Fault diagnosis is important for maintaining the safety and effectiveness of chemical process.Considering the multivariate,nonlinear,and dynamic characteristic of chemical process,many time-series-based data-driven fa...Fault diagnosis is important for maintaining the safety and effectiveness of chemical process.Considering the multivariate,nonlinear,and dynamic characteristic of chemical process,many time-series-based data-driven fault diagnosis methods have been developed in recent years.However,the existing methods have the problem of long-term dependency and are difficult to train due to the sequential way of training.To overcome these problems,a novel fault diagnosis method based on time-series and the hierarchical multihead self-attention(HMSAN)is proposed for chemical process.First,a sliding window strategy is adopted to construct the normalized time-series dataset.Second,the HMSAN is developed to extract the time-relevant features from the time-series process data.It improves the basic self-attention model in both width and depth.With the multihead structure,the HMSAN can pay attention to different aspects of the complicated chemical process and obtain the global dynamic features.However,the multiple heads in parallel lead to redundant information,which cannot improve the diagnosis performance.With the hierarchical structure,the redundant information is reduced and the deep local time-related features are further extracted.Besides,a novel many-to-one training strategy is introduced for HMSAN to simplify the training procedure and capture the long-term dependency.Finally,the effectiveness of the proposed method is demonstrated by two chemical cases.The experimental results show that the proposed method achieves a great performance on time-series industrial data and outperforms the state-of-the-art approaches.展开更多
Accurate mapping and timely monitoring of urban redevelopment are pivotal for urban studies and decisionmakers to foster sustainable urban development.Traditional mapping methods heavily depend on field surveys and su...Accurate mapping and timely monitoring of urban redevelopment are pivotal for urban studies and decisionmakers to foster sustainable urban development.Traditional mapping methods heavily depend on field surveys and subjective questionnaires,yielding less objective,reliable,and timely data.Recent advancements in Geographic Information Systems(GIS)and remote-sensing technologies have improved the identification and mapping of urban redevelopment through quantitative analysis using satellite-based observations.Nonetheless,challenges persist,particularly concerning accuracy and significant temporal delays.This study introduces a novel approach to modeling urban redevelopment,leveraging machine learning algorithms and remote-sensing data.This methodology can facilitate the accurate and timely identification of urban redevelopment activities.The study’s machine learning model can analyze time-series remote-sensing data to identify spatio-temporal and spectral patterns related to urban redevelopment.The model is thoroughly evaluated,and the results indicate that it can accurately capture the time-series patterns of urban redevelopment.This research’s findings are useful for evaluating urban demographic and economic changes,informing policymaking and urban planning,and contributing to sustainable urban development.The model can also serve as a foundation for future research on early-stage urban redevelopment detection and evaluation of the causes and impacts of urban redevelopment.展开更多
The frequent missing values in radar-derived time-series tracks of aerial targets(RTT-AT)lead to significant challenges in subsequent data-driven tasks.However,the majority of imputation research focuses on random mis...The frequent missing values in radar-derived time-series tracks of aerial targets(RTT-AT)lead to significant challenges in subsequent data-driven tasks.However,the majority of imputation research focuses on random missing(RM)that differs significantly from common missing patterns of RTT-AT.The method for solving the RM may experience performance degradation or failure when applied to RTT-AT imputation.Conventional autoregressive deep learning methods are prone to error accumulation and long-term dependency loss.In this paper,a non-autoregressive imputation model that addresses the issue of missing value imputation for two common missing patterns in RTT-AT is proposed.Our model consists of two probabilistic sparse diagonal masking self-attention(PSDMSA)units and a weight fusion unit.It learns missing values by combining the representations outputted by the two units,aiming to minimize the difference between the missing values and their actual values.The PSDMSA units effectively capture temporal dependencies and attribute correlations between time steps,improving imputation quality.The weight fusion unit automatically updates the weights of the output representations from the two units to obtain a more accurate final representation.The experimental results indicate that,despite varying missing rates in the two missing patterns,our model consistently outperforms other methods in imputation performance and exhibits a low frequency of deviations in estimates for specific missing entries.Compared to the state-of-the-art autoregressive deep learning imputation model Bidirectional Recurrent Imputation for Time Series(BRITS),our proposed model reduces mean absolute error(MAE)by 31%~50%.Additionally,the model attains a training speed that is 4 to 8 times faster when compared to both BRITS and a standard Transformer model when trained on the same dataset.Finally,the findings from the ablation experiments demonstrate that the PSDMSA,the weight fusion unit,cascade network design,and imputation loss enhance imputation performance and confirm the efficacy of our design.展开更多
For selected locations in the Atlantic and Pacific Ocean, we compared surface ocean chlorophyll time series extracted from SeaWiFS imagery from 1997-2004 with the results of an ocean coupled circulation and biogeochem...For selected locations in the Atlantic and Pacific Ocean, we compared surface ocean chlorophyll time series extracted from SeaWiFS imagery from 1997-2004 with the results of an ocean coupled circulation and biogeochemical model covering the period 1958-2004. During the 1997-2004 time period, linear trends in model and satellite time series were significantly correlated at most of the 44 sites we studied. Eleven sites were selected for further study, and we used the longer time series of the model to assess whether trends observed during the SeaWiFS period at these 11 sites were unusual in relation to those observed over the longer historical period covered by the model. The results show that the trends observed during the SeaWiFS period were not unusual and fell well within the range in magnitude of linear trends observed in other 8-year periods of model output. This result implies that the SeaWiFS satellite ocean color time series is not yet sufficiently long, on its own, to directly observe any long term changes in phytoplankton chlorophyll that may be occurring in the surface waters of the open ocean as a result of increased ocean stratification linked to global climate changed.展开更多
