期刊文献+
共找到1,635篇文章
< 1 2 82 >
每页显示 20 50 100
SRMD:Sparse Random Mode Decomposition
1
作者 Nicholas Richardson Hayden Schaeffer Giang Tran 《Communications on Applied Mathematics and Computation》 EI 2024年第2期879-906,共28页
Signal decomposition and multiscale signal analysis provide many useful tools for timefrequency analysis.We proposed a random feature method for analyzing time-series data by constructing a sparse approximation to the... Signal decomposition and multiscale signal analysis provide many useful tools for timefrequency analysis.We proposed a random feature method for analyzing time-series data by constructing a sparse approximation to the spectrogram.The randomization is both in the time window locations and the frequency sampling,which lowers the overall sampling and computational cost.The sparsification of the spectrogram leads to a sharp separation between time-frequency clusters which makes it easier to identify intrinsic modes,and thus leads to a new data-driven mode decomposition.The applications include signal representation,outlier removal,and mode decomposition.On benchmark tests,we show that our approach outperforms other state-of-the-art decomposition methods. 展开更多
关键词 Sparse random features Signal decomposition Short-time Fourier transform
下载PDF
Mapping winter wheat using phenological feature of peak before winter on the North China Plain based on time-series MODIS data 被引量:17
2
作者 TAO Jian-bin WU Wen-bin +2 位作者 ZHOU Yong WANG Yu JIANG Yan 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2017年第2期348-359,共12页
By employing the unique phenological feature of winter wheat extracted from peak before winter (PBW) and the advantages of moderate resolution imaging spectroradiometer (MODIS) data with high temporal resolution a... By employing the unique phenological feature of winter wheat extracted from peak before winter (PBW) and the advantages of moderate resolution imaging spectroradiometer (MODIS) data with high temporal resolution and intermediate spatial resolution, a remote sensing-based model for mapping winter wheat on the North China Plain was built through integration with Landsat images and land-use data. First, a phenological window, PBW was drawn from time-series MODIS data. Next, feature extraction was performed for the PBW to reduce feature dimension and enhance its information. Finally, a regression model was built to model the relationship of the phenological feature and the sample data. The amount of information of the PBW was evaluated and compared with that of the main peak (MP). The relative precision of the mapping reached up to 92% in comparison to the Landsat sample data, and ranged between 87 and 96% in comparison to the statistical data. These results were sufficient to satisfy the accuracy requirements for winter wheat mapping at a large scale. Moreover, the proposed method has the ability to obtain the distribution information for winter wheat in an earlier period than previous studies. This study could throw light on the monitoring of winter wheat in China by using unique phenological feature of winter wheat. 展开更多
关键词 time-series MODIS data phenological feature peak before wintering winter wheat mapping
下载PDF
A fault feature extraction method of gearbox based on compound dictionary noise reduction and optimized Fourier decomposition 被引量:1
3
作者 Mao Yifan Xu Feiyun 《Journal of Southeast University(English Edition)》 EI CAS 2021年第1期22-32,共11页
Aimed at the problem that Fourier decomposition method(FDM)is sensitive to noise and existing mode mixing cannot accurately extract gearbox fault features,a gear fault feature extraction method combining compound dict... Aimed at the problem that Fourier decomposition method(FDM)is sensitive to noise and existing mode mixing cannot accurately extract gearbox fault features,a gear fault feature extraction method combining compound dictionary noise reduction and optimized FDM(OFDM)is proposed.Firstly,the characteristics of the gear signals are used to construct a compound dictionary,and the orthogonal matching pursuit algorithm(OMP)is combined to reduce the noise of the vibration signal.Secondly,in order to overcome the mode mixing phenomenon occuring during the decomposition of FDM,a method of frequency band division based on the extremum of the spectrum is proposed to optimize the decomposition quality.Then,the OFDM is used to decompose the signal into several analytic Fourier intrinsic band functions(AFIBFs).Finally,the AFIBF with the largest correlation coefficient is selected for Hilbert envelope spectrum analysis.The fault feature frequencies of the vibration signal can be accurately extracted.The proposed method is validated through analyzing the gearbox fault simulation signal and the real vibration signals collected from an experimental gearbox. 展开更多
