Traffic count is the fundamental data source for transportation planning, management, design, and effectiveness evaluation. Recording traffic flow and counting from the recorded videos are increasingly used due to con...Traffic count is the fundamental data source for transportation planning, management, design, and effectiveness evaluation. Recording traffic flow and counting from the recorded videos are increasingly used due to convenience, high accuracy, and cost-effectiveness. Manual counting from pre-recorded video footage can be prone to inconsistencies and errors, leading to inaccurate counts. Besides, there are no standard guidelines for collecting video data and conducting manual counts from the recorded videos. This paper aims to comprehensively assess the accuracy of manual counts from pre-recorded videos and introduces guidelines for efficiently collecting video data and conducting manual counts by trained individuals. The accuracy assessment of the manual counts was conducted based on repeated counts, and the guidelines were provided from the experience of conducting a traffic survey on forty strip mall access points in Baton Rouge, Louisiana, USA. The percentage of total error, classification error, and interval error were found to be 1.05 percent, 1.08 percent, and 1.29 percent, respectively. Besides, the percent root mean square errors (RMSE) were found to be 1.13 percent, 1.21 percent, and 1.48 percent, respectively. Guidelines were provided for selecting survey sites, instruments and timeframe, fieldwork, and manual counts for an efficient traffic data collection survey.展开更多
Accurate forecasting of traffic flow provides a powerful traffic decision-making basis for an intelligent transportation system. However, the traffic data's complexity and fluctuation, as well as the noise produce...Accurate forecasting of traffic flow provides a powerful traffic decision-making basis for an intelligent transportation system. However, the traffic data's complexity and fluctuation, as well as the noise produced during collecting information and summarizing original data of traffic flow, cause large errors in the traffic flow forecasting results. This article suggests a solution to the above mentioned issues and proposes a fully connected time-gated neural network based on wavelet reconstruction(WT-FCTGN). To eliminate the potential noise and strengthen the potential traffic trend in the data, we adopt the methods of wavelet reconstruction and periodic data introduction to preprocess the data. The model introduces fully connected time-series blocks to model all the information including time sequence information and fluctuation information in the flow of traffic, and establishes the time gate block to comprehend the periodic characteristics of the flow of traffic and predict its flow. The performance of the WT-FCTGN model is validated on the public Pe MS data set. The experimental results show that the WT-FCTGN model has higher accuracy, and its mean absolute error(MAE), mean absolute percentage error(MAPE) and root mean square error(RMSE) are obviously lower than those of the other algorithms. The robust experimental results prove that the WT-FCTGN model has good anti-noise ability.展开更多
The main intent of this study is to investigate the accuracy of short-duration traffic counts conducted during winter months. The investigation is based on 11-year sample data collected using permanent traffic counter...The main intent of this study is to investigate the accuracy of short-duration traffic counts conducted during winter months. The investigation is based on 11-year sample data collected using permanent traffic counters at various locations in Alberta, Canada. Four types of road sites: commuter, regional commuter, rural long-distance, and recreational sites are studied. The sample data consti- tute six different durations of counts (12-, 24-, 48-, 72-, 96-h, and 1 week) taken during summer and winter months. The coefficient of variation (CV) is used as the relative measure of deviation for counts of different dura- tions to measure the accuracy of short-period traffic counts. The study results indicate that 48-h count seems to be the most cost-effective counting interval during both summer and winter months. It is also found that the lowest values of CV result for counts taken at commuter sites, and the highest values are observed for recreational sites. Frequent changes in temperature and other weather events cause significant variation in traffic volume, which results in an increase in CV values for counts taken during winter months. The application of an adjustment factor to remove the effect of cold and snow from short-period counts is also included in this study. Introduced adjustment factors can reduce the values of CV for all counts taken during winter months. The findings of this study can lead highway agencies to improve the cost-effectiveness of their short- period traffic counting programs.展开更多