BACKGROUND Barrett's esophagus(BE)is a known premalignant precursor to esophageal adenocarcinoma(EAC).The prevalence rates continue to rise in the United States,but many patients who are at risk of EAC are not scr...BACKGROUND Barrett's esophagus(BE)is a known premalignant precursor to esophageal adenocarcinoma(EAC).The prevalence rates continue to rise in the United States,but many patients who are at risk of EAC are not screened.Current practice guidelines include male gender as a predisposing factor for BE and EAC.The population-based clinical evidence regarding female gender remains limited.AIM To study comparative trends of gender disparities in patients with BE in the United States.METHODS A nationwide retrospective study was conducted using the 2009-2019 National Inpatient Sample(NIS)database.Patients with a primary or secondary diagnosis code of BE were identified.The major outcome of interest was determining the gender disparities in patients with BE.Trend analysis for respective outcomes for females was also reported to ascertain any time-based shifts.RESULTS We identified 1204190 patients with BE for the study period.Among the included patients,717439(59.6%)were men and 486751(40.4%)were women.The mean age was higher in women than in men(67.1±0.4 vs 66.6±0.3 years,P<0.001).The rate of BE per 100000 total NIS hospitalizations for males increased from 144.6 in 2009 to 213.4 in 2019(P<0.001).The rate for females increased from 96.8 in 2009 to 148.7 in 2019(P<0.001).There was a higher frequency of obesity among women compared to men(17.4%vs 12.6%,P<0.001).Obesity prevalence among females increased from 12.3%in 2009 to 21.9%in 2019(P<0.001).A lower prevalence of smoking was noted in women than in men(20.8%vs 35.7%,P<0.001).However,trend analysis showed an increasing prevalence of smoking among women,from 12.9%in 2009 to 30.7%in 2019(P<0.001).Additionally,there was a lower prevalence of alcohol abuse,Helicobacter pylori(H.pylori),and diabetes mellitus among females than males(P<0.001).Trend analysis showed an increasing prevalence of alcohol use disorder and a decreasing prevalence of H.pylori and diabetes mellitus among women(P<0.001).CONCLUSION The prevalence of BE among women has steadily increased from 2009 to 2019.The existing knowledge concerning BE development has historically focused on men,but our findings show that the risk in women is not insignificant.展开更多
To investigate the association between temperature and daily mortality in Shanghai from June 1, 2000 to December 31, 2001. Methods Time-series approach was used to estimate the effect of temperature on daily tota...To investigate the association between temperature and daily mortality in Shanghai from June 1, 2000 to December 31, 2001. Methods Time-series approach was used to estimate the effect of temperature on daily total and cause-specific mortality. We fitted generalized additive Poisson regression using non-parametric smooth functions to control for long-term time trend, season and other variables. We also controlled for day of the week. Results A gently sloping V-like relationship between total mortality and temperature was found, with an optimum temperature (e.g. temperature with lowest mortality risk) value of 26.7癈 in Shanghai. For temperatures above the optimum value, total mortality increased by 0.73% for each degree Celsius increase; while for temperature below the optimum value, total mortality decreased by 1.21% for each degree Celsius increase. Conclusions Our findings indicate that temperature has an effect on daily mortality in Shanghai, and the time-series approach is a useful tool for studying the temperature-mortality association.展开更多
In the past 30 years,the small baseline subset(SBAS)InSAR time-series technique has emerged as an essential tool for measuring slow surface displacement and estimating geophysical parameters.Because of its ability to ...In the past 30 years,the small baseline subset(SBAS)InSAR time-series technique has emerged as an essential tool for measuring slow surface displacement and estimating geophysical parameters.Because of its ability to monitor large-scale deformation with millimeter accuracy,the SBAS method has been widely used in various geodetic fields,such as ground subsidence,landslides,and seismic activity.The obtained long-term time-series cumulative deformation is vital for studying the deformation mecha-nism.This article reviews the algorithms,applications,and challenges of the SBAS method.First,we recall the fundamental principle and analyze the shortcomings of the traditional SBAS algorithm,which provides a basic framework for the following improved time series methods.Second,we classify the current improved SBAS techniques from different perspectives:solving the ill-posed equation,increasing the density of high-coherence points,improving the accuracy of monitoring deformation and measuring the multi-dimensional deformation.Third,we summarize the application of the SBAS method in monitoring ground subsidence,permafrost degradation,glacier movement,volcanic activity,landslides,and seismic activity.Finally,we discuss the difficulties faced by the SBAS method and explore its future development direction.展开更多
By employing the unique phenological feature of winter wheat extracted from peak before winter (PBW) and the advantages of moderate resolution imaging spectroradiometer (MODIS) data with high temporal resolution a...By employing the unique phenological feature of winter wheat extracted from peak before winter (PBW) and the advantages of moderate resolution imaging spectroradiometer (MODIS) data with high temporal resolution and intermediate spatial resolution, a remote sensing-based model for mapping winter wheat on the North China Plain was built through integration with Landsat images and land-use data. First, a phenological window, PBW was drawn from time-series MODIS data. Next, feature extraction was performed for the PBW to reduce feature dimension and enhance its information. Finally, a regression model was built to model the relationship of the phenological feature and the sample data. The amount of information of the PBW was evaluated and compared with that of the main peak (MP). The relative precision of the mapping reached up to 92% in comparison to the Landsat sample data, and ranged between 87 and 96% in comparison to the statistical data. These results were sufficient to satisfy the accuracy requirements for winter wheat mapping at a large scale. Moreover, the proposed method has the ability to obtain the distribution information for winter wheat in an earlier period than previous studies. This study could throw light on the monitoring of winter wheat in China by using unique phenological feature of winter wheat.展开更多
Clustering is used to gain an intuition of the struc tures in the data.Most of the current clustering algorithms pro duce a clustering structure even on data that do not possess such structure.In these cases,the algor...Clustering is used to gain an intuition of the struc tures in the data.Most of the current clustering algorithms pro duce a clustering structure even on data that do not possess such structure.In these cases,the algorithms force a structure in the data instead of discovering one.To avoid false structures in the relations of data,a novel clusterability assessment method called density-based clusterability measure is proposed in this paper.I measures the prominence of clustering structure in the data to evaluate whether a cluster analysis could produce a meaningfu insight to the relationships in the data.This is especially useful in time-series data since visualizing the structure in time-series data is hard.The performance of the clusterability measure is evalu ated against several synthetic data sets and time-series data sets which illustrate that the density-based clusterability measure can successfully indicate clustering structure of time-series data.展开更多
