Geostatistics of extreme values makes it possible to model the asymptotic behavior of random phenomena that depend on time or space. In this paper, we propose new models of the extremal coefficient of a stationary ran...Geostatistics of extreme values makes it possible to model the asymptotic behavior of random phenomena that depend on time or space. In this paper, we propose new models of the extremal coefficient of a stationary random field where the cumulative distribution is associated with a multivariate copula. More precisely, some models of extensions of the extremogram and these derivatives are built in a spatial framework. Moreover, both these two geostatistical tools are modeled using the extremal variogram which characterizes the asymptotic stochastic behavior of the phenomena.展开更多
Consider a first-order autoregressive processes , where the innovations are nonnegative random variables with regular variation at both the right endpoint infinity and the unknown left endpoint θ. We propose estimate...Consider a first-order autoregressive processes , where the innovations are nonnegative random variables with regular variation at both the right endpoint infinity and the unknown left endpoint θ. We propose estimates for the autocorrelation parameter f and the unknown location parameter θ by taking the ratio of two sample values chosen with respect to an extreme value criteria for f and by taking the minimum of over the observed series, where represents our estimate for f. The joint limit distribution of the proposed estimators is derived using point process techniques. A simulation study is provided to examine the small sample size behavior of these estimates.展开更多
This paper expounds the nitty-gritty of stock returns transitory, periodical behavior </span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><...This paper expounds the nitty-gritty of stock returns transitory, periodical behavior </span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">of </span></span></span><span><span><span style="font-family:""><span style="font-family:Verdana;">its markets’ demands and cyclical-like tenure-changing of number of the stocks sold. Mingling of autoregressive random processes via Poisson and Extreme-Value-Distributions (Fréchet, Gumbel, and Weibull) error terms were designed, generalized and imitated to capture stylized traits of </span><span style="font-family:Verdana;">k-serial tenures (ability to handle cycles), Markov transitional mixing weights</span><span style="font-family:Verdana;">, switching of mingling autoregressive processes and full range shape changing </span><span style="font-family:Verdana;">predictive distributions (multimodalities) that are usually caused by large fluctuation</span><span style="font-family:Verdana;">s (outliers) and long-memory in stock returns. The Poisson and Extreme-Value-Distributions Mingled Autoregressive (PMA and EVDs) models were applied to a monthly number of stocks sold in Nigeria from 1960 to 2020. It was deduced that fitted Gumbel-MAR (2:1, 1) outstripped other linear models as well as best</span></span></span></span><span><span><span style="font-family:""> </span></span></span><span><span><span style="font-family:""><span style="font-family:Verdana;">fitted among the Poisson and Extreme-Value-</span><span style="font-family:Verdana;">Distributions Mingled autoregressive models subjected to the discrete monthly</span><span style="font-family:Verdana;"> stocks sold series.展开更多
提出了无线传感器网络上的一种查询——极值区域查询(peak region query,简称PRQ),即用户指定查询区域的大小和形状,例如半径为R的圆形区域,然后需要查询传感器网络中的某个区域,使得区域内传感器节点数据的某种聚集值最大.定义了极值...提出了无线传感器网络上的一种查询——极值区域查询(peak region query,简称PRQ),即用户指定查询区域的大小和形状,例如半径为R的圆形区域,然后需要查询传感器网络中的某个区域,使得区域内传感器节点数据的某种聚集值最大.定义了极值区域查询的概念,并提出一种集中式算法以求解查询结果.由于传感器节点的能量有限,为了降低查询处理过程中的能耗,提出了分布式算法EXQ(an algorithm for extreme value query processing).与集中式算法相比,EXQ不但显著降低了能耗,而且使得每个传感器的能耗更加平均,从而延长了网络的使用寿命.EXQ的基本思想是,将整个网络划分为若干相互重叠的子区域,对每个子区域通过本地数据聚集得到一个本地结果,然后对这些结果再进行全局数据聚集从而得到查询结果.从理论和实验两方面分析和比较了集中式算法和EXQ的能耗和节点负载分布.展开更多
文摘Geostatistics of extreme values makes it possible to model the asymptotic behavior of random phenomena that depend on time or space. In this paper, we propose new models of the extremal coefficient of a stationary random field where the cumulative distribution is associated with a multivariate copula. More precisely, some models of extensions of the extremogram and these derivatives are built in a spatial framework. Moreover, both these two geostatistical tools are modeled using the extremal variogram which characterizes the asymptotic stochastic behavior of the phenomena.
文摘Consider a first-order autoregressive processes , where the innovations are nonnegative random variables with regular variation at both the right endpoint infinity and the unknown left endpoint θ. We propose estimates for the autocorrelation parameter f and the unknown location parameter θ by taking the ratio of two sample values chosen with respect to an extreme value criteria for f and by taking the minimum of over the observed series, where represents our estimate for f. The joint limit distribution of the proposed estimators is derived using point process techniques. A simulation study is provided to examine the small sample size behavior of these estimates.
文摘This paper expounds the nitty-gritty of stock returns transitory, periodical behavior </span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">of </span></span></span><span><span><span style="font-family:""><span style="font-family:Verdana;">its markets’ demands and cyclical-like tenure-changing of number of the stocks sold. Mingling of autoregressive random processes via Poisson and Extreme-Value-Distributions (Fréchet, Gumbel, and Weibull) error terms were designed, generalized and imitated to capture stylized traits of </span><span style="font-family:Verdana;">k-serial tenures (ability to handle cycles), Markov transitional mixing weights</span><span style="font-family:Verdana;">, switching of mingling autoregressive processes and full range shape changing </span><span style="font-family:Verdana;">predictive distributions (multimodalities) that are usually caused by large fluctuation</span><span style="font-family:Verdana;">s (outliers) and long-memory in stock returns. The Poisson and Extreme-Value-Distributions Mingled Autoregressive (PMA and EVDs) models were applied to a monthly number of stocks sold in Nigeria from 1960 to 2020. It was deduced that fitted Gumbel-MAR (2:1, 1) outstripped other linear models as well as best</span></span></span></span><span><span><span style="font-family:""> </span></span></span><span><span><span style="font-family:""><span style="font-family:Verdana;">fitted among the Poisson and Extreme-Value-</span><span style="font-family:Verdana;">Distributions Mingled autoregressive models subjected to the discrete monthly</span><span style="font-family:Verdana;"> stocks sold series.
文摘This discussion reviews the paper by Zhengjun Zhang in the context of broader research on multivariate extreme value theory and max-stable processes.
文摘提出了无线传感器网络上的一种查询——极值区域查询(peak region query,简称PRQ),即用户指定查询区域的大小和形状,例如半径为R的圆形区域,然后需要查询传感器网络中的某个区域,使得区域内传感器节点数据的某种聚集值最大.定义了极值区域查询的概念,并提出一种集中式算法以求解查询结果.由于传感器节点的能量有限,为了降低查询处理过程中的能耗,提出了分布式算法EXQ(an algorithm for extreme value query processing).与集中式算法相比,EXQ不但显著降低了能耗,而且使得每个传感器的能耗更加平均,从而延长了网络的使用寿命.EXQ的基本思想是,将整个网络划分为若干相互重叠的子区域,对每个子区域通过本地数据聚集得到一个本地结果,然后对这些结果再进行全局数据聚集从而得到查询结果.从理论和实验两方面分析和比较了集中式算法和EXQ的能耗和节点负载分布.