Low Earth Orbit(LEO)multibeam satellites will be widely used in the next generation of satellite communication systems,whose inter-beam interference will inevitably limit the performance of the whole system.Nonlinear ...Low Earth Orbit(LEO)multibeam satellites will be widely used in the next generation of satellite communication systems,whose inter-beam interference will inevitably limit the performance of the whole system.Nonlinear precoding such as Tomlinson-Harashima precoding(THP)algorithm has been proved to be a promising technology to solve this problem,which has smaller noise amplification effect compared with linear precoding.However,the similarity of different user channels(defined as channel correlation)will degrade the performance of THP algorithm.In this paper,we qualitatively analyze the inter-beam interference in the whole process of LEO satellite over a specific coverage area,and the impact of channel correlation on Signal-to-Noise Ratio(SNR)of receivers when THP is applied.One user grouping algorithm is proposed based on the analysis of channel correlation,which could decrease the number of users with high channel correlation in each precoding group,thus improve the performance of THP.Furthermore,our algorithm is designed under the premise of co-frequency deployment and orthogonal frequency division multiplexing(OFDM),which leads to more users under severe inter-beam interference compared to the existing research on geostationary orbit satellites broadcasting systems.Simulation results show that the proposed user grouping algorithm possesses higher channel capacity and better bit error rate(BER)performance in high SNR conditions relative to existing works.展开更多
Taking the time varying nature of wireless channels into account, two user selection schemes with lower complexity are developed for multiple-input multiple-output broadcast (MIMO BC)systems. According to the relati...Taking the time varying nature of wireless channels into account, two user selection schemes with lower complexity are developed for multiple-input multiple-output broadcast (MIMO BC)systems. According to the relationship between coherence time and Doppler frequency, an information frame is divided into several segments. At the beginning of each segment, the user selection is carded out with the greedy selection algorithm. In the simplified user selection algorithms employing the temporal correlation (SUSTC), the selection results are applied for all the remaining slots in each segment. But in the improved simplified user selection algorithms employing the temporal correlation(ISUSTC), at the remaining slots, users are kept with favorable channel conditions selected at the previous slot, and other users are updated from the candidate pool to communicate simultaneously. Simulations show that compared with the greedy user selection method, the proposed algorithms can reduce the selection complexity with a little sum capacity loss.展开更多
This letter proposes a sliced-gated-convolutional neural network with belief propagation(SGCNN-BP) architecture for decoding long codes under correlated noise. The basic idea of SGCNNBP is using Neural Networks(NN) to...This letter proposes a sliced-gated-convolutional neural network with belief propagation(SGCNN-BP) architecture for decoding long codes under correlated noise. The basic idea of SGCNNBP is using Neural Networks(NN) to transform the correlated noise into white noise, setting up the optimal condition for a standard BP decoder that takes the output from the NN. A gate-controlled neuron is used to regulate information flow and an optional operation—slicing is adopted to reduce parameters and lower training complexity. Simulation results show that SGCNN-BP has much better performance(with the largest gap being 5dB improvement) than a single BP decoder and achieves a nearly 1dB improvement compared to Fully Convolutional Networks(FCN).展开更多
Air-to-ground wireless channel modeling for unmanned aerial vehicle(UAV)communications has been widely studied.However,channel modeling for UAV swarm-enabled cooperative communication still needs investigation,where t...Air-to-ground wireless channel modeling for unmanned aerial vehicle(UAV)communications has been widely studied.However,channel modeling for UAV swarm-enabled cooperative communication still needs investigation,where the impact of UAV positions on the spatial channel characteristics is of particular importance.In this paper,we consider a UAV swarm-enabled virtual multiple input multiple output(MIMO)system,where multiple single-antenna UAVs cooperatively transmit to multiple ground users(GUs).We establish a common coordinate system,as well as a UAV swarm-oriented coordinate system,to describe the relative positions of the GUs and the UAV elements,respectively.Based on the established coordinate systems,geometric ray superposition method is applied to describe the spatial channel matrix.The proposed modeling framework can be directly used to describe the line-of-sight and two-ray propagations,and can be extended for including more practical spatial features such as multipath scattering,inter-UAV blockage,and random UAV jittering,etc.Based on the proposed model,we further analyze the spatial correlation among the virtual MIMO links of GUs located at different positions.Via extensive simulations,we show that thanks to the flexible deployment of UAVs,the virtual MIMO array structure can be conveniently configured to get desired channel properties,such as the channel capacity,eigenvalue and condition number distribution,and spatial correlation distribution.This shows the possibility and importance of exploiting a new design dimension,i.e.,the UAV swarm pattern,in such cooperative virtual MIMO systems.展开更多
