This paper describes the development and optimization plans for the China Railway Express(CR Express).As a new type of international land transport organization,CR Express has emerged with the continuous expansion of ...This paper describes the development and optimization plans for the China Railway Express(CR Express).As a new type of international land transport organization,CR Express has emerged with the continuous expansion of China toward European investment and trade,and in particular,has expanded with the continuous progress of the One Belt and One Road(OBOR)initiative.In addition to improving the service quality of CR Express,the operating costs must be reduced for developing“smart railways”that serve“smart cities”.We propose a dualobjective-based function mathematical optimization model;the satisfaction of the cargo owner is considered,and the timeliness,transportation capacity,and goods category constraints of CR Express transportation are designed.Moreover,we present the normalized equivalent method of the two-objective function of the model.Finally,a case study is conducted against the background of certain trains in the western corridor of CR Express to validate the effectiveness of the model and research methods proposed in this study.展开更多
With the rise of remote collaboration,the demand for advanced storage and collaboration tools has rapidly increased.However,traditional collaboration tools primarily rely on access control,leaving data stored on cloud...With the rise of remote collaboration,the demand for advanced storage and collaboration tools has rapidly increased.However,traditional collaboration tools primarily rely on access control,leaving data stored on cloud servers vulnerable due to insufficient encryption.This paper introduces a novel mechanism that encrypts data in‘bundle’units,designed to meet the dual requirements of efficiency and security for frequently updated collaborative data.Each bundle includes updated information,allowing only the updated portions to be reencrypted when changes occur.The encryption method proposed in this paper addresses the inefficiencies of traditional encryption modes,such as Cipher Block Chaining(CBC)and Counter(CTR),which require decrypting and re-encrypting the entire dataset whenever updates occur.The proposed method leverages update-specific information embedded within data bundles and metadata that maps the relationship between these bundles and the plaintext data.By utilizing this information,the method accurately identifies the modified portions and applies algorithms to selectively re-encrypt only those sections.This approach significantly enhances the efficiency of data updates while maintaining high performance,particularly in large-scale data environments.To validate this approach,we conducted experiments measuring execution time as both the size of the modified data and the total dataset size varied.Results show that the proposed method significantly outperforms CBC and CTR modes in execution speed,with greater performance gains as data size increases.Additionally,our security evaluation confirms that this method provides robust protection against both passive and active attacks.展开更多
The transformation between time and space is discussed. To improve real-time response speed of intelligent measuring system, the concept of exchanging program execution time with more circuitry is presented working in...The transformation between time and space is discussed. To improve real-time response speed of intelligent measuring system, the concept of exchanging program execution time with more circuitry is presented working in cycle mode. Displacement measuring by magnification is achieved with period measurement by magnification. To change the condition that traditional precision measurement depends on machining precision greatly, the concept of measuring space with time and theory of time-space coordinate transformation are proposed. Guided by the idea of measuring space with time, differential frequency measurement system and time grating displacement sensor are developed based on the proposed novel methods. And high-precision measurement is achieved without high-precision manufacture, which embeds the remarkable characteristics of low cost but high precision to the devices. Experiment and test results conform the validity of the proposed time-space concept.展开更多
Collocated multiple input multiple output(MIMO)radar,which has agile multi-beam working mode,can offer enhanced multiple targets tracking(MTT)ability.In detail,it can illuminate different targets simultaneously with m...Collocated multiple input multiple output(MIMO)radar,which has agile multi-beam working mode,can offer enhanced multiple targets tracking(MTT)ability.In detail,it can illuminate different targets simultaneously with multi-beam or one wide beam among multi-beam,providing greater degree of freedom in system resource control.An adaptive time-space resource and waveform control optimization model for the collocated MIMO radar with simultaneous multi-beam is proposed in this paper.The aim of the proposed scheme is to improve the overall tracking accuracy and meanwhile minimize the resource consumption under the guarantee of effective targets detection.A resource and waveform control algorithm which integrates the genetic algorithm(GA)is proposed to solve the optimization problem.The optimal transmitting waveform parameters,system sampling period,sub-array number,binary radar tracking parameterχ_i(t_k),transmitting energy and multi-beam direction vector combination are chosen adaptively,where the first one realizes the waveform control and the latter five realize the timespace resource allocation.Simulation results demonstrate the effectiveness of the proposed control method.展开更多