In order to improve crash occurrence models to account for the influence of various contributing factors, a conditional autoregressive negative binomial (CAR-NB) model is employed to allow for overdispersion (tackl...In order to improve crash occurrence models to account for the influence of various contributing factors, a conditional autoregressive negative binomial (CAR-NB) model is employed to allow for overdispersion (tackled by the NB component), unobserved heterogeneity and spatial autocorrelation (captured by the CAR process), using Markov chain Monte Carlo methods and the Gibbs sampler. Statistical tests suggest that the CAR-NB model is preferred over the CAR-Poisson, NB, zero-inflated Poisson, zero-inflated NB models, due to its lower prediction errors and more robust parameter inference. The study results show that crash frequency and fatalities are positively associated with the number of lanes, curve length, annual average daily traffic (AADT) per lane, as well as rainfall. Speed limit and the distances to the nearest hospitals have negative associations with segment-based crash counts but positive associations with fatality counts, presumably as a result of worsened collision impacts at higher speed and time loss during transporting crash victims.展开更多
Inaccuracies of traffic sensors during traffic counting and vehicle classification have persisted as transportation agencies have been prompted to calibrate sensors periodically.Detection of multiple objects,heavy occ...Inaccuracies of traffic sensors during traffic counting and vehicle classification have persisted as transportation agencies have been prompted to calibrate sensors periodically.Detection of multiple objects,heavy occlusions,and similar appearances in congested places are some causes of computer vision model inaccuracies.This paper used the YOLOv5 model for detection and the DeepSORT model for tracking objects.Due to the nature of the reported problem caused by many misses and mismatches,the power of quantum computing with the alternating direction method of multipliers(ADMM)optimizer was leveraged.A basic Kalman filter and the Hungarian algorithm features were used in combination with a quantum optimizer to present robust multiple object tracking(MOT)algorithms.This hybrid combination of the classical and quantum model has fastened learning the occludes during frame matching of tracks and detections by generating minimum quantum cost function value.Comparisons with the existing models indicated a significant increase in the primary MOT metric multiple object tracking accuracy(MOTA)by 16%more than the regular YOLOv5-DeepSORT model when using a quantum optimizer.Also,a 6%multiple object tracking precision(MOTP)increases and a 6%identification metrics(F_(1))score increase were observed using the quantum optimizer with identity switching reduced from 6 to 4.This model is expected to assist transportation officials in improving the accuracy of traffic counts and vehicle classification and reduce the need for regular computer vision software calibration.展开更多
文摘Traffic count is the fundamental data source for transportation planning, management, design, and effectiveness evaluation. Recording traffic flow and counting from the recorded videos are increasingly used due to convenience, high accuracy, and cost-effectiveness. Manual counting from pre-recorded video footage can be prone to inconsistencies and errors, leading to inaccurate counts. Besides, there are no standard guidelines for collecting video data and conducting manual counts from the recorded videos. This paper aims to comprehensively assess the accuracy of manual counts from pre-recorded videos and introduces guidelines for efficiently collecting video data and conducting manual counts by trained individuals. The accuracy assessment of the manual counts was conducted based on repeated counts, and the guidelines were provided from the experience of conducting a traffic survey on forty strip mall access points in Baton Rouge, Louisiana, USA. The percentage of total error, classification error, and interval error were found to be 1.05 percent, 1.08 percent, and 1.29 percent, respectively. Besides, the percent root mean square errors (RMSE) were found to be 1.13 percent, 1.21 percent, and 1.48 percent, respectively. Guidelines were provided for selecting survey sites, instruments and timeframe, fieldwork, and manual counts for an efficient traffic data collection survey.
基金The Science and Technology Research and Development Program Project of China Railway Group Ltd provided funding for this study(Project Nos.2020-Special-02 and 2021Special-08)。
文摘Accurate forecasting of traffic flow provides a powerful traffic decision-making basis for an intelligent transportation system. However, the traffic data's complexity and fluctuation, as well as the noise produced during collecting information and summarizing original data of traffic flow, cause large errors in the traffic flow forecasting results. This article suggests a solution to the above mentioned issues and proposes a fully connected time-gated neural network based on wavelet reconstruction(WT-FCTGN). To eliminate the potential noise and strengthen the potential traffic trend in the data, we adopt the methods of wavelet reconstruction and periodic data introduction to preprocess the data. The model introduces fully connected time-series blocks to model all the information including time sequence information and fluctuation information in the flow of traffic, and establishes the time gate block to comprehend the periodic characteristics of the flow of traffic and predict its flow. The performance of the WT-FCTGN model is validated on the public Pe MS data set. The experimental results show that the WT-FCTGN model has higher accuracy, and its mean absolute error(MAE), mean absolute percentage error(MAPE) and root mean square error(RMSE) are obviously lower than those of the other algorithms. The robust experimental results prove that the WT-FCTGN model has good anti-noise ability.