Focusing on the degradation of foggy images, a restora- tion approach from a single image based on spatial correlation of dark channel prior is proposed. Firstly, the transmission of each pixel is estimated by the spa...Focusing on the degradation of foggy images, a restora- tion approach from a single image based on spatial correlation of dark channel prior is proposed. Firstly, the transmission of each pixel is estimated by the spatial correlation of dark channel prior. Secondly, a degradation model is utilized to restore the foggy image. Thirdly, the final recovered image, with enhanced contrast, is obtained by performing a post-processing technique based on just-noticeable difference. Experimental results demonstrate that the information of a foggy image can be recovered perfectly by the proposed method, even in the case of the abrupt depth changing scene.展开更多
The paper reports on investigations into the effect of spatial correlation on channel estimation and capacity of a multiple input multiple output (MIMO) wireless communication system. Least square (LS), scaled least s...The paper reports on investigations into the effect of spatial correlation on channel estimation and capacity of a multiple input multiple output (MIMO) wireless communication system. Least square (LS), scaled least square (SLS) and minimum mean square error (MMSE) methods are considered for estimating channel properties of a MIMO system using training sequences. The undertaken mathematical analysis reveals that the accuracy of the scaled least square (SLS) and minimum mean square error (MMSE) channel estimation methods are determined by the sum of eigenvalues of the channel correlation matrix. It is shown that for a fixed transmitted power to noise ratio (TPNR) assumed in the training mode, a higher spatial correlation has a positive effect on the performance of SLS and MMSE estimation methods. The effect of accuracy of the estimated Channel State Information (CSI) on MIMO system capacity is illustrated by computer simulations for an uplink case in which only the mobile station (MS) transmitter is surrounded by scattering objects.展开更多
To investigate the impact of antenna correlation on secrecy performance in MIMO wiretap channels with Nakagami-m fading, the expressions of secrecy outage probability and positive secrecy probability were derived. Div...To investigate the impact of antenna correlation on secrecy performance in MIMO wiretap channels with Nakagami-m fading, the expressions of secrecy outage probability and positive secrecy probability were derived. Diversity order and array gain were also achieved for further insight. The study was based on the information theory that physical layer security can be guaranteed when the quality of the main channel is higher than that of the eavesdropper's channel. Monte Carlo simulations well validated the numerical results of analytic expressions. It was shown that antenna correlation is detrimental to secrecy performance when average SNR of the main channel is at medium and high level. Interestingly, when average SNR of the main channel reduces to low level, the effect of antenna correlation becomes benefi cial to secrecy performance.展开更多
In Multiple-Input Multiple-Output( MIMO) system, the number of positive channel matrix eigenvalues is directly related to system performance. In order to characterize and model channel matrix eigenvalues,channel measu...In Multiple-Input Multiple-Output( MIMO) system, the number of positive channel matrix eigenvalues is directly related to system performance. In order to characterize and model channel matrix eigenvalues,channel measurements at 6. 0- 6. 4GHz by using 4 × 4 MIMO structure were conducted in a typical classroom environment. Based on measured data, the eigenvalues were modeled as Log-Normal distributed random variables and parameterized. Furthermore, Cross-Correlation( CC) coefficients of eigenvalues were estimated. The measurement results show that,under both Light-Of-Sight( LOS) and NonLight-Of-Sight( NLOS) scenarios,eigenvalues are highly de-correlated so that CC can be ignored for eigenvalue model.展开更多
In order to investigate the impact of channel model parameters on the channel capacity of a multipleinput multiple-output (MIMO) system, a novel method is proposed to explore the channel capacity under Rayleigh fiat...In order to investigate the impact of channel model parameters on the channel capacity of a multipleinput multiple-output (MIMO) system, a novel method is proposed to explore the channel capacity under Rayleigh fiat fading with correlated transmit and receive antennas. The optimal transmitting direction which can achieve maximum channel capacity is derived using random matrices theory. In addition, the closed-form expression for the channel capacity of MIMO systems is given by utilizing the properties of Wishart distribution when SNR is high. Computer simulation results show that the channel capacity is maximized when the antenna spacing increases to a certain point, and furthermore, the larger the scattering angle is, the more quickly the channel capacity converges to its maximum. At high SNR (〉12 dB), the estimation of capacity is close to its true wlue. And, when the same array configuration is adopted both at the transmitter and the receiver, the UCA yields higher channel capacity than ULA.展开更多