Compared with the traditional phased array radar, the co-located multiple-input multiple-output(MIMO) radar is able to transmit orthogonal waveforms to form different illuminating modes, providing a larger freedom deg...Compared with the traditional phased array radar, the co-located multiple-input multiple-output(MIMO) radar is able to transmit orthogonal waveforms to form different illuminating modes, providing a larger freedom degree in radar resource management. In order to implement the effective resource management for the co-located MIMO radar in multi-target tracking,this paper proposes a resource management optimization model,where the system resource consumption and the tracking accuracy requirements are considered comprehensively. An adaptive resource management algorithm for the co-located MIMO radar is obtained based on the proposed model, where the sub-array number, sampling period, transmitting energy, beam direction and working mode are adaptively controlled to realize the time-space resource joint allocation. Simulation results demonstrate the superiority of the proposed algorithm. Furthermore, the co-located MIMO radar using the proposed algorithm can satisfy the predetermined tracking accuracy requirements with less comprehensive cost compared with the phased array radar.展开更多
Recently, there have been some attempts of Transformer in 3D point cloud classification. In order to reduce computations, most existing methods focus on local spatial attention,but ignore their content and fail to est...Recently, there have been some attempts of Transformer in 3D point cloud classification. In order to reduce computations, most existing methods focus on local spatial attention,but ignore their content and fail to establish relationships between distant but relevant points. To overcome the limitation of local spatial attention, we propose a point content-based Transformer architecture, called PointConT for short. It exploits the locality of points in the feature space(content-based), which clusters the sampled points with similar features into the same class and computes the self-attention within each class, thus enabling an effective trade-off between capturing long-range dependencies and computational complexity. We further introduce an inception feature aggregator for point cloud classification, which uses parallel structures to aggregate high-frequency and low-frequency information in each branch separately. Extensive experiments show that our PointConT model achieves a remarkable performance on point cloud shape classification. Especially, our method exhibits 90.3% Top-1 accuracy on the hardest setting of ScanObjectN N. Source code of this paper is available at https://github.com/yahuiliu99/PointC onT.展开更多
In this paper we discuss a parallel sorting algorithm on a hypercube. Its time complexity is O(n logn/p) +O(n). Here, P is the number of processors available and n, the amount of items to be sorted. Take the problem o...In this paper we discuss a parallel sorting algorithm on a hypercube. Its time complexity is O(n logn/p) +O(n). Here, P is the number of processors available and n, the amount of items to be sorted. Take the problem of time-space optimization into consideration, when P≤ O(log n), this algorithm is both timespace optimal and cost optimization. But this means only speedup is O(P) and it is not linear speedup. Therefore, we further discuss relevant parallel efficiency problems.展开更多
The Access control scheme is an effective method to protect user data privacy.The access control scheme based on blockchain and ciphertext policy attribute encryption(CP–ABE)can solve the problems of single—point of...The Access control scheme is an effective method to protect user data privacy.The access control scheme based on blockchain and ciphertext policy attribute encryption(CP–ABE)can solve the problems of single—point of failure and lack of trust in the centralized system.However,it also brings new problems to the health information in the cloud storage environment,such as attribute leakage,low consensus efficiency,complex permission updates,and so on.This paper proposes an access control scheme with fine-grained attribute revocation,keyword search,and traceability of the attribute private key distribution process.Blockchain technology tracks the authorization of attribute private keys.The credit scoring method improves the Raft protocol in consensus efficiency.Besides,the interplanetary file system(IPFS)addresses the capacity deficit of blockchain.Under the premise of hiding policy,the research proposes a fine-grained access control method based on users,user attributes,and file structure.It optimizes the data-sharing mode.At the same time,Proxy Re-Encryption(PRE)technology is used to update the access rights.The proposed scheme proved to be secure.Comparative analysis and experimental results show that the proposed scheme has higher efficiency and more functions.It can meet the needs of medical institutions.展开更多
