF
基于注意力特征融合稠密网络的图像去雾算法 被引量:4
10
作者 孟红记 刘沛谚 胡振伟 《东北大学学报(自然科学版)》 EI CAS CSCD 北大核心 2022年第12期1717-1723,共7页
目前主流图像去雾算法输出的结果图像存在颜色失真、边缘模糊的问题.为改善上述问题,提出一种基于深度学习的图像去雾算法,所提算法由两个模块构成:注意力特征融合模块和雾霾模型参数估计模块.注意力特征融合模块用于充分提取雾霾图像... 目前主流图像去雾算法输出的结果图像存在颜色失真、边缘模糊的问题.为改善上述问题,提出一种基于深度学习的图像去雾算法,所提算法由两个模块构成:注意力特征融合模块和雾霾模型参数估计模块.注意力特征融合模块用于充分提取雾霾图像的颜色、边缘特征;基于稠密连接空洞卷积自编码器的雾霾模型参数估计模块用于估计雾霾模型的参数,改善网络退化的问题.在浓雾图像、薄雾图像数据集上的实验表明,本文提出的算法有效地实现了图像去雾,与主流的图像去雾算法相比具有更高的结构相似性(SSIM),更低的均方误差(mean-square error, MSE)和边缘误差e_(edge). 展开更多
关键词 注意力机制 特征融合 稠密连接 空洞卷积 自编码器
下载PDF
基于密集连接块U-Net的语义人脸图像修复 被引量:9
11
作者 杨文霞 王萌 张亮 《计算机应用》 CSCD 北大核心 2020年第12期3651-3657,共7页
针对人脸图像在待修复缺损面积较大时,现有方法的修复存在图像语义理解不合理、边界不连贯等视觉瑕疵的问题,提出基于密集连接块的U-Net结构的端到端图像修复模型,以实现对任意模板的语义人脸图像的修复。首先,采用生成对抗网络思想,生... 针对人脸图像在待修复缺损面积较大时,现有方法的修复存在图像语义理解不合理、边界不连贯等视觉瑕疵的问题,提出基于密集连接块的U-Net结构的端到端图像修复模型,以实现对任意模板的语义人脸图像的修复。首先,采用生成对抗网络思想,生成器采用密集连接块代替U-Net中的普通卷积模块,以捕捉图像中缺损部分的语义信息并确保前面层的特征被再利用;然后,使用跳连接以减少通过下采样而造成的信息损失,从而提取图像缺损区域的语义;最后,通过引入对抗损失、内容损失和局部总变分(TV)损失这三者的联合损失函数来训练生成器,确保了修复边界和周围真实图像的视觉一致,并通过Hinge损失来训练判别器。所提模型和GLC、DF、门控卷积(GC)在人脸数据集CelebA-HQ上进行了对比。实验结果表明,所提模型能有效提取人脸图像语义信息,修复结果具有自然过渡的边界和清晰的局部细节。相较性能第二的GC,所提模型对中心模板修复的结构相似性(SSIM)和峰值信噪比(PSNR)分别提高了5.68%和7.87%,Frechet Inception距离(FID)降低了7.86%;对随机模板修复的SSIM和PSNR分别提高了7.06%和4.80%,FID降低了6.85%。 展开更多
关键词 语义图像修复 生成对抗网络 密集连接块 损失函数 局部总变分 编码器-解码器
下载PDF
基于残差密集块和自编码网络的红外与可见光图像融合 被引量:11
12
作者 王建中 徐浩楠 +1 位作者 王洪枫 于子博 《北京理工大学学报》 EI CAS CSCD 北大核心 2021年第10期1077-1083,共7页