关键词 Fourier decomposition compound dictionary mode mixing gearbox fault feature extraction
下载PDF
A bearing fault feature extraction method based on cepstrum pre-whitening and a quantitative law of symplectic geometry mode decomposition 被引量:1
4
作者 Chen Yiya Jia Minping Yan Xiaoan 《Journal of Southeast University(English Edition)》 EI CAS 2021年第1期33-41,共9页
In order to extract the fault feature of the bearing effectively and prevent the impact components caused by bearing damage being interfered with by discrete frequency components and background noise,a method of fault... In order to extract the fault feature of the bearing effectively and prevent the impact components caused by bearing damage being interfered with by discrete frequency components and background noise,a method of fault feature extraction based on cepstrum pre-whitening(CPW)and a quantitative law of symplectic geometry mode decomposition(SGMD)is proposed.First,CPW is performed on the original signal to enhance the impact feature of bearing fault and remove the periodic frequency components from complex vibration signals.The pre-whitening signal contains only background noise and non-stationary shock caused by damage.Secondly,a quantitative law that the number of effective eigenvalues of the Hamilton matrix is twice the number of frequency components in the signal during SGMD is found,and the quantitative law is verified by simulation and theoretical derivation.Finally,the trajectory matrix of the pre-whitening signal is constructed and SGMD is performed.According to the quantitative law,the corresponding feature vector is selected to reconstruct the signal.The Hilbert envelope spectrum analysis is performed to extract fault features.Simulation analysis and application examples prove that the proposed method can clearly extract the fault feature of bearings. 展开更多
关键词 cepstrum pre-whitening symplectic geometry mode decomposition EIGENVALUE quantitative law feature extraction
下载PDF
Feature Layer Fusion of Linear Features and Empirical Mode Decomposition of Human EMG Signal
5
作者 Jun-Yao Wang Yue-Hong Dai Xia-Xi Si 《Journal of Electronic Science and Technology》 CAS CSCD 2022年第3期257-269,共13页
To explore the influence of the fusion of different features on recognition,this paper took the electromyography(EMG)signals of rectus femoris under different motions(walk,step,ramp,squat,and sitting)as samples,linear... To explore the influence of the fusion of different features on recognition,this paper took the electromyography(EMG)signals of rectus femoris under different motions(walk,step,ramp,squat,and sitting)as samples,linear features(time-domain features(variance(VAR)and root mean square(RMS)),frequency-domain features(mean frequency(MF)and mean power frequency(MPF)),and nonlinear features(empirical mode decomposition(EMD))of the samples were extracted.Two feature fusion algorithms,the series splicing method and complex vector method,were designed,which were verified by a double hidden layer(BP)error back propagation neural network.Results show that with the increase of the types and complexity of feature fusions,the recognition rate of the EMG signal to actions is gradually improved.When the EMG signal is used in the series splicing method,the recognition rate of time-domain+frequency-domain+empirical mode decomposition(TD+FD+EMD)splicing is the highest,and the average recognition rate is 92.32%.And this rate is raised to 96.1%by using the complex vector method,and the variance of the BP system is also reduced. 展开更多
关键词 Complex vector method electromyography(EMG)signal empirical mode decomposition feature layer fusion series splicing method
下载PDF
Arrhythmia Prediction on Optimal Features Obtained from the ECG as Images
6
作者 Fuad A.M.Al-Yarimi 《Computer Systems Science & Engineering》 SCIE EI 2023年第1期129-142,共14页