Artificially ground freezing (AGF) is one of the main methods to establish temporary support for shaft sinking in unstable water bearing strata. Domde (1915) formula based on frozen soil strength has widely been used ...Artificially ground freezing (AGF) is one of the main methods to establish temporary support for shaft sinking in unstable water bearing strata. Domde (1915) formula based on frozen soil strength has widely been used for designing freezing wall thickness. However, it can not ensure the stability of freezing wall, nor guarantee the safety of shaft construction as frozen depth increases in unstable water bearing strata. F A. Auld (1985, 1988)[1,2] presented a design method of freezing wall, which is on the basis of strength and stability, together with deformation of freezing wall. This paper, according to the practice in China, describes a "time -space" related design method for deep freezing wall. The method is based on "time-space" concept, which includes influence of excavation rate of advance, unsupported length of freezing wall and the sump state on inward deformation of freezing wall, and the allowable pipe deformation caused by inward deformation of freezing wall. Finally, successful application of this method to the large scale coal mine-Jining No. 2 Mine[3] in Shandong Province of China is presented. It saved much investment compared with F. A. Auld’s design for the same mine.展开更多
This paper researched the traffic of optical networks in time-space complexity,proposed a novel traf-fic model for complex optical networks based on traffic grooming,designed a traffic generator GTS(gener-ator based o...This paper researched the traffic of optical networks in time-space complexity,proposed a novel traf-fic model for complex optical networks based on traffic grooming,designed a traffic generator GTS(gener-ator based on time and space)with 'centralized+distributed' idea,and then made a simulation in Clanguage.Experiments results show that GTS can produce the virtual network topology which can changedynamically with the characteristic of scaling-free network.GTS can also groom the different traffic andtrigger them under real-time or scheduling mechanisms,generating different optical connections.Thistraffic model is convenient for the simulation of optical networks considering the traffic complexity.展开更多
In this paper,finite difference schemes for solving time-space fractional diffusion equations in one dimension and two dimensions are proposed.The temporal derivative is in the Caputo-Hadamard sense for both cases.The...In this paper,finite difference schemes for solving time-space fractional diffusion equations in one dimension and two dimensions are proposed.The temporal derivative is in the Caputo-Hadamard sense for both cases.The spatial derivative for the one-dimensional equation is of Riesz definition and the two-dimensional spatial derivative is given by the fractional Laplacian.The schemes are proved to be unconditionally stable and convergent.The numerical results are in line with the theoretical analysis.展开更多
We introduce Quafu-Qcover,an open-source cloud-based software package developed for solving combinatorial optimization problems using quantum simulators and hardware backends.Quafu-Qcover provides a standardized and c...We introduce Quafu-Qcover,an open-source cloud-based software package developed for solving combinatorial optimization problems using quantum simulators and hardware backends.Quafu-Qcover provides a standardized and comprehensive workflow that utilizes the quantum approximate optimization algorithm(QAOA).It facilitates the automatic conversion of the original problem into a quadratic unconstrained binary optimization(QUBO)model and its corresponding Ising model,which can be subsequently transformed into a weight graph.The core of Qcover relies on a graph decomposition-based classical algorithm,which efficiently derives the optimal parameters for the shallow QAOA circuit.Quafu-Qcover incorporates a dedicated compiler capable of translating QAOA circuits into physical quantum circuits that can be executed on Quafu cloud quantum computers.Compared to a general-purpose compiler,our compiler demonstrates the ability to generate shorter circuit depths,while also exhibiting superior speed performance.Additionally,the Qcover compiler has the capability to dynamically create a library of qubits coupling substructures in real-time,utilizing the most recent calibration data from the superconducting quantum devices.This ensures that computational tasks can be assigned to connected physical qubits with the highest fidelity.The Quafu-Qcover allows us to retrieve quantum computing sampling results using a task ID at any time,enabling asynchronous processing.Moreover,it incorporates modules for results preprocessing and visualization,facilitating an intuitive display of solutions for combinatorial optimization problems.We hope that Quafu-Qcover can serve as an instructive illustration for how to explore application problems on the Quafu cloud quantum computers.展开更多
