Spinodal phase separation behavior of poly(methyl methacrylate)/poly(styrene-co-acrylonitrile) (PMMA/SAN) blends was investigated by the time-resolved small angle light scattering (SALS) technique. It was found that t...Spinodal phase separation behavior of poly(methyl methacrylate)/poly(styrene-co-acrylonitrile) (PMMA/SAN) blends was investigated by the time-resolved small angle light scattering (SALS) technique. It was found that the influence of temperature on the scattering intensity evolution followed the time-temperature superposition principle. The relationship between temperature and the relaxation ti me of scattering intensity I(t) can be well described by the Williams-Landel-Ferry (WLF) function.展开更多
Using the time-temperature superposition principle, the dynamic properties of viscoelastic materials can be shifted to obtain a master curve. A shifting method based on the Generalized Maxwell Model ( GMMBS ) , is p...Using the time-temperature superposition principle, the dynamic properties of viscoelastic materials can be shifted to obtain a master curve. A shifting method based on the Generalized Maxwell Model ( GMMBS ) , is proposed for the time-temperature superposition process of thermo-rheological simple, linear viscoelastic materials. Experimental data points under different temperatures are all considered as a whole and expressed with one unified representation by the GMMBS, which utilizes the feature that the Generalized Maxwell Model can describe a large class of viscoelastic materials with needed accuracy. Compared with traditional overlapping window based shifting methods, the proposed constitutive model based method needn't judge the size or existence of the overlapping window first, and computes shift factors with useful information contained in all experimental data points. The effectiveness of the proposed method is verified by simulated data, generated from published test results, with various experimental noise levels, densities of data points and sizes of overlapping windows. It has been shown that the GMMBS is robust and accurate.展开更多
Many important vibration phenomena which simultaneously contain quadratic nonlinear stiffness and damping exist in the complicated vibrating systems under practical circumstances. In this paper, we established a 2-deg...Many important vibration phenomena which simultaneously contain quadratic nonlinear stiffness and damping exist in the complicated vibrating systems under practical circumstances. In this paper, we established a 2-degree-of-freedom (DOF) nonlinear vibration model for such a system, deduced the differential equations of motion which govern its dynamics, and worked out the solutions for the governing equations by the principle of superposition of nonlinear normal modes (NLNM) based on Shaw’s theory of invariant manifolds. We conducted numerical simulations with the established model, using superposition of nonlinear normal modes and direct numerical methods, respectively. The obtained results demonstrate the feasibility of the proposed method in that its calculated data varies in a similar tendency to that of the direct numerical solutions.展开更多
The article is devoted to proving the inconsistency of set theory arising from the existence of strange trees. All steps of the proof rely on common informal set-theoretic reasoning, but they take into account the pro...The article is devoted to proving the inconsistency of set theory arising from the existence of strange trees. All steps of the proof rely on common informal set-theoretic reasoning, but they take into account the prohibitions that were introduced into axiomatic set theories in order to overcome the difficulties encountered by the naive Cantor set theory. Therefore, in fact, the article is about proving the inconsistency of existing axiomatic set theories, in particular, the ZFC theory.展开更多
Some basic physics of burgeoning quantum neuroscience is described. Anatomy of the neuron suggests that nonsynaptic mechanisms of signal transmittance occur via electric current acceleration and companion electromagne...Some basic physics of burgeoning quantum neuroscience is described. Anatomy of the neuron suggests that nonsynaptic mechanisms of signal transmittance occur via electric current acceleration and companion electromagnetic field fluctuation. I have named this mechanism of solution chemistry the ebb effect. Phase-locking between neural structure and electric fields that are emergent from cellular EM field fluctuations, in addition to feedback loops within neural networks, are the probable driver of macroscopic oscillation and flow shapes in the brain. CEMI (conscious electromagnetic information) theory is a promising framework for explaining intentionality and the spectrum of arousal as EM field effects. Relatively low frequency electromagnetic radiation is emitted by the accelerating electric currents of neurons. It is hypothesized that this EM radiation superpositions with molecular structure as it spreads to comprise percepts, the hybrid wavelengths of which form subjective images while wavelength vibrations result in subjective feel. These superposition arrays are termed a coherence field, and in combination with the synchronizing influence of quantum entanglement and electromagnetic fluctuations may constitute much of awareness’ substance. If conclusively verified, coherence field theory should have significance ranging from the treatment of perceptual disorders such as anosognosia to advancing foundational constructs like atomic theory.展开更多
Neuroscience and physics have progressed far enough that the explanatory gap between models of matter and the substance of perceptual experience is tantalizingly close to being bridged, at least insofar as consciousne...Neuroscience and physics have progressed far enough that the explanatory gap between models of matter and the substance of perceptual experience is tantalizingly close to being bridged, at least insofar as consciousness is produced by the brain. This paper aims to describe the basics of how signals are transmitted within neurons via electromagnetic energy fluctuations, how EM fields emergent from these energy flows manifest as the subconscious and an experience of willed agency, as well as how the quantum principles which both EM radiation and atomic structure abide combine them to form percepts from electromagnetic matter. This might be the most promising option yet for fashioning a physical paradigm that theorizes consciousness.展开更多
Time-temperature superposition principle (TTSP) was used to examine dynamic viscoelastic properties of Chinese Fir(Cunninghamia lanceolata) wood at an extremely low moisture content(0.6%).Storage modulus and loss fact...Time-temperature superposition principle (TTSP) was used to examine dynamic viscoelastic properties of Chinese Fir(Cunninghamia lanceolata) wood at an extremely low moisture content(0.6%).Storage modulus and loss factor data were obtained at different constant temperatures ranging from 25℃to 150℃in frequency multiplexing experiments(0.1 -20 Hz).All viscoelastic curves at other temperatures were shifted along the log-frequency axis to superimpose them on a reference temperature(i.e.135℃in this study) curve.The extended storage modulus and loss factor isothermal master curves were over a wide range of frequency.The shift factors were determined to be a function of temperature and fitted into the Arrhenius equation with the least squares method.The results showed that the storage modulus data were excellently fitted into the Arrhenius model,indicating the validity of the model to characterize the dynamic stiffness behavior of dry wood in the range of 25-150℃using the TTSP. However,the time-temperature equivalence was not able to predict the damping properties.展开更多
基金This work was supported by the Special Funds for Major State Basic Research Projects (Grand G1999064800)
文摘Spinodal phase separation behavior of poly(methyl methacrylate)/poly(styrene-co-acrylonitrile) (PMMA/SAN) blends was investigated by the time-resolved small angle light scattering (SALS) technique. It was found that the influence of temperature on the scattering intensity evolution followed the time-temperature superposition principle. The relationship between temperature and the relaxation ti me of scattering intensity I(t) can be well described by the Williams-Landel-Ferry (WLF) function.