红外与可见光图像融合是复杂环境中获得高质量目标图像的一种有效手段,在目标检测与跟踪、图像增强、遥感、医疗等领域有广泛应用前景.为解决目前基于深度学习的红外与可见光图像融合方法中存在的网络无法充分提取特征、特征信息利用不... 红外与可见光图像融合是复杂环境中获得高质量目标图像的一种有效手段,在目标检测与跟踪、图像增强、遥感、医疗等领域有广泛应用前景.为解决目前基于深度学习的红外与可见光图像融合方法中存在的网络无法充分提取特征、特征信息利用不充分和融合图像清晰度低的问题,本文提出了一种基于残差密集块的端到端自编码图像融合网络结构,利用基于残差密集块的编码器网络将图像分解成背景特征图和细节特征图,然后将两种特征图进行融合,再通过解码器进行重构,还原出最终的融合图像.测试结果表明,本文的方法可以得到清晰度高、目标突出、轮廓明显的融合图像,在SF、AG、CC、SCD、Qabf、SSIM 6个融合质量评估指标上与目前代表性融合方法相比均有不同程度的提升,特别是在融合图像清晰度上优势明显,且对于模糊、遮挡、逆光、烟雾等复杂环境图像有较好的融合效果. 展开更多
关键词 图像融合 深度学习 自编码网络 残差密集块
下载PDF
用于红外与可见光图像融合的注意力残差密集融合网络 被引量:5
13
作者 陈广秋 温奇璋 +2 位作者 尹文卿 段锦 黄丹丹 《电子测量与仪器学报》 CSCD 北大核心 2023年第8期182-193,共12页
为了解决当前红外与可见光图像融合算法中易出现场景信息缺失、目标区域细节模糊、融合图像不自然等问题,提出一种用于红外与可见光图像融合的注意力残差密集融合网络(ARDFusion)。本文整体架构是一种自编码器网络,首先,利用存在最大池... 为了解决当前红外与可见光图像融合算法中易出现场景信息缺失、目标区域细节模糊、融合图像不自然等问题,提出一种用于红外与可见光图像融合的注意力残差密集融合网络(ARDFusion)。本文整体架构是一种自编码器网络,首先,利用存在最大池化层的编码器对源图像进行多尺度特征提取,然后,利用注意力残差密集融合网络分别对多个尺度的特征图进行融合,网络中的残差密集块可以连续存储特征并且最大程度地保留各层特征信息,注意力机制可以突出目标信息并获取更多与目标、场景有关的细节信息。最后,将融合后的特征输入到解码器中,通过上采样和卷积层对特征进行重构,得到融合图像。本文提出了一种用于红外与可见光图像融合的注意力残差密集融合网络,实验结果表明,较已有文献的其他典型融合算法,具有较好的融合效果,能够更好地保留可见光图像中的光谱特性且红外目标显著,并在主观评价和客观评价方面都取得了较好的融合性能。 展开更多
关键词 红外与可见光图像融合 自编码器网络 残差密集连接 注意力机制 光谱特性
下载PDF
基于注意力密集连接金字塔网络的新增建设用地变化检测 被引量:3
14
作者 潘建平 李鑫 +2 位作者 孙博文 胡勇 李明明 《测绘通报》 CSCD 北大核心 2022年第3期41-46,59,共7页
城市新增建设用地变化迅速频繁、场景复杂等因素导致变化检测结果出现欠分割或过分割等问题,基于此本文提出了一种融合注意力机制的密集连接金字塔网络用于城市新增建设用地变化检测。在编码阶段运用卷积注意力模型提升对变化信息的关注... 城市新增建设用地变化迅速频繁、场景复杂等因素导致变化检测结果出现欠分割或过分割等问题,基于此本文提出了一种融合注意力机制的密集连接金字塔网络用于城市新增建设用地变化检测。在编码阶段运用卷积注意力模型提升对变化信息的关注度,突出重要特征;采用密集连接空洞卷积空间金字塔池化模块实现多尺度特征的提取与融合,提高特征的利用率与传播效率;在解码阶段通过对提取的特征图进行上采样还原图像的空间尺度特征。试验结果表明,该方法有效改善了欠分割与过分割问题,变化检测效果更好。 展开更多
关键词 注意力机制 密集连接金字塔 编码解码 新增建设用地 变化检测
下载PDF
多层次编码—解码网络遥感图像建筑物分割 被引量:6
15
作者 何青 孟洋洋 李华智 《计算机应用研究》 CSCD 北大核心 2021年第8期2510-2514,共5页