Cloud computing provides a diverse and adaptable resource pool over the internet,allowing users to tap into various resources as needed.It has been seen as a robust solution to relevant challenges.A significant delay ...Cloud computing provides a diverse and adaptable resource pool over the internet,allowing users to tap into various resources as needed.It has been seen as a robust solution to relevant challenges.A significant delay can hamper the performance of IoT-enabled cloud platforms.However,efficient task scheduling can lower the cloud infrastructure’s energy consumption,thus maximizing the service provider’s revenue by decreasing user job processing times.The proposed Modified Chimp-Whale Optimization Algorithm called Modified Chimp-Whale Optimization Algorithm(MCWOA),combines elements of the Chimp Optimization Algorithm(COA)and the Whale Optimization Algorithm(WOA).To enhance MCWOA’s identification precision,the Sobol sequence is used in the population initialization phase,ensuring an even distribution of the population across the solution space.Moreover,the traditional MCWOA’s local search capabilities are augmented by incorporating the whale optimization algorithm’s bubble-net hunting and random search mechanisms into MCWOA’s position-updating process.This study demonstrates the effectiveness of the proposed approach using a two-story rigid frame and a simply supported beam model.Simulated outcomes reveal that the new method outperforms the original MCWOA,especially in multi-damage detection scenarios.MCWOA excels in avoiding false positives and enhancing computational speed,making it an optimal choice for structural damage detection.The efficiency of the proposed MCWOA is assessed against metrics such as energy usage,computational expense,task duration,and delay.The simulated data indicates that the new MCWOA outpaces other methods across all metrics.The study also references the Whale Optimization Algorithm(WOA),Chimp Algorithm(CA),Ant Lion Optimizer(ALO),Genetic Algorithm(GA)and Grey Wolf Optimizer(GWO).展开更多
With the rapid advancement of quantum computing,hybrid quantum–classical machine learning has shown numerous potential applications at the current stage,with expectations of being achievable in the noisy intermediate...With the rapid advancement of quantum computing,hybrid quantum–classical machine learning has shown numerous potential applications at the current stage,with expectations of being achievable in the noisy intermediate-scale quantum(NISQ)era.Quantum reinforcement learning,as an indispensable study,has recently demonstrated its ability to solve standard benchmark environments with formally provable theoretical advantages over classical counterparts.However,despite the progress of quantum processors and the emergence of quantum computing clouds,implementing quantum reinforcement learning algorithms utilizing parameterized quantum circuits(PQCs)on NISQ devices remains infrequent.In this work,we take the first step towards executing benchmark quantum reinforcement problems on real devices equipped with at most 136 qubits on the BAQIS Quafu quantum computing cloud.The experimental results demonstrate that the policy agents can successfully accomplish objectives under modified conditions in both the training and inference phases.Moreover,we design hardware-efficient PQC architectures in the quantum model using a multi-objective evolutionary algorithm and develop a learning algorithm that is adaptable to quantum devices.We hope that the Quafu-RL can be a guiding example to show how to realize machine learning tasks by taking advantage of quantum computers on the quantum cloud platform.展开更多
Cultural relics line graphic serves as a crucial form of traditional artifact information documentation,which is a simple and intuitive product with low cost of displaying compared with 3D models.Dimensionality reduct...Cultural relics line graphic serves as a crucial form of traditional artifact information documentation,which is a simple and intuitive product with low cost of displaying compared with 3D models.Dimensionality reduction is undoubtedly necessary for line drawings.However,most existing methods for artifact drawing rely on the principles of orthographic projection that always cannot avoid angle occlusion and data overlapping while the surface of cultural relics is complex.Therefore,conformal mapping was introduced as a dimensionality reduction way to compensate for the limitation of orthographic projection.Based on the given criteria for assessing surface complexity,this paper proposed a three-dimensional feature guideline extraction method for complex cultural relic surfaces.A 2D and 3D combined factor that measured the importance of points on describing surface features,vertex weight,was designed.Then the selection threshold for feature guideline extraction was determined based on the differences between vertex weight and shape index distributions.The feasibility and stability were verified through experiments conducted on real cultural relic surface data.Results demonstrated the ability of the method to address the challenges associated with the automatic generation of line drawings for complex surfaces.The extraction method and the obtained results will be useful for line graphic drawing,displaying and propaganda of cultural relics.展开更多
基金supported by the National Natural Science Foundation of China(Grant No.62102032)the R&D Program of Beijing Municipal Education Commission(Grant No.KM202211417010).