Detecting change features of climate variables in arid/semi-arid areas is essential for understanding related climate change patterns and the driving and evolution mechanism between climate and arid/semi-arid ecosyste...Detecting change features of climate variables in arid/semi-arid areas is essential for understanding related climate change patterns and the driving and evolution mechanism between climate and arid/semi-arid ecosystems.This paper takes Inner Mongolia of China,a unique arid/semi-arid ecosystem,as the study area.We first detected trend features of climate variables using the linear trend analysis method and then detected their trend-shift features using the breaks for additive seasonal and trend method based on the time-series of monthly precipitation and monthly mean temperature datasets from 1962 to 2016.We analyzed the different change features of precipitation and temperature on a regional scale and in different ecological zones to discover the spatial heterogeneity of change features.The results showed that Inner Mongolia has become warmer-wetter during the past 54 years.The regional annual mean temperature increased 0.4°C per decade with a change rate of 56.2%.The regional annual precipitation increased 0.07 mm per decade with a slightly change rate of about 1.7%,but the trend was not statistically significant.The warmer trend was contributed by the same positive trend in each season,while the wetter trend was contributed by the negative trend of the summer precipitation and the positive trend of the other three seasons.The regional monthly precipitation series had a trend-shift pattern with a structural breakpoint in the year 1999,while the regional monthly mean temperature series showed an increasing trend without a periodical trend-shift.After the year 2000,the warmer-wetter trend of the climate in Inner Mongolia was accelerated.The late 20th century was a key period,because the acceleration of the wetter trend in some local zones(I and II)and the alleviation of the warmer trend in some local zones(Ⅶ,Ⅷand IX)occurred simultaneously.Moreover,the change features had a strong spatial heterogeneity,the southeastern and southwestern of Inner Mongolia went through a warmer-drier trend compared with the other areas.The spatio-temporal heterogeneity of the climate change features is a necessary background for various types of research,such as regional climate change,the evolution of arid/semi-arid ecosystems,and the interaction mechanisms between climate and arid/semi-arid ecosystems based on earth-system models in Inner Mongolia.展开更多
A generalized, structural, time series modeling framework was developed to analyze the monthly records of absolute surface temperature, one of the most important environmental parameters, using a deterministicstochast...A generalized, structural, time series modeling framework was developed to analyze the monthly records of absolute surface temperature, one of the most important environmental parameters, using a deterministicstochastic combined (DSC) approach. Although the development of the framework was based on the characterization of the variation patterns of a global dataset, the methodology could be applied to any monthly absolute temperature record. Deterministic processes were used to characterize the variation patterns of the global trend and the cyclic oscillations of the temperature signal, involving polynomial functions and the Fourier method, respectively, while stochastic processes were employed to account for any remaining patterns in the temperature signal, involving seasonal autoregressive integrated moving average (SARIMA) models. A prediction of the monthly global surface temperature during the second decade of the 21st century using the DSC model shows that the global temperature will likely continue to rise at twice the average rate of the past 150 years. The evaluation of prediction accuracy shows that DSC models perform systematically well against selected models of other authors, suggesting that DSC models, when coupled with other ecoenvironmental models, can be used as a supplemental tool for short-term (10-year) environmental planning and decision making.展开更多
A time-series similarity measurement method based on wavelet and matrix transform was proposed,and its anti-noise ability,sensitivity and accuracy were discussed. The time-series sequences were compressed into wavelet...A time-series similarity measurement method based on wavelet and matrix transform was proposed,and its anti-noise ability,sensitivity and accuracy were discussed. The time-series sequences were compressed into wavelet subspace,and sample feature vector and orthogonal basics of sample time-series sequences were obtained by K-L transform. Then the inner product transform was carried out to project analyzed time-series sequence into orthogonal basics to gain analyzed feature vectors. The similarity was calculated between sample feature vector and analyzed feature vector by the Euclid distance. Taking fault wave of power electronic devices for example,the experimental results show that the proposed method has low dimension of feature vector,the anti-noise ability of proposed method is 30 times as large as that of plain wavelet method,the sensitivity of proposed method is 1/3 as large as that of plain wavelet method,and the accuracy of proposed method is higher than that of the wavelet singular value decomposition method. The proposed method can be applied in similarity matching and indexing for lager time series databases.展开更多
The traditional least squares support vector regression(LS-SVR)model,using cross validation to determine the regularization parameter and kernel parameter,is time-consuming.We propose a Bayesian evidence framework t...The traditional least squares support vector regression(LS-SVR)model,using cross validation to determine the regularization parameter and kernel parameter,is time-consuming.We propose a Bayesian evidence framework to infer the LS-SVR model parameters.Three levels Bayesian inferences are used to determine the model parameters,regularization hyper-parameters and tune the nuclear parameters by model comparison.On this basis,we established Bayesian LS-SVR time-series gas forecasting models and provide steps for the algorithm.The gas outburst data of a Hebi 10th mine working face is used to validate the model.The optimal embedding dimension and delay time of the time series were obtained by the smallest differential entropy method.Finally,within a MATLAB7.1 environment,we used actual coal gas data to compare the traditional LS-SVR and the Bayesian LS-SVR with LS-SVMlab1.5 Toolbox simulation.The results show that the Bayesian framework of an LS-SVR significantly improves the speed and accuracy of the forecast.展开更多
Underground coal fires are one of the most common and serious geohazards in most coal producing countries in the world. Monitoring their spatio-temporal changes plays an important role in controlling and preventing th...Underground coal fires are one of the most common and serious geohazards in most coal producing countries in the world. Monitoring their spatio-temporal changes plays an important role in controlling and preventing the effects of coal fires, and their environmental impact. In this study, the spatio-temporal changes of underground coal fires in Khanh Hoa coal field(North-East of Viet Nam) were analyzed using Landsat time-series data during the 2008-2016 period. Based on land surface temperatures retrieved from Landsat thermal data, underground coal fires related to thermal anomalies were identified using the MEDIAN+1.5×IQR(IQR: Interquartile range) threshold technique. The locations of underground coal fires were validated using a coal fire map produced by the field survey data and cross-validated using the daytime ASTER thermal infrared imagery. Based on the fires extracted from seven Landsat thermal imageries, the spatiotemporal changes of underground coal fire areas were analyzed. The results showed that the thermalanomalous zones have been correlated with known coal fires. Cross-validation of coal fires using ASTER TIR data showed a high consistency of 79.3%. The largest coal fire area of 184.6 hectares was detected in 2010, followed by 2014(181.1 hectares) and 2016(178.5 hectares). The smaller coal fire areas were extracted with areas of 133.6 and 152.5 hectares in 2011 and 2009 respectively. Underground coal fires were mainly detected in the northern and southern part, and tend to spread to north-west of the coal field.展开更多