A critical component of dealing with heart disease is real-time identifi-cation,which triggers rapid action.The main challenge of real-time identification is illustrated here by the rare occurrence of cardiac arrhythm... A critical component of dealing with heart disease is real-time identifi-cation,which triggers rapid action.The main challenge of real-time identification is illustrated here by the rare occurrence of cardiac arrhythmias.Recent contribu-tions to cardiac arrhythmia prediction using supervised learning approaches gen-erally involve the use of demographic features(electronic health records),signal features(electrocardiogram features as signals),and temporal features.Since the signal of the electrical activity of the heartbeat is very sensitive to differences between high and low heartbeats,it is possible to detect some of the irregularities in the early stages of arrhythmia.This paper describes the training of supervised learning using features obtained from electrocardiogram(ECG)image to correct the limitations of arrhythmia prediction by using demographic and electrocardio-graphic signal features.An experimental study demonstrates the usefulness of the proposed Arrhythmia Prediction by Supervised Learning(APSL)method,whose features are obtained from the image formats of the electrocardiograms used as input. 展开更多
关键词 ECG records ELECTROCARDIOGRAM morphological features(MF) empirical mode decomposition algorithm HOS
下载PDF
APPLICATION OF IMPROVED EMD IN VIBRATION SIGNAL FEATURE EXTRACTION OF VEHICLE
7
作者 辛江慧 安木金 +1 位作者 张雨 任成龙 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2012年第2期193-198,共6页
In order to truly obtain the feature extraction of vibration signals under the strong background noise, the analysis and improvement of empirical mode decomposition (EMD) is carried on. After that, the improved EMD ... In order to truly obtain the feature extraction of vibration signals under the strong background noise, the analysis and improvement of empirical mode decomposition (EMD) is carried on. After that, the improved EMD is applied to the feature extraction of vehicle vibration signals. First, the multi-autocorrelation method is adopted in each input signal,so the noise is reduced effectively. Then, EMD is used to deal with these signals,and the intrinsic mode functions (IMFs) are obtained. Finally, for obtaining the feature information of these signals, the Hilbert transformation and the spectrum analysis are performed in some IMFs. Theoretical analysis and ex- periment verify the effectiveness of the method, which are valuable reference for the same engineering problems. 展开更多
关键词 empirical mode decomposition (EMD) vehicle vibration signal multi-autocorrelation feature ex- traction
下载PDF
Fault Diagnosis Model Based on Feature Compression with Orthogonal Locality Preserving Projection 被引量:14
8
作者 TANG Baoping LI Feng QIN Yi 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2011年第5期891-898,共8页
Based on feature compression with orthogonal locality preserving projection(OLPP),a novel fault diagnosis model is proposed in this paper to achieve automation and high-precision of fault diagnosis of rotating machi... Based on feature compression with orthogonal locality preserving projection(OLPP),a novel fault diagnosis model is proposed in this paper to achieve automation and high-precision of fault diagnosis of rotating machinery.With this model,the original vibration signals of training and test samples are first decomposed through the empirical mode decomposition(EMD),and Shannon entropy is constructed to achieve high-dimensional eigenvectors.In order to replace the traditional feature extraction way which does the selection manually,OLPP is introduced to automatically compress the high-dimensional eigenvectors of training and test samples into the low-dimensional eigenvectors which have better discrimination.After that,the low-dimensional eigenvectors of training samples are input into Morlet wavelet support vector machine(MWSVM) and a trained MWSVM is obtained.Finally,the low-dimensional eigenvectors of test samples are input into the trained MWSVM to carry out fault diagnosis.To evaluate our proposed model,the experiment of fault diagnosis of deep groove ball bearings is made,and the experiment results indicate that the recognition accuracy rate of the proposed diagnosis model for outer race crack、inner race crack and ball crack is more than 90%.Compared to the existing approaches,the proposed diagnosis model combines the strengths of EMD in fault feature extraction,OLPP in feature compression and MWSVM in pattern recognition,and realizes the automation and high-precision of fault diagnosis. 展开更多
关键词 orthogonal locality preserving projection(OLPP) manifold learning feature compression Morlet wavelet support vector machine(MWSVM) empirical mode decomposition(EMD) fault diagnosis
下载PDF
Direct linear discriminant analysis based on column pivoting QR decomposition and economic SVD
9
作者 胡长晖 路小波 +1 位作者 杜一君 陈伍军 《Journal of Southeast University(English Edition)》 EI CAS 2013年第4期395-399,共5页