文摘This paper describes the development and optimization plans for the China Railway Express(CR Express).As a new type of international land transport organization,CR Express has emerged with the continuous expansion of China toward European investment and trade,and in particular,has expanded with the continuous progress of the One Belt and One Road(OBOR)initiative.In addition to improving the service quality of CR Express,the operating costs must be reduced for developing“smart railways”that serve“smart cities”.We propose a dualobjective-based function mathematical optimization model;the satisfaction of the cargo owner is considered,and the timeliness,transportation capacity,and goods category constraints of CR Express transportation are designed.Moreover,we present the normalized equivalent method of the two-objective function of the model.Finally,a case study is conducted against the background of certain trains in the western corridor of CR Express to validate the effectiveness of the model and research methods proposed in this study.
基金supported by the Institute of Information&communications Technology Planning&Evaluation(IITP)grant funded by the Korea government(MSIT)(RS-2024-00399401,Development of Quantum-Safe Infrastructure Migration and Quantum Security Verification Technologies).
文摘With the rise of remote collaboration,the demand for advanced storage and collaboration tools has rapidly increased.However,traditional collaboration tools primarily rely on access control,leaving data stored on cloud servers vulnerable due to insufficient encryption.This paper introduces a novel mechanism that encrypts data in‘bundle’units,designed to meet the dual requirements of efficiency and security for frequently updated collaborative data.Each bundle includes updated information,allowing only the updated portions to be reencrypted when changes occur.The encryption method proposed in this paper addresses the inefficiencies of traditional encryption modes,such as Cipher Block Chaining(CBC)and Counter(CTR),which require decrypting and re-encrypting the entire dataset whenever updates occur.The proposed method leverages update-specific information embedded within data bundles and metadata that maps the relationship between these bundles and the plaintext data.By utilizing this information,the method accurately identifies the modified portions and applies algorithms to selectively re-encrypt only those sections.This approach significantly enhances the efficiency of data updates while maintaining high performance,particularly in large-scale data environments.To validate this approach,we conducted experiments measuring execution time as both the size of the modified data and the total dataset size varied.Results show that the proposed method significantly outperforms CBC and CTR modes in execution speed,with greater performance gains as data size increases.Additionally,our security evaluation confirms that this method provides robust protection against both passive and active attacks.
基金National Natural Science Foundation of China(No.59575095,No.59675089,No.50075091,No.50575235)
文摘The transformation between time and space is discussed. To improve real-time response speed of intelligent measuring system, the concept of exchanging program execution time with more circuitry is presented working in cycle mode. Displacement measuring by magnification is achieved with period measurement by magnification. To change the condition that traditional precision measurement depends on machining precision greatly, the concept of measuring space with time and theory of time-space coordinate transformation are proposed. Guided by the idea of measuring space with time, differential frequency measurement system and time grating displacement sensor are developed based on the proposed novel methods. And high-precision measurement is achieved without high-precision manufacture, which embeds the remarkable characteristics of low cost but high precision to the devices. Experiment and test results conform the validity of the proposed time-space concept.
基金supported by the National Natural Science Foundation of China(61671137)。
文摘Collocated multiple input multiple output(MIMO)radar,which has agile multi-beam working mode,can offer enhanced multiple targets tracking(MTT)ability.In detail,it can illuminate different targets simultaneously with multi-beam or one wide beam among multi-beam,providing greater degree of freedom in system resource control.An adaptive time-space resource and waveform control optimization model for the collocated MIMO radar with simultaneous multi-beam is proposed in this paper.The aim of the proposed scheme is to improve the overall tracking accuracy and meanwhile minimize the resource consumption under the guarantee of effective targets detection.A resource and waveform control algorithm which integrates the genetic algorithm(GA)is proposed to solve the optimization problem.The optimal transmitting waveform parameters,system sampling period,sub-array number,binary radar tracking parameterχ_i(t_k),transmitting energy and multi-beam direction vector combination are chosen adaptively,where the first one realizes the waveform control and the latter five realize the timespace resource allocation.Simulation results demonstrate the effectiveness of the proposed control method.
