Using Time-Varying AR (TVAR) model and adaptive notch filter is a new method for the non-stationary jammer suppression in Direct Sequence Spread Spectrum (DSSS). The performance of TVAR model for Instantaneous Frequen...Using Time-Varying AR (TVAR) model and adaptive notch filter is a new method for the non-stationary jammer suppression in Direct Sequence Spread Spectrum (DSSS). The performance of TVAR model for Instantaneous Frequency (IF) estimation will be affected by some factors such as basis functions. Focusing on this problem, the optimal basis function of TVAR model for the IF estimation of the LFM signal is obtained in this paper. Besides the depth and width of notching, the phase properties of notch filter affect the Signal-to-Interference plus-Noise Ratio (SINR) of correlation output to the narrowband jammer suppression in DSSS, in response to the problem the closed solution of correlation output SINR improvement has been derived when a single frequency jammer passes through direct IIR notch filter, and its performance has been compared with those of five coefficient FIR filters. Later, a novel method for LFM jammer suppression based on Fourier basis TVAR model and direct IIR notch filter is proposed. The simulation results show the effectiveness of the proposed method.展开更多
Multiple dominant gear meshing frequencies are present in the vibration signals collected from gearboxes and the conventional spiky features that represent initial gear fault conditions are usually difficult to detect...Multiple dominant gear meshing frequencies are present in the vibration signals collected from gearboxes and the conventional spiky features that represent initial gear fault conditions are usually difficult to detect. In order to solve this problem, we propose a new gearbox deterioration detection technique based on autoregressive modeling and hypothesis testing in this paper. A stationary autoregressive model was built by using a normal vibration signal from each shaft. The established autoregressive model was then applied to process fault signals from each shaft of a two-stage gearbox. What this paper investigated is a combined technique which unites a time-varying autoregressive model and a two sample Kolmogorov-Smimov goodness-of-fit test, to detect the deterioration of gearing system with simultaneously variable shaft speed and variable load. The time-varying autoregressive model residuals representing both healthy and faulty gear conditions were compared with the original healthy time-synchronous average signals. Compared with the traditional kurtosis statistic, this technique for gearbox deterioration detection has shown significant advantages in highlighting the presence of incipient gear fault in all different speed shafts involved in the meshing motion under variable conditions.展开更多
基金Supported by the Natural Science Foundation of Hebei Province (F2010000442)
文摘Using Time-Varying AR (TVAR) model and adaptive notch filter is a new method for the non-stationary jammer suppression in Direct Sequence Spread Spectrum (DSSS). The performance of TVAR model for Instantaneous Frequency (IF) estimation will be affected by some factors such as basis functions. Focusing on this problem, the optimal basis function of TVAR model for the IF estimation of the LFM signal is obtained in this paper. Besides the depth and width of notching, the phase properties of notch filter affect the Signal-to-Interference plus-Noise Ratio (SINR) of correlation output to the narrowband jammer suppression in DSSS, in response to the problem the closed solution of correlation output SINR improvement has been derived when a single frequency jammer passes through direct IIR notch filter, and its performance has been compared with those of five coefficient FIR filters. Later, a novel method for LFM jammer suppression based on Fourier basis TVAR model and direct IIR notch filter is proposed. The simulation results show the effectiveness of the proposed method.
基金supported by National Natural Science Foundation of China (Grant No. 50675232)Key Project of Ministry of Education of ChinaChongqing Municipal Natural Science Key Foundation of China (Grant No. 2007BA6021)
文摘Multiple dominant gear meshing frequencies are present in the vibration signals collected from gearboxes and the conventional spiky features that represent initial gear fault conditions are usually difficult to detect. In order to solve this problem, we propose a new gearbox deterioration detection technique based on autoregressive modeling and hypothesis testing in this paper. A stationary autoregressive model was built by using a normal vibration signal from each shaft. The established autoregressive model was then applied to process fault signals from each shaft of a two-stage gearbox. What this paper investigated is a combined technique which unites a time-varying autoregressive model and a two sample Kolmogorov-Smimov goodness-of-fit test, to detect the deterioration of gearing system with simultaneously variable shaft speed and variable load. The time-varying autoregressive model residuals representing both healthy and faulty gear conditions were compared with the original healthy time-synchronous average signals. Compared with the traditional kurtosis statistic, this technique for gearbox deterioration detection has shown significant advantages in highlighting the presence of incipient gear fault in all different speed shafts involved in the meshing motion under variable conditions.