A direct linear discriminant analysis algorithm based on economic singular value decomposition (DLDA/ESVD) is proposed to address the computationally complex problem of the conventional DLDA algorithm, which directl... A direct linear discriminant analysis algorithm based on economic singular value decomposition (DLDA/ESVD) is proposed to address the computationally complex problem of the conventional DLDA algorithm, which directly uses ESVD to reduce dimension and extract eigenvectors corresponding to nonzero eigenvalues. Then a DLDA algorithm based on column pivoting orthogonal triangular (QR) decomposition and ESVD (DLDA/QR-ESVD) is proposed to improve the performance of the DLDA/ESVD algorithm by processing a high-dimensional low rank matrix, which uses column pivoting QR decomposition to reduce dimension and ESVD to extract eigenvectors corresponding to nonzero eigenvalues. The experimental results on ORL, FERET and YALE face databases show that the proposed two algorithms can achieve almost the same performance and outperform the conventional DLDA algorithm in terms of computational complexity and training time. In addition, the experimental results on random data matrices show that the DLDA/QR-ESVD algorithm achieves better performance than the DLDA/ESVD algorithm by processing high-dimensional low rank matrices. 展开更多
关键词 direct linear discriminant analysis column pivoting orthogonal triangular decomposition economic singular value decomposition dimension reduction feature extraction
下载PDF
SVD-TLS extending Prony algorithm for extracting UWB radar target feature 被引量:4
10
作者 Liu Donghong Hu Wenlong Chen Zhijie 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2008年第2期286-291,共6页
A new method, SVD-TLS extending Prony algorithm, is introduced for extracting UWB radar target features. The method is a modified classical Prony method based on singular value decomposition and total least squares th... A new method, SVD-TLS extending Prony algorithm, is introduced for extracting UWB radar target features. The method is a modified classical Prony method based on singular value decomposition and total least squares that can improve robust for spectrum estimation. Simulation results show that poles and residuum of target echo can be extracted effectively using this method, and at the same time, random noises can be restrained to some degree. It is applicable for target feature extraction such as UWB radar or other high resolution range radars. 展开更多
关键词 UWB radar Prony algorithm radar target feature singular value decomposition.
下载PDF
Wavelet matrix transform for time-series similarity measurement 被引量:2
11
作者 胡志坤 徐飞 +1 位作者 桂卫华 阳春华 《Journal of Central South University》 SCIE EI CAS 2009年第5期802-806,共5页
A time-series similarity measurement method based on wavelet and matrix transform was proposed,and its anti-noise ability,sensitivity and accuracy were discussed. The time-series sequences were compressed into wavelet... A time-series similarity measurement method based on wavelet and matrix transform was proposed,and its anti-noise ability,sensitivity and accuracy were discussed. The time-series sequences were compressed into wavelet subspace,and sample feature vector and orthogonal basics of sample time-series sequences were obtained by K-L transform. Then the inner product transform was carried out to project analyzed time-series sequence into orthogonal basics to gain analyzed feature vectors. The similarity was calculated between sample feature vector and analyzed feature vector by the Euclid distance. Taking fault wave of power electronic devices for example,the experimental results show that the proposed method has low dimension of feature vector,the anti-noise ability of proposed method is 30 times as large as that of plain wavelet method,the sensitivity of proposed method is 1/3 as large as that of plain wavelet method,and the accuracy of proposed method is higher than that of the wavelet singular value decomposition method. The proposed method can be applied in similarity matching and indexing for lager time series databases. 展开更多
关键词 wavelet transform singular value decomposition inner product transform time-series similarity
下载PDF
A novel signal feature extraction technology based on empirical wavelet transform and reverse dispersion entropy 被引量:3
12
作者 Yu-xing Li Shang-bin Jiao Xiang Gao 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2021年第5期1625-1635,共11页