基金supported by the National Natural Science Fundation of China (61671137)。
文摘Compared with the traditional phased array radar, the co-located multiple-input multiple-output(MIMO) radar is able to transmit orthogonal waveforms to form different illuminating modes, providing a larger freedom degree in radar resource management. In order to implement the effective resource management for the co-located MIMO radar in multi-target tracking,this paper proposes a resource management optimization model,where the system resource consumption and the tracking accuracy requirements are considered comprehensively. An adaptive resource management algorithm for the co-located MIMO radar is obtained based on the proposed model, where the sub-array number, sampling period, transmitting energy, beam direction and working mode are adaptively controlled to realize the time-space resource joint allocation. Simulation results demonstrate the superiority of the proposed algorithm. Furthermore, the co-located MIMO radar using the proposed algorithm can satisfy the predetermined tracking accuracy requirements with less comprehensive cost compared with the phased array radar.
基金supported in part by the Nationa Natural Science Foundation of China (61876011)the National Key Research and Development Program of China (2022YFB4703700)+1 种基金the Key Research and Development Program 2020 of Guangzhou (202007050002)the Key-Area Research and Development Program of Guangdong Province (2020B090921003)。
文摘Recently, there have been some attempts of Transformer in 3D point cloud classification. In order to reduce computations, most existing methods focus on local spatial attention,but ignore their content and fail to establish relationships between distant but relevant points. To overcome the limitation of local spatial attention, we propose a point content-based Transformer architecture, called PointConT for short. It exploits the locality of points in the feature space(content-based), which clusters the sampled points with similar features into the same class and computes the self-attention within each class, thus enabling an effective trade-off between capturing long-range dependencies and computational complexity. We further introduce an inception feature aggregator for point cloud classification, which uses parallel structures to aggregate high-frequency and low-frequency information in each branch separately. Extensive experiments show that our PointConT model achieves a remarkable performance on point cloud shape classification. Especially, our method exhibits 90.3% Top-1 accuracy on the hardest setting of ScanObjectN N. Source code of this paper is available at https://github.com/yahuiliu99/PointC onT.
文摘In this paper we discuss a parallel sorting algorithm on a hypercube. Its time complexity is O(n logn/p) +O(n). Here, P is the number of processors available and n, the amount of items to be sorted. Take the problem of time-space optimization into consideration, when P≤ O(log n), this algorithm is both timespace optimal and cost optimization. But this means only speedup is O(P) and it is not linear speedup. Therefore, we further discuss relevant parallel efficiency problems.
基金This research was funded by the National Natural Science Foundation of China,Grant Number 62162039the Shaanxi Provincial Key R&D Program,China with Grant Number 2020GY-041.
文摘The Access control scheme is an effective method to protect user data privacy.The access control scheme based on blockchain and ciphertext policy attribute encryption(CP–ABE)can solve the problems of single—point of failure and lack of trust in the centralized system.However,it also brings new problems to the health information in the cloud storage environment,such as attribute leakage,low consensus efficiency,complex permission updates,and so on.This paper proposes an access control scheme with fine-grained attribute revocation,keyword search,and traceability of the attribute private key distribution process.Blockchain technology tracks the authorization of attribute private keys.The credit scoring method improves the Raft protocol in consensus efficiency.Besides,the interplanetary file system(IPFS)addresses the capacity deficit of blockchain.Under the premise of hiding policy,the research proposes a fine-grained access control method based on users,user attributes,and file structure.It optimizes the data-sharing mode.At the same time,Proxy Re-Encryption(PRE)technology is used to update the access rights.The proposed scheme proved to be secure.Comparative analysis and experimental results show that the proposed scheme has higher efficiency and more functions.It can meet the needs of medical institutions.