基金supported by the National Science and Technology Major Project through the contract 2010zx04008-041
文摘Using the time-temperature superposition principle, the dynamic properties of viscoelastic materials can be shifted to obtain a master curve. A shifting method based on the Generalized Maxwell Model ( GMMBS ) , is proposed for the time-temperature superposition process of thermo-rheological simple, linear viscoelastic materials. Experimental data points under different temperatures are all considered as a whole and expressed with one unified representation by the GMMBS, which utilizes the feature that the Generalized Maxwell Model can describe a large class of viscoelastic materials with needed accuracy. Compared with traditional overlapping window based shifting methods, the proposed constitutive model based method needn't judge the size or existence of the overlapping window first, and computes shift factors with useful information contained in all experimental data points. The effectiveness of the proposed method is verified by simulated data, generated from published test results, with various experimental noise levels, densities of data points and sizes of overlapping windows. It has been shown that the GMMBS is robust and accurate.
基金Funded by the National Science Foundation of China (No. 50075029).
文摘Many important vibration phenomena which simultaneously contain quadratic nonlinear stiffness and damping exist in the complicated vibrating systems under practical circumstances. In this paper, we established a 2-degree-of-freedom (DOF) nonlinear vibration model for such a system, deduced the differential equations of motion which govern its dynamics, and worked out the solutions for the governing equations by the principle of superposition of nonlinear normal modes (NLNM) based on Shaw’s theory of invariant manifolds. We conducted numerical simulations with the established model, using superposition of nonlinear normal modes and direct numerical methods, respectively. The obtained results demonstrate the feasibility of the proposed method in that its calculated data varies in a similar tendency to that of the direct numerical solutions.
文摘The article is devoted to proving the inconsistency of set theory arising from the existence of strange trees. All steps of the proof rely on common informal set-theoretic reasoning, but they take into account the prohibitions that were introduced into axiomatic set theories in order to overcome the difficulties encountered by the naive Cantor set theory. Therefore, in fact, the article is about proving the inconsistency of existing axiomatic set theories, in particular, the ZFC theory.
文摘Some basic physics of burgeoning quantum neuroscience is described. Anatomy of the neuron suggests that nonsynaptic mechanisms of signal transmittance occur via electric current acceleration and companion electromagnetic field fluctuation. I have named this mechanism of solution chemistry the ebb effect. Phase-locking between neural structure and electric fields that are emergent from cellular EM field fluctuations, in addition to feedback loops within neural networks, are the probable driver of macroscopic oscillation and flow shapes in the brain. CEMI (conscious electromagnetic information) theory is a promising framework for explaining intentionality and the spectrum of arousal as EM field effects. Relatively low frequency electromagnetic radiation is emitted by the accelerating electric currents of neurons. It is hypothesized that this EM radiation superpositions with molecular structure as it spreads to comprise percepts, the hybrid wavelengths of which form subjective images while wavelength vibrations result in subjective feel. These superposition arrays are termed a coherence field, and in combination with the synchronizing influence of quantum entanglement and electromagnetic fluctuations may constitute much of awareness’ substance. If conclusively verified, coherence field theory should have significance ranging from the treatment of perceptual disorders such as anosognosia to advancing foundational constructs like atomic theory.
文摘Neuroscience and physics have progressed far enough that the explanatory gap between models of matter and the substance of perceptual experience is tantalizingly close to being bridged, at least insofar as consciousness is produced by the brain. This paper aims to describe the basics of how signals are transmitted within neurons via electromagnetic energy fluctuations, how EM fields emergent from these energy flows manifest as the subconscious and an experience of willed agency, as well as how the quantum principles which both EM radiation and atomic structure abide combine them to form percepts from electromagnetic matter. This might be the most promising option yet for fashioning a physical paradigm that theorizes consciousness.
文摘Time-temperature superposition principle (TTSP) was used to examine dynamic viscoelastic properties of Chinese Fir(Cunninghamia lanceolata) wood at an extremely low moisture content(0.6%).Storage modulus and loss factor data were obtained at different constant temperatures ranging from 25℃to 150℃in frequency multiplexing experiments(0.1 -20 Hz).All viscoelastic curves at other temperatures were shifted along the log-frequency axis to superimpose them on a reference temperature(i.e.135℃in this study) curve.The extended storage modulus and loss factor isothermal master curves were over a wide range of frequency.The shift factors were determined to be a function of temperature and fitted into the Arrhenius equation with the least squares method.The results showed that the storage modulus data were excellently fitted into the Arrhenius model,indicating the validity of the model to characterize the dynamic stiffness behavior of dry wood in the range of 25-150℃using the TTSP. However,the time-temperature equivalence was not able to predict the damping properties.