AIM: To extend the knowledge of the dynamic interaction between Helicobacter pylori (H. pylori) and host mucosa. METHODS: A time-series cDNA microarray was performed in order to detect the temporal gene expression pro...AIM: To extend the knowledge of the dynamic interaction between Helicobacter pylori (H. pylori) and host mucosa. METHODS: A time-series cDNA microarray was performed in order to detect the temporal gene expression prof iles of human gastric epithelial adenocarcinoma cells infected with H. pylori. Six time points were selected to observe the changes in the model. A differential expression prof ile at each time point was obtained by comparing the microarray signal value with that of 0 h. Real-time polymerase chain reaction was subsequently performed to evaluate the data quality. RESULTS: We found a diversity of gene expression patterns at different time points and identifi ed a group of genes whose expression levels were significantly correlated with several important immune response and tumor related pathways. CONCLUSION: Early infection may trigger some important pathways and may impact the outcome of the infection.展开更多
Accurate winter wheat identification and phenology extraction are essential for field management and agricultural policy making. Here, we present mechanisms of winter wheat discrimination and phenological detection in...Accurate winter wheat identification and phenology extraction are essential for field management and agricultural policy making. Here, we present mechanisms of winter wheat discrimination and phenological detection in the Yellow River Delta(YRD) region using moderate resolution imaging spectroradiometer(MODIS) time-series data. The normalized difference vegetation index(NDVI) was obtained by calculating the surface reflectance in red and infrared. We used the Savitzky-Golay filter to smooth time series NDVI curves. We adopted a two-step classification to identify winter wheat. The first step was designed to mask out non-vegetation classes, and the second step aimed to identify winter wheat from other vegetation based on its phenological features. We used the double Gaussian model and the maximum curvature method to extract phenology. Due to the characteristics of the time-series profiles for winter wheat, a double Gaussian function method was selected to fit the temporal profile. A maximum curvature method was performed to extract phenological phases. Phenological phases such as the green-up, heading and harvesting phases were detected when the NDVI curvature exhibited local maximum values. The extracted phenological dates then were validated with records of the ground observations. The spatial patterns of phenological phases were investigated. This study concluded that, for winter wheat, the accuracy of classification is 87.07%, and the accuracy of planting acreage is 90.09%. The phenological result was comparable to the ground observation at the municipal level. The average green-up date for the whole region occurred on March 5, the average heading date occurred on May 9, and the average harvesting date occurred on June 5. The spatial distribution of the phenology for winter wheat showed a significant gradual delay from the southwest to the northeast. This study demonstrates the effectiveness of our proposed method for winter wheat classification and phenology detection.展开更多
The application of ti me-series modeling and forecasting method to the spectral analysis for lubricat ing oil of mechanical equipment is discussed. The AR model is used to perform a time-series modeling and forecasti...The application of ti me-series modeling and forecasting method to the spectral analysis for lubricat ing oil of mechanical equipment is discussed. The AR model is used to perform a time-series modeling and forecasting analysis for the spectral analysis data co llected from aero-engines. In the oil condition monitoring field of mechanical equipment, the use of the method of time-series analysis has rarely been report ed. As indicated in the satisfactory example, a practical method for condition m onitoring and fault forecasting of mechanical equipment has been achieved.展开更多
With the rapid development of wind power, the large-scale wind power integration brings a new range of issues in dispatching operation. In order to gain a better grasp of the influence caused by wind power combined to...With the rapid development of wind power, the large-scale wind power integration brings a new range of issues in dispatching operation. In order to gain a better grasp of the influence caused by wind power combined to the grid, the paper first establishes the impact characteristic indexes, and then analyzes the regularity of wind power time series in different spatial and temporal scales. At last, according to the analysis results, this paper assesses the impact of time-series characteristics of wind power on power grid, such as the frequency regulation, peak load regulation, which can provide the reference for wind power optimal dispatching of Jilin Power Grid.展开更多
Dissolved oxygen(DO)is an important indicator of aquaculture,and its accurate forecasting can effectively improve the quality of aquatic products.In this paper,a new DO hybrid forecasting model is proposed that includ...Dissolved oxygen(DO)is an important indicator of aquaculture,and its accurate forecasting can effectively improve the quality of aquatic products.In this paper,a new DO hybrid forecasting model is proposed that includes three stages:multi-factor analysis,adaptive decomposition,and an optimizationbased ensemble.First,considering the complex factors affecting DO,the grey relational(GR)degree method is used to screen out the environmental factors most closely related to DO.The consideration of multiple factors makes model fusion more effective.Second,the series of DO,water temperature,salinity,and oxygen saturation are decomposed adaptively into sub-series by means of the empirical wavelet transform(EWT)method.Then,five benchmark models are utilized to forecast the sub-series of EWT decomposition.The ensemble weights of these five sub-forecasting models are calculated by particle swarm optimization and gravitational search algorithm(PSOGSA).Finally,a multi-factor ensemble model for DO is obtained by weighted allocation.The performance of the proposed model is verified by timeseries data collected by the pacific islands ocean observing system(PacIOOS)from the WQB04 station at Hilo.The evaluation indicators involved in the experiment include the Nash–Sutcliffe efficiency(NSE),Kling–Gupta efficiency(KGE),mean absolute percent error(MAPE),standard deviation of error(SDE),and coefficient of determination(R^(2)).Example analysis demonstrates that:①The proposed model can obtain excellent DO forecasting results;②the proposed model is superior to other comparison models;and③the forecasting model can be used to analyze the trend of DO and enable managers to make better management decisions.展开更多
Due to the variable output of renewable energy (RE) generation, difficulties of dispatching RE for power system operators could not be avoided. One of possible solutions is the energy storage technology, especially th...Due to the variable output of renewable energy (RE) generation, difficulties of dispatching RE for power system operators could not be avoided. One of possible solutions is the energy storage technology, especially the battery storage system. The large-scale energy storage system is available to support power system reliable flexibility for load following and system frequency regulation. In this paper, the bottlenecks of large-scale solar power generation dispatching and operation in Qinghai grid are discussed, and a new PV-energy storage coordinated dispatching method is proposed for reduction of PV curtailment in Qinghai. Moreover, the validation based on the time-series production simulation is provided using real data from Qinghai. The results indicate that the proposed method can effectively decrease the curtailment of solar power and future vision of large-scale solar power coordinated operation with energy storage system is also presented.展开更多
基金supported by the National Natural Science Foundation of China(62073140,62073141)the Shanghai Rising-Star Program(21QA1401800).