Due to the influence of scatterers around the receiving antenna, the multipath signal in satellite mobile communication systems is correlated with each other which would influence the system performance. There is no s...Due to the influence of scatterers around the receiving antenna, the multipath signal in satellite mobile communication systems is correlated with each other which would influence the system performance. There is no systematic standard on the channel modelling of the wideband satellite channel at present, so the study of the modelling of the wideband satellite channel is of great importance. In this paper, firstly we created a multi-beam model which can figure out the antenna gain of the nth component beam. Secondly, we combined the characteristics of multi-beam satellite channel and the distribution of the scatterers, and set up a three-dimension random channel model. This model is more realistic for satellite communication system since it considers the height of scatterers. According to the channel models, we had the formula of spatial correlation coefficient. We used the formula to calculate the relationship between spatial correlation coefficient and the interval of antennas. The result shows that the spatial correlation exists and cannot be ignored while modeling for mobile satellite system.展开更多
The lattice-reduction (LR) has been developed to im- prove the performance of the zero-forcing (ZF) precoder in multiple input multiple output (MIMO) systems. Under the assumptions of uncorrelated flat fading ch...The lattice-reduction (LR) has been developed to im- prove the performance of the zero-forcing (ZF) precoder in multiple input multiple output (MIMO) systems. Under the assumptions of uncorrelated flat fading channel model and perfect channel state information at the transmitter (CSIT), an LR-aided ZF precoder is able to collect the full transmit diversity. With the complex Lenstra- Lenstra-Lov^sz (LLL) algorithm and limited feedforward structure, an LR-aided linear minimum-mean-square-error (LMMSE) pre- coder for spatial correlated MIMO channels and imperfect CSIT is proposed to achieve lower bit error rate (BER). Assuming a time division duplexing (TDD) MIMO system, correlated block flat fad- ing channel and LMMSE uplink channel estimator, it is proved that the proposed LR-aided LMMSE precoder can also obtain the full transmit diversity through an analytical approach. Furthermore, the simulation results show that with the quadrature phase shift keying (QPSK) modulation at the transmitter, the uncoded and coded BERs of the LR-aided LMMSE precoder are lower than that of the traditional LMMSE precoder respectively when Eb-No is greater than 10 dB and 12 dB at all correlation coefficients.展开更多
In this paper,we have modeled a linear precoder for indoor multiuser multiple input multiple output(MU-MIMO)system with imperfect channel state information(CSI)at transmitter.The Rician channel is presumed to be mutua...In this paper,we have modeled a linear precoder for indoor multiuser multiple input multiple output(MU-MIMO)system with imperfect channel state information(CSI)at transmitter.The Rician channel is presumed to be mutually coupled and spatially,temporarily correlated.The imperfection with CSI is primarily due to the channel estimation error at receiver and feedback delay amidst the receiver and transmitter in CSI transmission.Along with,the insufficient spacing between the antenna at transmitter and receiver persuades mutual coupling(MC)among the array elements.In addition,the MIMO channel is presumed to be jointly correlated(Weichselberger correlation model).When we look back on the existing precoder design,it considered spatial correlation alone disregarding joint correlation of antenna array elements.With all above assumption,we have designed a linear precoder which minimizes mean squared error(MSE)subjected to total transmit power constraint for MUMIMO system.The simulation results proven that proposed precoder shows substantial enhancement in bit error rate(BER)performance in comparison with the existing technique.The mathematical analysis corroborates the simulation results.展开更多
Capacity of dense coding via correlated noisy channel is greater than that via uncorrelated noisy channel.It is shown that the weak measurement and reversal measurement need to further improve their quantum dense codi...Capacity of dense coding via correlated noisy channel is greater than that via uncorrelated noisy channel.It is shown that the weak measurement and reversal measurement need to further improve their quantum dense coding capacity in correlated amplitude damping channel,but this improvement is very small in correlated phase damping channel and correlated depolarizing channel.展开更多
The message blinding method is the most efficient and secure countermeasure against first-order differential power analysis(DPA).Although cross correlation attacks(CCAs) were given for defeating message blinding metho...The message blinding method is the most efficient and secure countermeasure against first-order differential power analysis(DPA).Although cross correlation attacks(CCAs) were given for defeating message blinding methods,however searching for correlation points is difficult for noise,misalignment in practical environment.In this paper,we propose an optimized cross correlation power attack for message blinding exponentiation algorithms.The attack method can select the more correlative power points of share one operation in the modular multiplication by comparing variances between correlation coefficients.Further we demonstrate that the attack method is more efficient in experiments with hardware implementation of RSA on a crypto chip card.In addition to the proposed CCA method can recovery all 1024 bits secret key and recognition rate increases to 100%even when the recorded signals are noisy.展开更多