为提高高分辨率遥感影像建筑物边缘提取精度和高分辨率特征利用率,提出了一种基于残差分组卷积的高分辨率遥感影像建筑物提取方法。利用多层次编码—解码结构提取影像中建筑物不同尺度特征,同层次特征之间引入密集连接保证高分辨率特征... 为提高高分辨率遥感影像建筑物边缘提取精度和高分辨率特征利用率,提出了一种基于残差分组卷积的高分辨率遥感影像建筑物提取方法。利用多层次编码—解码结构提取影像中建筑物不同尺度特征,同层次特征之间引入密集连接保证高分辨率特征的有效性,相邻层次特征之间引入交换单元增加不同深度的上下文信息交互。使用武汉大学建筑物数据集对模型进行训练及评估,与现有的全卷积神经网络SegNet、UNet和UNet++相比,评价指标recall、IoU、F 1等高出2%以上。实验结果表明该网络在对建筑物边缘精准提取方面具有很好的效果。 展开更多
关键词 高分辨率遥感影像 残差分组卷积 建筑物提取 编码—解码结构 密集连接
下载PDF
量子通信及发展前景 被引量:1
16
作者 杨宇行 《郧阳师范高等专科学校学报》 2006年第6期62-64,共3页
量子通信是经典通信和量子力学相结合的一门新兴交叉学科.综述量子通信领域的研究进展,介绍人们所熟知的量子隐形传态、密集编码和量子密码学,对量子通信的发展前景进行了探讨.
关键词 量子通信 量子隐形传态 量子密集编码 量子密码
下载PDF
Dense-1D-U-Net:用于自参考光谱干涉飞秒脉冲相位测量 被引量:2
17
作者 况琪 申雄 +2 位作者 徐艺林 白丽华 刘军 《中国激光》 EI CAS CSCD 北大核心 2022年第9期39-51,共13页
超快激光脉冲形状宽度测量的核心是光谱相位的精确测量。本文提出了一种结合深度学习的自参考光谱干涉(SRSI)方法,并用该方法进行了飞秒脉冲相位的测量。该方法基于针对一维信号的Dense-1D-U-Net神经网络,采用经典的编码-解码网络结构... 超快激光脉冲形状宽度测量的核心是光谱相位的精确测量。本文提出了一种结合深度学习的自参考光谱干涉(SRSI)方法,并用该方法进行了飞秒脉冲相位的测量。该方法基于针对一维信号的Dense-1D-U-Net神经网络,采用经典的编码-解码网络结构并加入稠密连接和跳跃连接来提高网络的性能。结合SRSI法的特点,本文设计出结合了稠密连接块的Dense-1D-U-Net神经网络。基于大量接近真实光谱相位的模拟光谱相位数据可以发现,基于Dense-1D-U-Net的SRSI算法的计算结果的均方根误差相比传统SRSI算法至少降低一个数量级。与有无稠密连接、跳跃连接的对照组神经网络进行对比,分析了Dense-1D-U-Net的优势。最后用实验测量数据验证了使用模拟数据训练的Dense-1D-U-Net具有计算实验数据的能力。Dense-1D-U-Net神经网络未来可以拓展应用到超快光谱等其他一维信息研究领域。 展开更多
关键词 测量 深度学习 编码-解码 自参考光谱干涉 神经网络 稠密连接
原文传递
基于注意力机制和可变形卷积的路面裂缝检测 被引量:3
18
作者 隆涛 董安国 刘来君 《计算机科学》 CSCD 北大核心 2023年第S01期392-397,共6页
针对较复杂背景下路面裂缝检测问题,由于基于深度学习的图像分割算法检测效果不甚理想,以及裂缝图像自身像素类别不平衡,提出了一种基于注意力机制和可变形卷积的路面裂缝检测网络,该网络基于编码-解码结构进行构建。为了解决较为复杂... 针对较复杂背景下路面裂缝检测问题,由于基于深度学习的图像分割算法检测效果不甚理想,以及裂缝图像自身像素类别不平衡,提出了一种基于注意力机制和可变形卷积的路面裂缝检测网络,该网络基于编码-解码结构进行构建。为了解决较为复杂背景裂缝检测困难的问题,首先,由可变形卷积提升网络对不同形状裂缝线性特征的学习能力;其次,使用密集连接机制强化特征信息;然后,在解码阶段采用转置卷积和桥接方式与编码阶段特征逐步融合,并结合多级特征融合的思想,提高网络的检测精度;最后,引入注意力模块(SimAM),在不增加网络参数的前提下,更加关注目标特征的提取,抑制背景特征。在两个公开裂缝数据集上进行实验来验证该算法的有效性,实验结果表明,该算法的各项性能评价指标均优于对比算法,BCrack数据集的平均像素精度、平均交并比分别达到92.12%和84.79%,CFD数据集的平均像素精度、平均交并比分别达到91.02%和74.75%,在复杂背景裂缝检测下表现良好,可应用于路面维修工程。 展开更多