文摘Artificially ground freezing (AGF) is one of the main methods to establish temporary support for shaft sinking in unstable water bearing strata. Domde (1915) formula based on frozen soil strength has widely been used for designing freezing wall thickness. However, it can not ensure the stability of freezing wall, nor guarantee the safety of shaft construction as frozen depth increases in unstable water bearing strata. F A. Auld (1985, 1988)[1,2] presented a design method of freezing wall, which is on the basis of strength and stability, together with deformation of freezing wall. This paper, according to the practice in China, describes a "time -space" related design method for deep freezing wall. The method is based on "time-space" concept, which includes influence of excavation rate of advance, unsupported length of freezing wall and the sump state on inward deformation of freezing wall, and the allowable pipe deformation caused by inward deformation of freezing wall. Finally, successful application of this method to the large scale coal mine-Jining No. 2 Mine[3] in Shandong Province of China is presented. It saved much investment compared with F. A. Auld’s design for the same mine.
基金Supported by the High Technology Research and Development Programme of China (No. 2008AA01A328)the National Natural Science Foundation of China (No. 60772022)+2 种基金the Program for New Century Excellent Talents in University (No. NCET-05-0112)the Program for Changjiang Scholars and Innovative Research Team in University of MOE, China (No. IRT0609)111 Project (No. B07005)
文摘This paper researched the traffic of optical networks in time-space complexity,proposed a novel traf-fic model for complex optical networks based on traffic grooming,designed a traffic generator GTS(gener-ator based on time and space)with 'centralized+distributed' idea,and then made a simulation in Clanguage.Experiments results show that GTS can produce the virtual network topology which can changedynamically with the characteristic of scaling-free network.GTS can also groom the different traffic andtrigger them under real-time or scheduling mechanisms,generating different optical connections.Thistraffic model is convenient for the simulation of optical networks considering the traffic complexity.
基金the National Natural Science Foundation of China under Grant Nos.12271339 and 12201391.
文摘In this paper,finite difference schemes for solving time-space fractional diffusion equations in one dimension and two dimensions are proposed.The temporal derivative is in the Caputo-Hadamard sense for both cases.The spatial derivative for the one-dimensional equation is of Riesz definition and the two-dimensional spatial derivative is given by the fractional Laplacian.The schemes are proved to be unconditionally stable and convergent.The numerical results are in line with the theoretical analysis.
基金supported by the National Natural Science Foundation of China(Grant No.92365206)the support of the China Postdoctoral Science Foundation(Certificate Number:2023M740272)+1 种基金supported by the National Natural Science Foundation of China(Grant No.12247168)China Postdoctoral Science Foundation(Certificate Number:2022TQ0036)。
文摘We introduce Quafu-Qcover,an open-source cloud-based software package developed for solving combinatorial optimization problems using quantum simulators and hardware backends.Quafu-Qcover provides a standardized and comprehensive workflow that utilizes the quantum approximate optimization algorithm(QAOA).It facilitates the automatic conversion of the original problem into a quadratic unconstrained binary optimization(QUBO)model and its corresponding Ising model,which can be subsequently transformed into a weight graph.The core of Qcover relies on a graph decomposition-based classical algorithm,which efficiently derives the optimal parameters for the shallow QAOA circuit.Quafu-Qcover incorporates a dedicated compiler capable of translating QAOA circuits into physical quantum circuits that can be executed on Quafu cloud quantum computers.Compared to a general-purpose compiler,our compiler demonstrates the ability to generate shorter circuit depths,while also exhibiting superior speed performance.Additionally,the Qcover compiler has the capability to dynamically create a library of qubits coupling substructures in real-time,utilizing the most recent calibration data from the superconducting quantum devices.This ensures that computational tasks can be assigned to connected physical qubits with the highest fidelity.The Quafu-Qcover allows us to retrieve quantum computing sampling results using a task ID at any time,enabling asynchronous processing.Moreover,it incorporates modules for results preprocessing and visualization,facilitating an intuitive display of solutions for combinatorial optimization problems.We hope that Quafu-Qcover can serve as an instructive illustration for how to explore application problems on the Quafu cloud quantum computers.