Feature extraction is an important part of signal processing,which is significant for signal detection,classification,and recognition.The nonlinear dynamic analysis method can extract the nonlinear characteristics of ... Feature extraction is an important part of signal processing,which is significant for signal detection,classification,and recognition.The nonlinear dynamic analysis method can extract the nonlinear characteristics of signals and is widely used in different fields.Reverse dispersion entropy(RDE)proposed by us recently,as a nonlinear dynamic analysis method,has the advantages of fast computing speed and strong anti-noise ability,which is more suitable for measuring the complexity of signal than traditional permutation entropy(PE)and dispersion entropy(DE).Empirical wavelet transform(EWT),based on the theory of wavelet analysis,can decompose a complex non-stationary signal into a number of empirical wavelet functions(EWFs)with compact support set spectrum,which has better decomposition performance than empirical mode decomposition(EMD)and its improved algorithms.Considering the advantages of RDE and EWT,on the one hand,we introduce EWT into the field of underwater acoustic signal processing and fault diagnosis to improve the signal decomposition accuracy;on the other hand,we use RDE as the features of EWFs to improve the signal separability and stability.Finally,we propose a novel signal feature extraction technology based on EWT and RDE in this paper.Experimental results show that the proposed feature extraction technology can effectively extract the complexity features of actual signals.Moreover,it also has higher distinguishing ability for different types of signals than five latest feature extraction technologies. 展开更多
关键词 feature extraction Empirical mode decomposition Empirical wavelet transform Permutation entropy Reverse dispersion entropy
下载PDF
A novel feature extraction method for ship-radiated noise 被引量:4
13
作者 Hong Yang Lu-lu Li +1 位作者 Guo-hui Li Qian-ru Guan 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2022年第4期604-617,共14页
To improve the feature extraction of ship-radiated noise in a complex ocean environment,a novel feature extraction method for ship-radiated noise based on complete ensemble empirical mode decomposition with adaptive s... To improve the feature extraction of ship-radiated noise in a complex ocean environment,a novel feature extraction method for ship-radiated noise based on complete ensemble empirical mode decomposition with adaptive selective noise(CEEMDASN) and refined composite multiscale fluctuation-based dispersion entropy(RCMFDE) is proposed.CEEMDASN is proposed in this paper which takes into account the high frequency intermittent components when decomposing the signal.In addition,RCMFDE is also proposed in this paper which refines the preprocessing process of the original signal based on composite multi-scale theory.Firstly,the original signal is decomposed into several intrinsic mode functions(IMFs)by CEEMDASN.Energy distribution ratio(EDR) and average energy distribution ratio(AEDR) of all IMF components are calculated.Then,the IMF with the minimum difference between EDR and AEDR(MEDR)is selected as characteristic IMF.The RCMFDE of characteristic IMF is estimated as the feature vectors of ship-radiated noise.Finally,these feature vectors are sent to self-organizing map(SOM) for classifying and identifying.The proposed method is applied to the feature extraction of ship-radiated noise.The result shows its effectiveness and universality. 展开更多
关键词 Complete ensemble empirical mode decomposition with adaptive noise Ship-radiated noise feature extraction Classification and recognition
下载PDF
Person-independent expression recognition based on person-similarity weighted expression feature 被引量:1
14
作者 Huachun Tan Yujin Zhang +2 位作者 Hao Chen Yanan Zhao Wuhong Wang 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2010年第1期118-126,共9页
A new method to extract person-independent expression feature based on higher-order singular value decomposition (HOSVD) is proposed for facial expression recognition. Based on the assumption that similar persons ha... A new method to extract person-independent expression feature based on higher-order singular value decomposition (HOSVD) is proposed for facial expression recognition. Based on the assumption that similar persons have similar facial expression appearance and shape, the person-similarity weighted expression feature is proposed to estimate the expression feature of test persons. As a result, the estimated expression feature can reduce the influence of individuals caused by insufficient training data, and hence become less person-dependent. The proposed method is tested on Cohn-Kanade facial expression database and Japanese female facial expression (JAFFE) database. Person-independent experimental results show the superiority of the proposed method over the existing methods. 展开更多
关键词 facial expression recognition person-independent ex-pression feature higher-order singular value decomposition feature estimation.