In this paper,a space-time correlation based fast regional spectrum sensing(RSS)scheme is proposed to reduce the time and energy consumption of traditional spatial spectrum sensing. The target region is divided into s...In this paper,a space-time correlation based fast regional spectrum sensing(RSS)scheme is proposed to reduce the time and energy consumption of traditional spatial spectrum sensing. The target region is divided into small meshes,and all meshes are clustered into highly related groups using the spatial correlation among them. In each group,some representative meshes are selected as detecting meshes(DMs)using a multi-center mesh(MCM)clustering algorithm,while other meshes(EMs)are estimated according to their correlations with DMs and the Markov modeled dependence on history by MAP principle. Thus,detecting fewer meshes saves the sensing consumption. Since two independent estimation processes may provide contradictory results,minimum entropy principle is adopted to merge the results. Tested with data acquired by radio environment mapping measurement conducted in the downtown Beijing,our scheme is capable to reduce the consumption of traditional sensing method with acceptable sensing performance.展开更多
Time resolution of multipath delay profiles measured by using autocorrelation of pseudonoise (PN) code sequence is generally limited by the chip rate of the PN code sequence. In this paper, we propose a simple method ...Time resolution of multipath delay profiles measured by using autocorrelation of pseudonoise (PN) code sequence is generally limited by the chip rate of the PN code sequence. In this paper, we propose a simple method to improve the time resolution of delay profiles measured by the PN correlation method. Effectiveness of this method is demonstrated by indoor wireless propagation experiments.展开更多
We investigate how the correlated actions of quantum channels affect the robustness of entangled states.We consider the Bell-like state and random two-qubit pure states in the correlated depolarizing,bit flip,bit-phas...We investigate how the correlated actions of quantum channels affect the robustness of entangled states.We consider the Bell-like state and random two-qubit pure states in the correlated depolarizing,bit flip,bit-phase flip,and phase flip channels.It is found that the robustness of two-qubit pure states can be noticeably enhanced due to the correlations between consecutive actions of these noisy channels,and the Bell-like state is always the most robust one.We also consider the robustness of three-qubit pure states in correlated noisy channels.For the correlated bit flip and phase flip channels,the result shows that although the most robust and most fragile states are locally unitary equivalent,they exhibit different robustness in different correlated channels,and the effect of channel correlations on them is also significantly different.However,for the correlated depolarizing and bit-phase flip channels,the robustness of two special three-qubit pure states is exactly the same.Moreover,compared with the random three-qubit pure states,they are neither the most robust states nor the most fragile states.展开更多
The dual-port compact multiple-input multiple-output(MIMO)dipole antennas with close spacing d of 0.5λand 0.3λare designed,and some electromagnetic band gap(EBG)structures are inserted between them to reduce mutual ...The dual-port compact multiple-input multiple-output(MIMO)dipole antennas with close spacing d of 0.5λand 0.3λare designed,and some electromagnetic band gap(EBG)structures are inserted between them to reduce mutual coupling.Those MIMO antennas with d=0.5λand 0.3λ,and with different mutual couplings are fabricated and measured,the channel capacity and correlation coefficient(CC)are analyzed and compared in a rich multipath reverberation chamber(RC),an office and a conference room.Results show that if d is reduced from 0.5λto 0.3λ,in the RCs,channel capacities of all the antennas are very close to that of the i.i.d.Rayleigh channel,although the average CCs are increased from 0.168 in the nonlossy RC to 0.269 in the lossy RC.In the office and conference rooms,compared with the RC,the average capacities of those antennas get a slight reduction,however,in most cases,the capacity of d=0.5λis larger than that of d=0.3λ,and the antennas with EBG have a larger capacity compared with the antennas without EBG,with a corresponding reduction of CC.A non-line-of-sight(NLOS)scenario of through-the-wall is also investigated.展开更多
We present in this paper a wideband RF demodulator using a five-port correlator and a power detector for channel sounding applications. The demodulator has been fabricated using microstrip components. The correlator r...We present in this paper a wideband RF demodulator using a five-port correlator and a power detector for channel sounding applications. The demodulator has been fabricated using microstrip components. The correlator receives from the five-port qualities that allow it to be low-cost and less sensitive to the phase and amplitude imbalances. A calibration procedure is proposed to find the complex envelope of the RF signal applied at the input of the five-port correlator. Simulation with Advanced Design System software and measurement results have been conducted to demonstrate its capabilities as a RF signal demodulator operating in a wideband around 2.4 GHz frequency.展开更多