文摘Cloud computing provides a diverse and adaptable resource pool over the internet,allowing users to tap into various resources as needed.It has been seen as a robust solution to relevant challenges.A significant delay can hamper the performance of IoT-enabled cloud platforms.However,efficient task scheduling can lower the cloud infrastructure’s energy consumption,thus maximizing the service provider’s revenue by decreasing user job processing times.The proposed Modified Chimp-Whale Optimization Algorithm called Modified Chimp-Whale Optimization Algorithm(MCWOA),combines elements of the Chimp Optimization Algorithm(COA)and the Whale Optimization Algorithm(WOA).To enhance MCWOA’s identification precision,the Sobol sequence is used in the population initialization phase,ensuring an even distribution of the population across the solution space.Moreover,the traditional MCWOA’s local search capabilities are augmented by incorporating the whale optimization algorithm’s bubble-net hunting and random search mechanisms into MCWOA’s position-updating process.This study demonstrates the effectiveness of the proposed approach using a two-story rigid frame and a simply supported beam model.Simulated outcomes reveal that the new method outperforms the original MCWOA,especially in multi-damage detection scenarios.MCWOA excels in avoiding false positives and enhancing computational speed,making it an optimal choice for structural damage detection.The efficiency of the proposed MCWOA is assessed against metrics such as energy usage,computational expense,task duration,and delay.The simulated data indicates that the new MCWOA outpaces other methods across all metrics.The study also references the Whale Optimization Algorithm(WOA),Chimp Algorithm(CA),Ant Lion Optimizer(ALO),Genetic Algorithm(GA)and Grey Wolf Optimizer(GWO).
基金supported by the Beijing Academy of Quantum Information Sciencessupported by the National Natural Science Foundation of China(Grant No.92365206)+2 种基金the support of the China Postdoctoral Science Foundation(Certificate Number:2023M740272)supported by the National Natural Science Foundation of China(Grant No.12247168)China Postdoctoral Science Foundation(Certificate Number:2022TQ0036)。
文摘With the rapid advancement of quantum computing,hybrid quantum–classical machine learning has shown numerous potential applications at the current stage,with expectations of being achievable in the noisy intermediate-scale quantum(NISQ)era.Quantum reinforcement learning,as an indispensable study,has recently demonstrated its ability to solve standard benchmark environments with formally provable theoretical advantages over classical counterparts.However,despite the progress of quantum processors and the emergence of quantum computing clouds,implementing quantum reinforcement learning algorithms utilizing parameterized quantum circuits(PQCs)on NISQ devices remains infrequent.In this work,we take the first step towards executing benchmark quantum reinforcement problems on real devices equipped with at most 136 qubits on the BAQIS Quafu quantum computing cloud.The experimental results demonstrate that the policy agents can successfully accomplish objectives under modified conditions in both the training and inference phases.Moreover,we design hardware-efficient PQC architectures in the quantum model using a multi-objective evolutionary algorithm and develop a learning algorithm that is adaptable to quantum devices.We hope that the Quafu-RL can be a guiding example to show how to realize machine learning tasks by taking advantage of quantum computers on the quantum cloud platform.
基金National Natural Science Foundation of China(Nos.42071444,42101444)。
文摘Cultural relics line graphic serves as a crucial form of traditional artifact information documentation,which is a simple and intuitive product with low cost of displaying compared with 3D models.Dimensionality reduction is undoubtedly necessary for line drawings.However,most existing methods for artifact drawing rely on the principles of orthographic projection that always cannot avoid angle occlusion and data overlapping while the surface of cultural relics is complex.Therefore,conformal mapping was introduced as a dimensionality reduction way to compensate for the limitation of orthographic projection.Based on the given criteria for assessing surface complexity,this paper proposed a three-dimensional feature guideline extraction method for complex cultural relic surfaces.A 2D and 3D combined factor that measured the importance of points on describing surface features,vertex weight,was designed.Then the selection threshold for feature guideline extraction was determined based on the differences between vertex weight and shape index distributions.The feasibility and stability were verified through experiments conducted on real cultural relic surface data.Results demonstrated the ability of the method to address the challenges associated with the automatic generation of line drawings for complex surfaces.The extraction method and the obtained results will be useful for line graphic drawing,displaying and propaganda of cultural relics.