文摘The main intent of this study is to investigate the accuracy of short-duration traffic counts conducted during winter months. The investigation is based on 11-year sample data collected using permanent traffic counters at various locations in Alberta, Canada. Four types of road sites: commuter, regional commuter, rural long-distance, and recreational sites are studied. The sample data consti- tute six different durations of counts (12-, 24-, 48-, 72-, 96-h, and 1 week) taken during summer and winter months. The coefficient of variation (CV) is used as the relative measure of deviation for counts of different dura- tions to measure the accuracy of short-period traffic counts. The study results indicate that 48-h count seems to be the most cost-effective counting interval during both summer and winter months. It is also found that the lowest values of CV result for counts taken at commuter sites, and the highest values are observed for recreational sites. Frequent changes in temperature and other weather events cause significant variation in traffic volume, which results in an increase in CV values for counts taken during winter months. The application of an adjustment factor to remove the effect of cold and snow from short-period counts is also included in this study. Introduced adjustment factors can reduce the values of CV for all counts taken during winter months. The findings of this study can lead highway agencies to improve the cost-effectiveness of their short- period traffic counting programs.
基金The National Science Foundation by Changjiang Scholarship of Ministry of Education of China(No.BCS-0527508)the Joint Research Fund for Overseas Natural Science of China(No.51250110075)+1 种基金the Natural Science Foundation of Jiangsu Province(No.SBK200910046)the Postdoctoral Science Foundation of Jiangsu Province(No.0901005C)
文摘In order to improve crash occurrence models to account for the influence of various contributing factors, a conditional autoregressive negative binomial (CAR-NB) model is employed to allow for overdispersion (tackled by the NB component), unobserved heterogeneity and spatial autocorrelation (captured by the CAR process), using Markov chain Monte Carlo methods and the Gibbs sampler. Statistical tests suggest that the CAR-NB model is preferred over the CAR-Poisson, NB, zero-inflated Poisson, zero-inflated NB models, due to its lower prediction errors and more robust parameter inference. The study results show that crash frequency and fatalities are positively associated with the number of lanes, curve length, annual average daily traffic (AADT) per lane, as well as rainfall. Speed limit and the distances to the nearest hospitals have negative associations with segment-based crash counts but positive associations with fatality counts, presumably as a result of worsened collision impacts at higher speed and time loss during transporting crash victims.
基金the contributions from the Center for Connected Multimodal Mobility(C2M2)(Tier 1 University Transportation Center)administered by the transportation program of the South Carolina State University(SCSU)and Benedict College(BC)for the quantum training knowledge.
文摘Inaccuracies of traffic sensors during traffic counting and vehicle classification have persisted as transportation agencies have been prompted to calibrate sensors periodically.Detection of multiple objects,heavy occlusions,and similar appearances in congested places are some causes of computer vision model inaccuracies.This paper used the YOLOv5 model for detection and the DeepSORT model for tracking objects.Due to the nature of the reported problem caused by many misses and mismatches,the power of quantum computing with the alternating direction method of multipliers(ADMM)optimizer was leveraged.A basic Kalman filter and the Hungarian algorithm features were used in combination with a quantum optimizer to present robust multiple object tracking(MOT)algorithms.This hybrid combination of the classical and quantum model has fastened learning the occludes during frame matching of tracks and detections by generating minimum quantum cost function value.Comparisons with the existing models indicated a significant increase in the primary MOT metric multiple object tracking accuracy(MOTA)by 16%more than the regular YOLOv5-DeepSORT model when using a quantum optimizer.Also,a 6%multiple object tracking precision(MOTP)increases and a 6%identification metrics(F_(1))score increase were observed using the quantum optimizer with identity switching reduced from 6 to 4.This model is expected to assist transportation officials in improving the accuracy of traffic counts and vehicle classification and reduce the need for regular computer vision software calibration.