基金supported by the Key R&D Project of the Ministry of Science and Technology of China(2020YFB1808005)。
文摘Low Earth Orbit(LEO)multibeam satellites will be widely used in the next generation of satellite communication systems,whose inter-beam interference will inevitably limit the performance of the whole system.Nonlinear precoding such as Tomlinson-Harashima precoding(THP)algorithm has been proved to be a promising technology to solve this problem,which has smaller noise amplification effect compared with linear precoding.However,the similarity of different user channels(defined as channel correlation)will degrade the performance of THP algorithm.In this paper,we qualitatively analyze the inter-beam interference in the whole process of LEO satellite over a specific coverage area,and the impact of channel correlation on Signal-to-Noise Ratio(SNR)of receivers when THP is applied.One user grouping algorithm is proposed based on the analysis of channel correlation,which could decrease the number of users with high channel correlation in each precoding group,thus improve the performance of THP.Furthermore,our algorithm is designed under the premise of co-frequency deployment and orthogonal frequency division multiplexing(OFDM),which leads to more users under severe inter-beam interference compared to the existing research on geostationary orbit satellites broadcasting systems.Simulation results show that the proposed user grouping algorithm possesses higher channel capacity and better bit error rate(BER)performance in high SNR conditions relative to existing works.
基金The National High Technology Research and Develop-ment Program of China(863 Program)(No.2006AA01Z268)the NationalNatural Science Foundation of China(No.60496311).
文摘Taking the time varying nature of wireless channels into account, two user selection schemes with lower complexity are developed for multiple-input multiple-output broadcast (MIMO BC)systems. According to the relationship between coherence time and Doppler frequency, an information frame is divided into several segments. At the beginning of each segment, the user selection is carded out with the greedy selection algorithm. In the simplified user selection algorithms employing the temporal correlation (SUSTC), the selection results are applied for all the remaining slots in each segment. But in the improved simplified user selection algorithms employing the temporal correlation(ISUSTC), at the remaining slots, users are kept with favorable channel conditions selected at the previous slot, and other users are updated from the candidate pool to communicate simultaneously. Simulations show that compared with the greedy user selection method, the proposed algorithms can reduce the selection complexity with a little sum capacity loss.
基金supported by Beijing Natural Science Foundation (L202003)。
文摘This letter proposes a sliced-gated-convolutional neural network with belief propagation(SGCNN-BP) architecture for decoding long codes under correlated noise. The basic idea of SGCNNBP is using Neural Networks(NN) to transform the correlated noise into white noise, setting up the optimal condition for a standard BP decoder that takes the output from the NN. A gate-controlled neuron is used to regulate information flow and an optional operation—slicing is adopted to reduce parameters and lower training complexity. Simulation results show that SGCNN-BP has much better performance(with the largest gap being 5dB improvement) than a single BP decoder and achieves a nearly 1dB improvement compared to Fully Convolutional Networks(FCN).
基金supported by the National Key Research and Development Program of China(2018YFA0701602)the National Natural Science Foundation of China(NSFC)under Grants 61941104,61921004,62171240,61771264the Key Research and Development Program of Shandong Province under Grant 2020CXGC010108。
文摘Air-to-ground wireless channel modeling for unmanned aerial vehicle(UAV)communications has been widely studied.However,channel modeling for UAV swarm-enabled cooperative communication still needs investigation,where the impact of UAV positions on the spatial channel characteristics is of particular importance.In this paper,we consider a UAV swarm-enabled virtual multiple input multiple output(MIMO)system,where multiple single-antenna UAVs cooperatively transmit to multiple ground users(GUs).We establish a common coordinate system,as well as a UAV swarm-oriented coordinate system,to describe the relative positions of the GUs and the UAV elements,respectively.Based on the established coordinate systems,geometric ray superposition method is applied to describe the spatial channel matrix.The proposed modeling framework can be directly used to describe the line-of-sight and two-ray propagations,and can be extended for including more practical spatial features such as multipath scattering,inter-UAV blockage,and random UAV jittering,etc.Based on the proposed model,we further analyze the spatial correlation among the virtual MIMO links of GUs located at different positions.Via extensive simulations,we show that thanks to the flexible deployment of UAVs,the virtual MIMO array structure can be conveniently configured to get desired channel properties,such as the channel capacity,eigenvalue and condition number distribution,and spatial correlation distribution.This shows the possibility and importance of exploiting a new design dimension,i.e.,the UAV swarm pattern,in such cooperative virtual MIMO systems.