文摘Fault diagnosis is important for maintaining the safety and effectiveness of chemical process.Considering the multivariate,nonlinear,and dynamic characteristic of chemical process,many time-series-based data-driven fault diagnosis methods have been developed in recent years.However,the existing methods have the problem of long-term dependency and are difficult to train due to the sequential way of training.To overcome these problems,a novel fault diagnosis method based on time-series and the hierarchical multihead self-attention(HMSAN)is proposed for chemical process.First,a sliding window strategy is adopted to construct the normalized time-series dataset.Second,the HMSAN is developed to extract the time-relevant features from the time-series process data.It improves the basic self-attention model in both width and depth.With the multihead structure,the HMSAN can pay attention to different aspects of the complicated chemical process and obtain the global dynamic features.However,the multiple heads in parallel lead to redundant information,which cannot improve the diagnosis performance.With the hierarchical structure,the redundant information is reduced and the deep local time-related features are further extracted.Besides,a novel many-to-one training strategy is introduced for HMSAN to simplify the training procedure and capture the long-term dependency.Finally,the effectiveness of the proposed method is demonstrated by two chemical cases.The experimental results show that the proposed method achieves a great performance on time-series industrial data and outperforms the state-of-the-art approaches.
文摘Accurate mapping and timely monitoring of urban redevelopment are pivotal for urban studies and decisionmakers to foster sustainable urban development.Traditional mapping methods heavily depend on field surveys and subjective questionnaires,yielding less objective,reliable,and timely data.Recent advancements in Geographic Information Systems(GIS)and remote-sensing technologies have improved the identification and mapping of urban redevelopment through quantitative analysis using satellite-based observations.Nonetheless,challenges persist,particularly concerning accuracy and significant temporal delays.This study introduces a novel approach to modeling urban redevelopment,leveraging machine learning algorithms and remote-sensing data.This methodology can facilitate the accurate and timely identification of urban redevelopment activities.The study’s machine learning model can analyze time-series remote-sensing data to identify spatio-temporal and spectral patterns related to urban redevelopment.The model is thoroughly evaluated,and the results indicate that it can accurately capture the time-series patterns of urban redevelopment.This research’s findings are useful for evaluating urban demographic and economic changes,informing policymaking and urban planning,and contributing to sustainable urban development.The model can also serve as a foundation for future research on early-stage urban redevelopment detection and evaluation of the causes and impacts of urban redevelopment.
基金supported by Graduate Funded Project(No.JY2022A017).
文摘The frequent missing values in radar-derived time-series tracks of aerial targets(RTT-AT)lead to significant challenges in subsequent data-driven tasks.However,the majority of imputation research focuses on random missing(RM)that differs significantly from common missing patterns of RTT-AT.The method for solving the RM may experience performance degradation or failure when applied to RTT-AT imputation.Conventional autoregressive deep learning methods are prone to error accumulation and long-term dependency loss.In this paper,a non-autoregressive imputation model that addresses the issue of missing value imputation for two common missing patterns in RTT-AT is proposed.Our model consists of two probabilistic sparse diagonal masking self-attention(PSDMSA)units and a weight fusion unit.It learns missing values by combining the representations outputted by the two units,aiming to minimize the difference between the missing values and their actual values.The PSDMSA units effectively capture temporal dependencies and attribute correlations between time steps,improving imputation quality.The weight fusion unit automatically updates the weights of the output representations from the two units to obtain a more accurate final representation.The experimental results indicate that,despite varying missing rates in the two missing patterns,our model consistently outperforms other methods in imputation performance and exhibits a low frequency of deviations in estimates for specific missing entries.Compared to the state-of-the-art autoregressive deep learning imputation model Bidirectional Recurrent Imputation for Time Series(BRITS),our proposed model reduces mean absolute error(MAE)by 31%~50%.Additionally,the model attains a training speed that is 4 to 8 times faster when compared to both BRITS and a standard Transformer model when trained on the same dataset.Finally,the findings from the ablation experiments demonstrate that the PSDMSA,the weight fusion unit,cascade network design,and imputation loss enhance imputation performance and confirm the efficacy of our design.
文摘For selected locations in the Atlantic and Pacific Ocean, we compared surface ocean chlorophyll time series extracted from SeaWiFS imagery from 1997-2004 with the results of an ocean coupled circulation and biogeochemical model covering the period 1958-2004. During the 1997-2004 time period, linear trends in model and satellite time series were significantly correlated at most of the 44 sites we studied. Eleven sites were selected for further study, and we used the longer time series of the model to assess whether trends observed during the SeaWiFS period at these 11 sites were unusual in relation to those observed over the longer historical period covered by the model. The results show that the trends observed during the SeaWiFS period were not unusual and fell well within the range in magnitude of linear trends observed in other 8-year periods of model output. This result implies that the SeaWiFS satellite ocean color time series is not yet sufficiently long, on its own, to directly observe any long term changes in phytoplankton chlorophyll that may be occurring in the surface waters of the open ocean as a result of increased ocean stratification linked to global climate changed.
