期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
TIME-VARYING AR MODELING AND ADAPTIVE IIR NOTCH FILTER FOR ANTI-JAMMING DSSS RECEIVER
1
作者 Feng Jining Yang Xiaobo +1 位作者 Diao Zhejun W.u. Siliang 《Journal of Electronics(China)》 2010年第4期465-473,共9页
Using Time-Varying AR (TVAR) model and adaptive notch filter is a new method for the non-stationary jammer suppression in Direct Sequence Spread Spectrum (DSSS). The performance of TVAR model for Instantaneous Frequen... Using Time-Varying AR (TVAR) model and adaptive notch filter is a new method for the non-stationary jammer suppression in Direct Sequence Spread Spectrum (DSSS). The performance of TVAR model for Instantaneous Frequency (IF) estimation will be affected by some factors such as basis functions. Focusing on this problem, the optimal basis function of TVAR model for the IF estimation of the LFM signal is obtained in this paper. Besides the depth and width of notching, the phase properties of notch filter affect the Signal-to-Interference plus-Noise Ratio (SINR) of correlation output to the narrowband jammer suppression in DSSS, in response to the problem the closed solution of correlation output SINR improvement has been derived when a single frequency jammer passes through direct IIR notch filter, and its performance has been compared with those of five coefficient FIR filters. Later, a novel method for LFM jammer suppression based on Fourier basis TVAR model and direct IIR notch filter is proposed. The simulation results show the effectiveness of the proposed method. 展开更多
关键词 Direct Sequence Spread Spectrum (DSSS) receiver time-varying ar tvar model IIR adaptive notch filter ANTI-JAMMING
下载PDF
基于时变TVAR模型和CKF滤波的助推器落点预测 被引量:2
2
作者 朱紫陌 陈龙 +1 位作者 魏昌全 李黎 《海军航空工程学院学报》 2020年第2期217-222,共6页
为解决助推器难以精确回收的问题,提出了一种容积卡尔曼滤波(CKF)和时变自回归(TVAR)模型融合的助推器落点预测方法。针对外弹道观测数据的非平稳时序特点,利用TVAR模型对其建模,预测助推器脱落时和助推器落地之间一段时间的未来测量值... 为解决助推器难以精确回收的问题,提出了一种容积卡尔曼滤波(CKF)和时变自回归(TVAR)模型融合的助推器落点预测方法。针对外弹道观测数据的非平稳时序特点,利用TVAR模型对其建模,预测助推器脱落时和助推器落地之间一段时间的未来测量值,以离散化质点弹道模型作为状态方程,将未来测量值作为CKF滤波弹道位置估计的测量值。为普适非平稳序列,考虑时变TVAR对非平稳时间序列的时变参数和模型阶数的确定。该方法是预测助推器落点滤波外推法的一种新实践。实验数据结果表明,TVAR预测助推器落点与TVAR-CKF融合预测的助推器落点相比,融合后预测的结果与实际测量的助推器落点的偏差更小,可为实际应用提供参考。 展开更多
关键词 时变自回归模型 容积卡尔曼滤波 落点预测
下载PDF
Gearbox Deterioration Detection under Steady State,Variable Load, and Variable Speed Conditions 被引量:6
3
作者 SHAO Yimin CHRIS K Mechefske +1 位作者 OU Jiafu HU Yumei 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2009年第2期256-264,共9页
Multiple dominant gear meshing frequencies are present in the vibration signals collected from gearboxes and the conventional spiky features that represent initial gear fault conditions are usually difficult to detect... Multiple dominant gear meshing frequencies are present in the vibration signals collected from gearboxes and the conventional spiky features that represent initial gear fault conditions are usually difficult to detect. In order to solve this problem, we propose a new gearbox deterioration detection technique based on autoregressive modeling and hypothesis testing in this paper. A stationary autoregressive model was built by using a normal vibration signal from each shaft. The established autoregressive model was then applied to process fault signals from each shaft of a two-stage gearbox. What this paper investigated is a combined technique which unites a time-varying autoregressive model and a two sample Kolmogorov-Smimov goodness-of-fit test, to detect the deterioration of gearing system with simultaneously variable shaft speed and variable load. The time-varying autoregressive model residuals representing both healthy and faulty gear conditions were compared with the original healthy time-synchronous average signals. Compared with the traditional kurtosis statistic, this technique for gearbox deterioration detection has shown significant advantages in highlighting the presence of incipient gear fault in all different speed shafts involved in the meshing motion under variable conditions. 展开更多
关键词 GEarBOX condition detection hypothesis test time-varying autoregressive(ar modeling Kolmogorov-Smimov goodness-of-fit test
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部