基金supported by "the Twelfth Five-year Civil Aerospace Technologies Pre-Research Program"(D040201)
文摘Focusing on the degradation of foggy images, a restora- tion approach from a single image based on spatial correlation of dark channel prior is proposed. Firstly, the transmission of each pixel is estimated by the spatial correlation of dark channel prior. Secondly, a degradation model is utilized to restore the foggy image. Thirdly, the final recovered image, with enhanced contrast, is obtained by performing a post-processing technique based on just-noticeable difference. Experimental results demonstrate that the information of a foggy image can be recovered perfectly by the proposed method, even in the case of the abrupt depth changing scene.
文摘The paper reports on investigations into the effect of spatial correlation on channel estimation and capacity of a multiple input multiple output (MIMO) wireless communication system. Least square (LS), scaled least square (SLS) and minimum mean square error (MMSE) methods are considered for estimating channel properties of a MIMO system using training sequences. The undertaken mathematical analysis reveals that the accuracy of the scaled least square (SLS) and minimum mean square error (MMSE) channel estimation methods are determined by the sum of eigenvalues of the channel correlation matrix. It is shown that for a fixed transmitted power to noise ratio (TPNR) assumed in the training mode, a higher spatial correlation has a positive effect on the performance of SLS and MMSE estimation methods. The effect of accuracy of the estimated Channel State Information (CSI) on MIMO system capacity is illustrated by computer simulations for an uplink case in which only the mobile station (MS) transmitter is surrounded by scattering objects.
文摘To investigate the impact of antenna correlation on secrecy performance in MIMO wiretap channels with Nakagami-m fading, the expressions of secrecy outage probability and positive secrecy probability were derived. Diversity order and array gain were also achieved for further insight. The study was based on the information theory that physical layer security can be guaranteed when the quality of the main channel is higher than that of the eavesdropper's channel. Monte Carlo simulations well validated the numerical results of analytic expressions. It was shown that antenna correlation is detrimental to secrecy performance when average SNR of the main channel is at medium and high level. Interestingly, when average SNR of the main channel reduces to low level, the effect of antenna correlation becomes benefi cial to secrecy performance.
基金Sponsored by the National Natural Science Foundtion of China(Grant No.61371101)the Shenzhen Biological,Internet,New Energy and New Materials Industry Development Project(Grant No.JC201104210030A)+3 种基金the Science and Technology Basic Research Project of Shenzhen(Grant No.JC200903120174A)the Research Innovation Fund Project of HIT(Grant No.HIT.NSFIR.2010133)the WINDOW-Towards Pervasive Indoor Wireless NetworksSupported by the European Commission under its 7th Frame Work Program(Grant No.318992)
文摘In Multiple-Input Multiple-Output( MIMO) system, the number of positive channel matrix eigenvalues is directly related to system performance. In order to characterize and model channel matrix eigenvalues,channel measurements at 6. 0- 6. 4GHz by using 4 × 4 MIMO structure were conducted in a typical classroom environment. Based on measured data, the eigenvalues were modeled as Log-Normal distributed random variables and parameterized. Furthermore, Cross-Correlation( CC) coefficients of eigenvalues were estimated. The measurement results show that,under both Light-Of-Sight( LOS) and NonLight-Of-Sight( NLOS) scenarios,eigenvalues are highly de-correlated so that CC can be ignored for eigenvalue model.
基金the National Natural Science Foundation of China (60372055) and the National DoctoralFoundation of China (2003698027).
文摘In order to investigate the impact of channel model parameters on the channel capacity of a multipleinput multiple-output (MIMO) system, a novel method is proposed to explore the channel capacity under Rayleigh fiat fading with correlated transmit and receive antennas. The optimal transmitting direction which can achieve maximum channel capacity is derived using random matrices theory. In addition, the closed-form expression for the channel capacity of MIMO systems is given by utilizing the properties of Wishart distribution when SNR is high. Computer simulation results show that the channel capacity is maximized when the antenna spacing increases to a certain point, and furthermore, the larger the scattering angle is, the more quickly the channel capacity converges to its maximum. At high SNR (〉12 dB), the estimation of capacity is close to its true wlue. And, when the same array configuration is adopted both at the transmitter and the receiver, the UCA yields higher channel capacity than ULA.