下载PDF
A Hybrid Neural Network Model for Marine Dissolved Oxygen Concentrations Time-Series Forecasting Based on Multi-Factor Analysis and a Multi-Model Ensemble 被引量:2
15
作者 Hui Liu Rui Yang +1 位作者 Zhu Duan Haiping Wu 《Engineering》 SCIE EI 2021年第12期1751-1765,共15页
Dissolved oxygen(DO)is an important indicator of aquaculture,and its accurate forecasting can effectively improve the quality of aquatic products.In this paper,a new DO hybrid forecasting model is proposed that includ... Dissolved oxygen(DO)is an important indicator of aquaculture,and its accurate forecasting can effectively improve the quality of aquatic products.In this paper,a new DO hybrid forecasting model is proposed that includes three stages:multi-factor analysis,adaptive decomposition,and an optimizationbased ensemble.First,considering the complex factors affecting DO,the grey relational(GR)degree method is used to screen out the environmental factors most closely related to DO.The consideration of multiple factors makes model fusion more effective.Second,the series of DO,water temperature,salinity,and oxygen saturation are decomposed adaptively into sub-series by means of the empirical wavelet transform(EWT)method.Then,five benchmark models are utilized to forecast the sub-series of EWT decomposition.The ensemble weights of these five sub-forecasting models are calculated by particle swarm optimization and gravitational search algorithm(PSOGSA).Finally,a multi-factor ensemble model for DO is obtained by weighted allocation.The performance of the proposed model is verified by timeseries data collected by the pacific islands ocean observing system(PacIOOS)from the WQB04 station at Hilo.The evaluation indicators involved in the experiment include the Nash–Sutcliffe efficiency(NSE),Kling–Gupta efficiency(KGE),mean absolute percent error(MAPE),standard deviation of error(SDE),and coefficient of determination(R^(2)).Example analysis demonstrates that:①The proposed model can obtain excellent DO forecasting results;②the proposed model is superior to other comparison models;and③the forecasting model can be used to analyze the trend of DO and enable managers to make better management decisions. 展开更多
关键词 Dissolved oxygen concentrations forecasting time-series multi-step forecasting Multi-factor analysis Empirical wavelet transform decomposition Multi-model optimization ensemble
下载PDF
Vibration-based feature extraction of determining dynamic characteristic for engine block low vibration design 被引量:2
16
作者 杜宪峰 李志军 +3 位作者 毕凤荣 张俊红 王霞 邵康 《Journal of Central South University》 SCIE EI CAS 2012年第8期2238-2246,共9页
In order to maintain vibration performances within the limits of the design, a vibration-based feature extraction method for dynamic characteristic using empirical mode decomposition (EMD) and wavelet analysis was p... In order to maintain vibration performances within the limits of the design, a vibration-based feature extraction method for dynamic characteristic using empirical mode decomposition (EMD) and wavelet analysis was proposed. The proposed method was verified experimentally and numerically by implementing the scheme on engine block. In the implementation process, the following steps were identified to be important: 1) EMD technique in order to solve the feature extraction of vibration signals; 2) Vibration measurement for the purpose of confirming the structural weak regions of engine block in experiment; 3) Finite element modeling for the purpose of determining dynamic characteristic in time region and frequency region to affirm the comparability of response character corresponding to improvement schemes; 4) Adopting a feature index oflMF for structural improvement based on EMD and wavelet analysis. The obtained results show that IMF of signal is more sensitive to response character corresponding to improvement schemes. Finally, examination of the results confirms that the proposed vibration-based feature extraction method is very robust, and focuses on the relative merits of modification and full-scale structural optimization of engine, together with the creation of new low-vibration designs. 展开更多
关键词 feature extraction dynamic characteristic finite element model empirical mode decomposition diesel engine block
下载PDF
lp norm inverse spectral decomposition and its multi-sparsity fusion interpretation 被引量:2
17
作者 Li Sheng-Jun Wang Tie-Yi +3 位作者 Gao Jian-Hu Liu Bing-Yang Gui Jin-Yong Wang Hong-Qiu 《Applied Geophysics》 SCIE CSCD 2021年第4期569-578,595,共11页
Spectral decomposition has been widely used in the detection and identifi cation of underground anomalous features(such as faults,river channels,and karst caves).However,the conventional spectral decomposition method ... Spectral decomposition has been widely used in the detection and identifi cation of underground anomalous features(such as faults,river channels,and karst caves).However,the conventional spectral decomposition method is restrained by the window function,and hence,it mostly has low time–frequency focusing and resolution,thereby hampering the fi ne interpretation of seismic targets.To solve this problem,we investigated the sparse inverse spectral decomposition constrained by the lp norm(0<p≤1).Using a numerical model,we demonstrated the higher time–frequency resolution of this method and its capability for improving the seismic interpretation for thin layers.Moreover,given the actual underground geology that can be often complex,we further propose a p-norm constrained inverse spectral attribute interpretation method based on multiresolution time–frequency feature fusion.By comprehensively analyzing the time–frequency spectrum results constrained by the diff erent p-norms,we can obtain more refined interpretation results than those obtained by the traditional strategy,which incorporates a single norm constraint.Finally,the proposed strategy was applied to the processing and interpretation of actual three-dimensional seismic data for a study area covering about 230 km^(2) in western China.The results reveal that the surface water system in this area is characterized by stepwise convergence from a higher position in the north(a buried hill)toward the south and by the development of faults.We thus demonstrated that the proposed method has huge application potential in seismic interpretation. 展开更多