文摘BACKGROUND Barrett's esophagus(BE)is a known premalignant precursor to esophageal adenocarcinoma(EAC).The prevalence rates continue to rise in the United States,but many patients who are at risk of EAC are not screened.Current practice guidelines include male gender as a predisposing factor for BE and EAC.The population-based clinical evidence regarding female gender remains limited.AIM To study comparative trends of gender disparities in patients with BE in the United States.METHODS A nationwide retrospective study was conducted using the 2009-2019 National Inpatient Sample(NIS)database.Patients with a primary or secondary diagnosis code of BE were identified.The major outcome of interest was determining the gender disparities in patients with BE.Trend analysis for respective outcomes for females was also reported to ascertain any time-based shifts.RESULTS We identified 1204190 patients with BE for the study period.Among the included patients,717439(59.6%)were men and 486751(40.4%)were women.The mean age was higher in women than in men(67.1±0.4 vs 66.6±0.3 years,P<0.001).The rate of BE per 100000 total NIS hospitalizations for males increased from 144.6 in 2009 to 213.4 in 2019(P<0.001).The rate for females increased from 96.8 in 2009 to 148.7 in 2019(P<0.001).There was a higher frequency of obesity among women compared to men(17.4%vs 12.6%,P<0.001).Obesity prevalence among females increased from 12.3%in 2009 to 21.9%in 2019(P<0.001).A lower prevalence of smoking was noted in women than in men(20.8%vs 35.7%,P<0.001).However,trend analysis showed an increasing prevalence of smoking among women,from 12.9%in 2009 to 30.7%in 2019(P<0.001).Additionally,there was a lower prevalence of alcohol abuse,Helicobacter pylori(H.pylori),and diabetes mellitus among females than males(P<0.001).Trend analysis showed an increasing prevalence of alcohol use disorder and a decreasing prevalence of H.pylori and diabetes mellitus among women(P<0.001).CONCLUSION The prevalence of BE among women has steadily increased from 2009 to 2019.The existing knowledge concerning BE development has historically focused on men,but our findings show that the risk in women is not insignificant.
文摘To investigate the association between temperature and daily mortality in Shanghai from June 1, 2000 to December 31, 2001. Methods Time-series approach was used to estimate the effect of temperature on daily total and cause-specific mortality. We fitted generalized additive Poisson regression using non-parametric smooth functions to control for long-term time trend, season and other variables. We also controlled for day of the week. Results A gently sloping V-like relationship between total mortality and temperature was found, with an optimum temperature (e.g. temperature with lowest mortality risk) value of 26.7癈 in Shanghai. For temperatures above the optimum value, total mortality increased by 0.73% for each degree Celsius increase; while for temperature below the optimum value, total mortality decreased by 1.21% for each degree Celsius increase. Conclusions Our findings indicate that temperature has an effect on daily mortality in Shanghai, and the time-series approach is a useful tool for studying the temperature-mortality association.
基金This work was funded by the National Key R&D Program of China(2019YFC1509205)the National Natural Science Foundation of China(Nos.42174023 and 41804015)+1 种基金the Postgraduate Scientific Research Innovation Project of Hunan Province(150110074)the Postgraduate Scientific Research Innovation Project of Central South University(212191010).
文摘In the past 30 years,the small baseline subset(SBAS)InSAR time-series technique has emerged as an essential tool for measuring slow surface displacement and estimating geophysical parameters.Because of its ability to monitor large-scale deformation with millimeter accuracy,the SBAS method has been widely used in various geodetic fields,such as ground subsidence,landslides,and seismic activity.The obtained long-term time-series cumulative deformation is vital for studying the deformation mecha-nism.This article reviews the algorithms,applications,and challenges of the SBAS method.First,we recall the fundamental principle and analyze the shortcomings of the traditional SBAS algorithm,which provides a basic framework for the following improved time series methods.Second,we classify the current improved SBAS techniques from different perspectives:solving the ill-posed equation,increasing the density of high-coherence points,improving the accuracy of monitoring deformation and measuring the multi-dimensional deformation.Third,we summarize the application of the SBAS method in monitoring ground subsidence,permafrost degradation,glacier movement,volcanic activity,landslides,and seismic activity.Finally,we discuss the difficulties faced by the SBAS method and explore its future development direction.
基金supported by the open research fund of the Key Laboratory of Agri-informatics,Ministry of Agriculture and the fund of Outstanding Agricultural Researcher,Ministry of Agriculture,China
文摘By employing the unique phenological feature of winter wheat extracted from peak before winter (PBW) and the advantages of moderate resolution imaging spectroradiometer (MODIS) data with high temporal resolution and intermediate spatial resolution, a remote sensing-based model for mapping winter wheat on the North China Plain was built through integration with Landsat images and land-use data. First, a phenological window, PBW was drawn from time-series MODIS data. Next, feature extraction was performed for the PBW to reduce feature dimension and enhance its information. Finally, a regression model was built to model the relationship of the phenological feature and the sample data. The amount of information of the PBW was evaluated and compared with that of the main peak (MP). The relative precision of the mapping reached up to 92% in comparison to the Landsat sample data, and ranged between 87 and 96% in comparison to the statistical data. These results were sufficient to satisfy the accuracy requirements for winter wheat mapping at a large scale. Moreover, the proposed method has the ability to obtain the distribution information for winter wheat in an earlier period than previous studies. This study could throw light on the monitoring of winter wheat in China by using unique phenological feature of winter wheat.
文摘Clustering is used to gain an intuition of the struc tures in the data.Most of the current clustering algorithms pro duce a clustering structure even on data that do not possess such structure.In these cases,the algorithms force a structure in the data instead of discovering one.To avoid false structures in the relations of data,a novel clusterability assessment method called density-based clusterability measure is proposed in this paper.I measures the prominence of clustering structure in the data to evaluate whether a cluster analysis could produce a meaningfu insight to the relationships in the data.This is especially useful in time-series data since visualizing the structure in time-series data is hard.The performance of the clusterability measure is evalu ated against several synthetic data sets and time-series data sets which illustrate that the density-based clusterability measure can successfully indicate clustering structure of time-series data.