文摘Due to the influence of scatterers around the receiving antenna, the multipath signal in satellite mobile communication systems is correlated with each other which would influence the system performance. There is no systematic standard on the channel modelling of the wideband satellite channel at present, so the study of the modelling of the wideband satellite channel is of great importance. In this paper, firstly we created a multi-beam model which can figure out the antenna gain of the nth component beam. Secondly, we combined the characteristics of multi-beam satellite channel and the distribution of the scatterers, and set up a three-dimension random channel model. This model is more realistic for satellite communication system since it considers the height of scatterers. According to the channel models, we had the formula of spatial correlation coefficient. We used the formula to calculate the relationship between spatial correlation coefficient and the interval of antennas. The result shows that the spatial correlation exists and cannot be ignored while modeling for mobile satellite system.
基金supported by the National Science Fund for Distinguished Young Scholars (60725105)the National Basic Research Program of China (2009CB320404)+4 种基金the Program for Changjiang Scholars and Innovative Research Team in University (IRT0852)the 111 Project(B08038)the National Natural Science Foundation of China (60702057)the Special Research Fund of State Key Laboratory (ISN1102003)the National Science and Technology Major Project (2011ZX03001-007-01)
文摘The lattice-reduction (LR) has been developed to im- prove the performance of the zero-forcing (ZF) precoder in multiple input multiple output (MIMO) systems. Under the assumptions of uncorrelated flat fading channel model and perfect channel state information at the transmitter (CSIT), an LR-aided ZF precoder is able to collect the full transmit diversity. With the complex Lenstra- Lenstra-Lov^sz (LLL) algorithm and limited feedforward structure, an LR-aided linear minimum-mean-square-error (LMMSE) pre- coder for spatial correlated MIMO channels and imperfect CSIT is proposed to achieve lower bit error rate (BER). Assuming a time division duplexing (TDD) MIMO system, correlated block flat fad- ing channel and LMMSE uplink channel estimator, it is proved that the proposed LR-aided LMMSE precoder can also obtain the full transmit diversity through an analytical approach. Furthermore, the simulation results show that with the quadrature phase shift keying (QPSK) modulation at the transmitter, the uncoded and coded BERs of the LR-aided LMMSE precoder are lower than that of the traditional LMMSE precoder respectively when Eb-No is greater than 10 dB and 12 dB at all correlation coefficients.
文摘In this paper,we have modeled a linear precoder for indoor multiuser multiple input multiple output(MU-MIMO)system with imperfect channel state information(CSI)at transmitter.The Rician channel is presumed to be mutually coupled and spatially,temporarily correlated.The imperfection with CSI is primarily due to the channel estimation error at receiver and feedback delay amidst the receiver and transmitter in CSI transmission.Along with,the insufficient spacing between the antenna at transmitter and receiver persuades mutual coupling(MC)among the array elements.In addition,the MIMO channel is presumed to be jointly correlated(Weichselberger correlation model).When we look back on the existing precoder design,it considered spatial correlation alone disregarding joint correlation of antenna array elements.With all above assumption,we have designed a linear precoder which minimizes mean squared error(MSE)subjected to total transmit power constraint for MUMIMO system.The simulation results proven that proposed precoder shows substantial enhancement in bit error rate(BER)performance in comparison with the existing technique.The mathematical analysis corroborates the simulation results.
基金Project supported by the National Natural Science Foundation of China(Grant No.12074027).
文摘Capacity of dense coding via correlated noisy channel is greater than that via uncorrelated noisy channel.It is shown that the weak measurement and reversal measurement need to further improve their quantum dense coding capacity in correlated amplitude damping channel,but this improvement is very small in correlated phase damping channel and correlated depolarizing channel.
基金supported in part by National Natural Science Foundation of China Project(Grant No.60873216) Scientific and Technological Research Priority Projects of Sichuan Province(Grant No. 2012GZ0017)
文摘The message blinding method is the most efficient and secure countermeasure against first-order differential power analysis(DPA).Although cross correlation attacks(CCAs) were given for defeating message blinding methods,however searching for correlation points is difficult for noise,misalignment in practical environment.In this paper,we propose an optimized cross correlation power attack for message blinding exponentiation algorithms.The attack method can select the more correlative power points of share one operation in the modular multiplication by comparing variances between correlation coefficients.Further we demonstrate that the attack method is more efficient in experiments with hardware implementation of RSA on a crypto chip card.In addition to the proposed CCA method can recovery all 1024 bits secret key and recognition rate increases to 100%even when the recorded signals are noisy.