关键词 Spectral decomposition lp norm multiresolution time–frequency feature fusion seismic interpretation fi ne interpretation
下载PDF
Smooth feature line detection for meshes 被引量:1
18
作者 郭延文 彭群生 +1 位作者 胡国飞 王 进 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2005年第5期460-468,共9页
In this paper the authors present a novel semi-automatic feature line detection technique for meshes. Taking into account the distance and orientation between two vertices on meshes and the curvature information of ve... In this paper the authors present a novel semi-automatic feature line detection technique for meshes. Taking into account the distance and orientation between two vertices on meshes and the curvature information of vertices, they first find an initial feature line which connects some user-specified vertices on meshes; then parameterize the “feature strip” surrounding the feature line onto a planar domain using a vertex flattening technique; and refine the flattened feature strip using the 2D snakes approach to make the feature line smoother and more accurate; lastly they get the feature line by mapping the refined line back to the original meshes. Experimental results showed that their method can extract the feature line rapidly and precisely. As an ap- plication, they propose a mesh decomposition method based on the detected feature line. 展开更多
关键词 feature line Image snakes Mesh parameterization Mesh decomposition
下载PDF
Convex decomposition of concave clouds for the ultra-short-term power prediction of distributed photovoltaic system 被引量:1
19
作者 蔡世波 Tong Jianjun +3 位作者 Bao Guanjun Pan Guobing Zhang Libin Xu Fang 《High Technology Letters》 EI CAS 2016年第3期305-312,共8页
Concave clouds will cause miscalculation by the power prediction model based on cloud ieatures for distributed photovoltaic (PV) plant. The algorithm for decomposing concave cloud into convex images is proposed. Ado... Concave clouds will cause miscalculation by the power prediction model based on cloud ieatures for distributed photovoltaic (PV) plant. The algorithm for decomposing concave cloud into convex images is proposed. Adopting minimum polygonal approximation (MPP) to demonstrate the contour of concave cloud, cloud features are described and the subdivision lines of convex decomposition for the concave clouds are determined by the centroid point scattering model and centroid angle func- tion, which realizes the convex decomposition of concave cloud. The result of MATLAB simulation indicates that the proposed algorithm can accurately detect cloud contour comers and recognize the concave points. The proposed decomposition algorithm has advantages of less time complexity and decomposition part numbers compared to traditional algorithms. So the established model can make the convex decomposition of complex concave clouds completely and quickly, which is available for the existing prediction algorithm for the ultra-short-term power output of distributed PV system based on the cloud features. 展开更多
关键词 distributed photovohaic (PV) system cloud features model centroid point scat-tering model convex decomposition
下载PDF
Feasibility Study of the GST‑SVD in Extracting the Fault Feature of Rolling Bearing under Variable Conditions 被引量:1
20
作者 Xiangnan Liu Xuezhi Zhao Kuanfang He 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2022年第6期326-339,共14页
Feature information extraction is one of the key steps in prognostics and health management of rotating machinery.In the present study,an investigation about the feasibility of a methodology based on generalized S tra... Feature information extraction is one of the key steps in prognostics and health management of rotating machinery.In the present study,an investigation about the feasibility of a methodology based on generalized S transform(GST)and singular value decomposition(SVD)methods for feature extraction in rolling bearing,due to local damage under variable conditions,is conducted.The technique adopts the GST method,following the time-frequency analysis,to transform a raw fault signal of the rolling bearing into a two-dimensional complex matrix.And then,the SVD method is performed to decompose the matrix to obtain the feature vectors.By this procedure it is possible to obtain the fault feature information of rolling bearing under different speeds and different loads.In order to streamline the feature parameters of the feature vectors to train more uncomplicated models,the principal component analysis(PCA)subsequently performed.The particle swarm optimization-support vector machine(PSO-SVM)model is used to identify and classify the different fault states of rolling bearing.Furthermore,in order to highlight the superiority of the proposed method some comparisons are conducted with the conventional methods.The obtained results show that the proposed method can effectively extract fault features of the rolling bearing under variable conditions. 展开更多
关键词 feature extraction Generalized Stockwell transform Singular value decomposition Principal component analysis
下载PDF
上一页 1 2 82 下一页 到第
使用帮助 返回顶部