基金supported by the National Natural Science Foundation of China(41701474,41701467)the National Key Research and Development Plan of China(2016YFC0500205)+2 种基金the National Basic Research Program of China(2015CB954103)the Key Laboratory for National Geograophy State Monitoring(National Administration of Surveying,Mapping and Geoinformation2017NGCM09)
文摘Detecting change features of climate variables in arid/semi-arid areas is essential for understanding related climate change patterns and the driving and evolution mechanism between climate and arid/semi-arid ecosystems.This paper takes Inner Mongolia of China,a unique arid/semi-arid ecosystem,as the study area.We first detected trend features of climate variables using the linear trend analysis method and then detected their trend-shift features using the breaks for additive seasonal and trend method based on the time-series of monthly precipitation and monthly mean temperature datasets from 1962 to 2016.We analyzed the different change features of precipitation and temperature on a regional scale and in different ecological zones to discover the spatial heterogeneity of change features.The results showed that Inner Mongolia has become warmer-wetter during the past 54 years.The regional annual mean temperature increased 0.4°C per decade with a change rate of 56.2%.The regional annual precipitation increased 0.07 mm per decade with a slightly change rate of about 1.7%,but the trend was not statistically significant.The warmer trend was contributed by the same positive trend in each season,while the wetter trend was contributed by the negative trend of the summer precipitation and the positive trend of the other three seasons.The regional monthly precipitation series had a trend-shift pattern with a structural breakpoint in the year 1999,while the regional monthly mean temperature series showed an increasing trend without a periodical trend-shift.After the year 2000,the warmer-wetter trend of the climate in Inner Mongolia was accelerated.The late 20th century was a key period,because the acceleration of the wetter trend in some local zones(I and II)and the alleviation of the warmer trend in some local zones(Ⅶ,Ⅷand IX)occurred simultaneously.Moreover,the change features had a strong spatial heterogeneity,the southeastern and southwestern of Inner Mongolia went through a warmer-drier trend compared with the other areas.The spatio-temporal heterogeneity of the climate change features is a necessary background for various types of research,such as regional climate change,the evolution of arid/semi-arid ecosystems,and the interaction mechanisms between climate and arid/semi-arid ecosystems based on earth-system models in Inner Mongolia.
基金This research was supported by the Ministry of Science and Technology of China,National Basic Research Program of China (Grant No.2010CB951504).The authors acknowledge support from the Flemish Interuniversity Council,the Ghent University Laboratory of Soil Science for the writing of this paper
文摘A generalized, structural, time series modeling framework was developed to analyze the monthly records of absolute surface temperature, one of the most important environmental parameters, using a deterministicstochastic combined (DSC) approach. Although the development of the framework was based on the characterization of the variation patterns of a global dataset, the methodology could be applied to any monthly absolute temperature record. Deterministic processes were used to characterize the variation patterns of the global trend and the cyclic oscillations of the temperature signal, involving polynomial functions and the Fourier method, respectively, while stochastic processes were employed to account for any remaining patterns in the temperature signal, involving seasonal autoregressive integrated moving average (SARIMA) models. A prediction of the monthly global surface temperature during the second decade of the 21st century using the DSC model shows that the global temperature will likely continue to rise at twice the average rate of the past 150 years. The evaluation of prediction accuracy shows that DSC models perform systematically well against selected models of other authors, suggesting that DSC models, when coupled with other ecoenvironmental models, can be used as a supplemental tool for short-term (10-year) environmental planning and decision making.
基金Projects(60634020, 60904077, 60874069) supported by the National Natural Science Foundation of ChinaProject(JC200903180555A) supported by the Foundation Project of Shenzhen City Science and Technology Plan of China
文摘A time-series similarity measurement method based on wavelet and matrix transform was proposed,and its anti-noise ability,sensitivity and accuracy were discussed. The time-series sequences were compressed into wavelet subspace,and sample feature vector and orthogonal basics of sample time-series sequences were obtained by K-L transform. Then the inner product transform was carried out to project analyzed time-series sequence into orthogonal basics to gain analyzed feature vectors. The similarity was calculated between sample feature vector and analyzed feature vector by the Euclid distance. Taking fault wave of power electronic devices for example,the experimental results show that the proposed method has low dimension of feature vector,the anti-noise ability of proposed method is 30 times as large as that of plain wavelet method,the sensitivity of proposed method is 1/3 as large as that of plain wavelet method,and the accuracy of proposed method is higher than that of the wavelet singular value decomposition method. The proposed method can be applied in similarity matching and indexing for lager time series databases.
基金Financial support for this work,provided by the National Natural Science Foundation of China(No.60974126)the Natural Science Foundation of Jiangsu Province(No.BK2009094)
文摘The traditional least squares support vector regression(LS-SVR)model,using cross validation to determine the regularization parameter and kernel parameter,is time-consuming.We propose a Bayesian evidence framework to infer the LS-SVR model parameters.Three levels Bayesian inferences are used to determine the model parameters,regularization hyper-parameters and tune the nuclear parameters by model comparison.On this basis,we established Bayesian LS-SVR time-series gas forecasting models and provide steps for the algorithm.The gas outburst data of a Hebi 10th mine working face is used to validate the model.The optimal embedding dimension and delay time of the time series were obtained by the smallest differential entropy method.Finally,within a MATLAB7.1 environment,we used actual coal gas data to compare the traditional LS-SVR and the Bayesian LS-SVR with LS-SVMlab1.5 Toolbox simulation.The results show that the Bayesian framework of an LS-SVR significantly improves the speed and accuracy of the forecast.
基金funded by the Ministry-level Scientific and Technological Key Programs of Ministry of Natural Resources and Environment of Viet Nam "Application of thermal infrared remote sensing and GIS for mapping underground coal fires in Quang Ninh coal basin" (Grant No. TNMT.2017.08.06)
文摘Underground coal fires are one of the most common and serious geohazards in most coal producing countries in the world. Monitoring their spatio-temporal changes plays an important role in controlling and preventing the effects of coal fires, and their environmental impact. In this study, the spatio-temporal changes of underground coal fires in Khanh Hoa coal field(North-East of Viet Nam) were analyzed using Landsat time-series data during the 2008-2016 period. Based on land surface temperatures retrieved from Landsat thermal data, underground coal fires related to thermal anomalies were identified using the MEDIAN+1.5×IQR(IQR: Interquartile range) threshold technique. The locations of underground coal fires were validated using a coal fire map produced by the field survey data and cross-validated using the daytime ASTER thermal infrared imagery. Based on the fires extracted from seven Landsat thermal imageries, the spatiotemporal changes of underground coal fire areas were analyzed. The results showed that the thermalanomalous zones have been correlated with known coal fires. Cross-validation of coal fires using ASTER TIR data showed a high consistency of 79.3%. The largest coal fire area of 184.6 hectares was detected in 2010, followed by 2014(181.1 hectares) and 2016(178.5 hectares). The smaller coal fire areas were extracted with areas of 133.6 and 152.5 hectares in 2011 and 2009 respectively. Underground coal fires were mainly detected in the northern and southern part, and tend to spread to north-west of the coal field.