基金supported in part by National Natural Science Foundation of China under Grants(61525101,61227801 and 61601055)in part by the National Key Technology R&D Program of China under Grant 2015ZX03002008
文摘In this paper,a space-time correlation based fast regional spectrum sensing(RSS)scheme is proposed to reduce the time and energy consumption of traditional spatial spectrum sensing. The target region is divided into small meshes,and all meshes are clustered into highly related groups using the spatial correlation among them. In each group,some representative meshes are selected as detecting meshes(DMs)using a multi-center mesh(MCM)clustering algorithm,while other meshes(EMs)are estimated according to their correlations with DMs and the Markov modeled dependence on history by MAP principle. Thus,detecting fewer meshes saves the sensing consumption. Since two independent estimation processes may provide contradictory results,minimum entropy principle is adopted to merge the results. Tested with data acquired by radio environment mapping measurement conducted in the downtown Beijing,our scheme is capable to reduce the consumption of traditional sensing method with acceptable sensing performance.
文摘Time resolution of multipath delay profiles measured by using autocorrelation of pseudonoise (PN) code sequence is generally limited by the chip rate of the PN code sequence. In this paper, we propose a simple method to improve the time resolution of delay profiles measured by the PN correlation method. Effectiveness of this method is demonstrated by indoor wireless propagation experiments.
基金the National Natural Science Foundation of China(Grant Nos.11705146 and 12175179)the Natural Science Basic Research Program of Shaanxi Province,China(Grant No.2019JQ-863)the Open Project of Shaanxi Key Laboratory for Theoretical Physics Frontiers(Grant No.SXKLTPF-K20190606)。
文摘We investigate how the correlated actions of quantum channels affect the robustness of entangled states.We consider the Bell-like state and random two-qubit pure states in the correlated depolarizing,bit flip,bit-phase flip,and phase flip channels.It is found that the robustness of two-qubit pure states can be noticeably enhanced due to the correlations between consecutive actions of these noisy channels,and the Bell-like state is always the most robust one.We also consider the robustness of three-qubit pure states in correlated noisy channels.For the correlated bit flip and phase flip channels,the result shows that although the most robust and most fragile states are locally unitary equivalent,they exhibit different robustness in different correlated channels,and the effect of channel correlations on them is also significantly different.However,for the correlated depolarizing and bit-phase flip channels,the robustness of two special three-qubit pure states is exactly the same.Moreover,compared with the random three-qubit pure states,they are neither the most robust states nor the most fragile states.
基金This work was supported by the National Natural Science Foundations of China(Grant No.61771435).
文摘The dual-port compact multiple-input multiple-output(MIMO)dipole antennas with close spacing d of 0.5λand 0.3λare designed,and some electromagnetic band gap(EBG)structures are inserted between them to reduce mutual coupling.Those MIMO antennas with d=0.5λand 0.3λ,and with different mutual couplings are fabricated and measured,the channel capacity and correlation coefficient(CC)are analyzed and compared in a rich multipath reverberation chamber(RC),an office and a conference room.Results show that if d is reduced from 0.5λto 0.3λ,in the RCs,channel capacities of all the antennas are very close to that of the i.i.d.Rayleigh channel,although the average CCs are increased from 0.168 in the nonlossy RC to 0.269 in the lossy RC.In the office and conference rooms,compared with the RC,the average capacities of those antennas get a slight reduction,however,in most cases,the capacity of d=0.5λis larger than that of d=0.3λ,and the antennas with EBG have a larger capacity compared with the antennas without EBG,with a corresponding reduction of CC.A non-line-of-sight(NLOS)scenario of through-the-wall is also investigated.
文摘We present in this paper a wideband RF demodulator using a five-port correlator and a power detector for channel sounding applications. The demodulator has been fabricated using microstrip components. The correlator receives from the five-port qualities that allow it to be low-cost and less sensitive to the phase and amplitude imbalances. A calibration procedure is proposed to find the complex envelope of the RF signal applied at the input of the five-port correlator. Simulation with Advanced Design System software and measurement results have been conducted to demonstrate its capabilities as a RF signal demodulator operating in a wideband around 2.4 GHz frequency.