关键词 裂缝检测 编码-解码结构 可变形卷积 密集连接机制 注意力模块
下载PDF
基于卷积自编码与密集时间卷积网络的回转支承退化趋势预测 被引量:3
19
作者 张典震 陈捷 +1 位作者 王华 杨启帆 《振动与冲击》 EI CSCD 北大核心 2021年第23期9-16,共8页
为了对反映回转支承性能退化状况的健康指标进行准确预测,提出了一种基于改进时间卷积网络(temporal convolution network,TCN)的退化趋势预测模型——密集时间卷积网络(densely temporal convolution network,DTCN)。该模型借鉴Dense-... 为了对反映回转支承性能退化状况的健康指标进行准确预测,提出了一种基于改进时间卷积网络(temporal convolution network,TCN)的退化趋势预测模型——密集时间卷积网络(densely temporal convolution network,DTCN)。该模型借鉴Dense-Net网络中的Dense-block模块对网络结构进行改进,以解决时间卷积网络在训练中损失函数下降缓慢,以及网络不易收敛、收敛效果差的问题;使用回转支承全寿命试验数据,借助卷积自编码网络(convolutional auto-encoders,CAE)与隐马尔可夫模型(hidden Markov model,HMM)建立健康指标,验证该改进算法的有效性;将DTCN与其他序列预测模型如长短时记忆网络(long short-term memory,LSTM)、门控循环单元网络(gated recurrent unit,GRU)等对比。结果表明,该模型在预测效果上具有优越性,能够更准确地预测健康指标的变化情况,可用于回转支承的退化趋势预测任务。 展开更多
关键词 回转支承 密集时间卷积网络(DTCN) 卷积自编码网络(CAE) 退化趋势预测
下载PDF
基于k密集近邻算法的局部Fisher向量编码方法 被引量:2
20
作者 冀治航 胡小鹏 +2 位作者 杨博 田云云 王凡 《大连理工大学学报》 EI CAS CSCD 北大核心 2020年第4期411-419,共9页
在基于视觉词包模型的图像分类方法中,Fisher向量编码是常用的图像表示方法之一.该方法利用每一个特征关于所有高斯子模型似然函数的梯度信息来构建图像表达.而在编码过程中,每一个特征都会被投影到所有的高斯子模型上并进行编码,同时... 在基于视觉词包模型的图像分类方法中,Fisher向量编码是常用的图像表示方法之一.该方法利用每一个特征关于所有高斯子模型似然函数的梯度信息来构建图像表达.而在编码过程中,每一个特征都会被投影到所有的高斯子模型上并进行编码,同时子模型之间的内在差异也未被考虑,这些不足削弱了Fisher向量的表达能力.为此,提出一种基于k密集近邻算法的局部Fisher向量编码方法.在编码过程中该方法引入局部性约束原则,并利用图像特征空间中高斯子模型间的拓扑结构差异.在多个数据集上进行测试,结果表明改进方法能够有效提升分类的准确率. 展开更多
关键词 视觉词包模型 图像分类 Fisher向量编码 k密集近邻算法
下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部