基金Supported by The National Natural Science Foundation of China, No. 39870032Key Projects in the National Science & Technology Pillar Program in the Eleventh Five-Year Plan Period
文摘AIM: To extend the knowledge of the dynamic interaction between Helicobacter pylori (H. pylori) and host mucosa. METHODS: A time-series cDNA microarray was performed in order to detect the temporal gene expression prof iles of human gastric epithelial adenocarcinoma cells infected with H. pylori. Six time points were selected to observe the changes in the model. A differential expression prof ile at each time point was obtained by comparing the microarray signal value with that of 0 h. Real-time polymerase chain reaction was subsequently performed to evaluate the data quality. RESULTS: We found a diversity of gene expression patterns at different time points and identifi ed a group of genes whose expression levels were significantly correlated with several important immune response and tumor related pathways. CONCLUSION: Early infection may trigger some important pathways and may impact the outcome of the infection.
基金supported by the National Natural Science Foundation of China (41471335, 41271407)the National Remote Sensing Survey and Assessment of Eco-Environment Change between 2000 and 2010, China (STSN-1500)+2 种基金the National Key Technologies R&D Program of China during the 12th Five-Year Plan period (2013BAD05B03)the Strategic Priority Research Program of the Chinese Academy of Sciences (XDA05050601)the International Science and Technology (S&T) Cooperation Program of China (2012DFG22050)
文摘Accurate winter wheat identification and phenology extraction are essential for field management and agricultural policy making. Here, we present mechanisms of winter wheat discrimination and phenological detection in the Yellow River Delta(YRD) region using moderate resolution imaging spectroradiometer(MODIS) time-series data. The normalized difference vegetation index(NDVI) was obtained by calculating the surface reflectance in red and infrared. We used the Savitzky-Golay filter to smooth time series NDVI curves. We adopted a two-step classification to identify winter wheat. The first step was designed to mask out non-vegetation classes, and the second step aimed to identify winter wheat from other vegetation based on its phenological features. We used the double Gaussian model and the maximum curvature method to extract phenology. Due to the characteristics of the time-series profiles for winter wheat, a double Gaussian function method was selected to fit the temporal profile. A maximum curvature method was performed to extract phenological phases. Phenological phases such as the green-up, heading and harvesting phases were detected when the NDVI curvature exhibited local maximum values. The extracted phenological dates then were validated with records of the ground observations. The spatial patterns of phenological phases were investigated. This study concluded that, for winter wheat, the accuracy of classification is 87.07%, and the accuracy of planting acreage is 90.09%. The phenological result was comparable to the ground observation at the municipal level. The average green-up date for the whole region occurred on March 5, the average heading date occurred on May 9, and the average harvesting date occurred on June 5. The spatial distribution of the phenology for winter wheat showed a significant gradual delay from the southwest to the northeast. This study demonstrates the effectiveness of our proposed method for winter wheat classification and phenology detection.
文摘The application of ti me-series modeling and forecasting method to the spectral analysis for lubricat ing oil of mechanical equipment is discussed. The AR model is used to perform a time-series modeling and forecasting analysis for the spectral analysis data co llected from aero-engines. In the oil condition monitoring field of mechanical equipment, the use of the method of time-series analysis has rarely been report ed. As indicated in the satisfactory example, a practical method for condition m onitoring and fault forecasting of mechanical equipment has been achieved.
文摘With the rapid development of wind power, the large-scale wind power integration brings a new range of issues in dispatching operation. In order to gain a better grasp of the influence caused by wind power combined to the grid, the paper first establishes the impact characteristic indexes, and then analyzes the regularity of wind power time series in different spatial and temporal scales. At last, according to the analysis results, this paper assesses the impact of time-series characteristics of wind power on power grid, such as the frequency regulation, peak load regulation, which can provide the reference for wind power optimal dispatching of Jilin Power Grid.
基金the National Natural Science Foundation of China(61873283)the Changsha Science&Technology Project(KQ1707017)the innovation-driven project of the Central South University(2019CX005).
文摘Dissolved oxygen(DO)is an important indicator of aquaculture,and its accurate forecasting can effectively improve the quality of aquatic products.In this paper,a new DO hybrid forecasting model is proposed that includes three stages:multi-factor analysis,adaptive decomposition,and an optimizationbased ensemble.First,considering the complex factors affecting DO,the grey relational(GR)degree method is used to screen out the environmental factors most closely related to DO.The consideration of multiple factors makes model fusion more effective.Second,the series of DO,water temperature,salinity,and oxygen saturation are decomposed adaptively into sub-series by means of the empirical wavelet transform(EWT)method.Then,five benchmark models are utilized to forecast the sub-series of EWT decomposition.The ensemble weights of these five sub-forecasting models are calculated by particle swarm optimization and gravitational search algorithm(PSOGSA).Finally,a multi-factor ensemble model for DO is obtained by weighted allocation.The performance of the proposed model is verified by timeseries data collected by the pacific islands ocean observing system(PacIOOS)from the WQB04 station at Hilo.The evaluation indicators involved in the experiment include the Nash–Sutcliffe efficiency(NSE),Kling–Gupta efficiency(KGE),mean absolute percent error(MAPE),standard deviation of error(SDE),and coefficient of determination(R^(2)).Example analysis demonstrates that:①The proposed model can obtain excellent DO forecasting results;②the proposed model is superior to other comparison models;and③the forecasting model can be used to analyze the trend of DO and enable managers to make better management decisions.
文摘Due to the variable output of renewable energy (RE) generation, difficulties of dispatching RE for power system operators could not be avoided. One of possible solutions is the energy storage technology, especially the battery storage system. The large-scale energy storage system is available to support power system reliable flexibility for load following and system frequency regulation. In this paper, the bottlenecks of large-scale solar power generation dispatching and operation in Qinghai grid are discussed, and a new PV-energy storage coordinated dispatching method is proposed for reduction of PV curtailment in Qinghai. Moreover, the validation based on the time-series production simulation is provided using real data from Qinghai. The results indicate that the proposed method can effectively decrease the curtailment of solar power and future vision of large-scale solar power coordinated operation with energy storage system is also presented.