当前各金融行业之间的联系日益密切,风险溢出进一步增强。在这一背景下,本文构建Vine-Copula模型,刻画银行业、保险业、基金业和证券业之间的风险相依关系,将上行广义Co Va R与下行广义Co Va R置于同一结构中,进一步研究当某一行业陷入...当前各金融行业之间的联系日益密切,风险溢出进一步增强。在这一背景下,本文构建Vine-Copula模型,刻画银行业、保险业、基金业和证券业之间的风险相依关系,将上行广义Co Va R与下行广义Co Va R置于同一结构中,进一步研究当某一行业陷入风险时对其他金融行业的风险溢出效应。实证结果显示,各金融行业均存在显著的正向风险溢出效应,上行风险溢出与下行风险溢出表现出非对称性。分行业而言,证券业对其他行业的风险溢出效应最强,银行业和基金业的风险溢出效应较为平稳,而保险业的风险溢出也处于较高水平,应当重点关注证券业与保险业之间的风险溢出效应。本文研究明晰了金融行业间的风险溢出效应,有助于对我国经济“三期叠加”阶段性特征进行科学理解与准确研判,为防范与化解重大金融风险提供参考依据。展开更多
考虑到股市系统性风险跨区域溢出问题,构建了多元的DCC-GJR-Copula-CoVaR(Dynamic Conditional Corelational,DCC;Glosten Jagannathan Runkle,GJR;Copula;Conditional Value at risk,CoVaR)模型,利用两步极大似然法估计模型参数,将31个...考虑到股市系统性风险跨区域溢出问题,构建了多元的DCC-GJR-Copula-CoVaR(Dynamic Conditional Corelational,DCC;Glosten Jagannathan Runkle,GJR;Copula;Conditional Value at risk,CoVaR)模型,利用两步极大似然法估计模型参数,将31个省(直辖市、自治区)注册上市公司的股价省级综合指数,按照国家行政区域合并为10大区域市场股价综合指数.研究结果表明:该模型能度量股市系统性风险跨区域溢出的非对称性,而不同区域的风险贡献度差异较大,风险溢出具有地区差异.这为识别区域系统的重要性及防控股市系统性风险跨区域溢出具有重要的实践价值.展开更多
This paper presents a copula technique to develop time-variant seismic fragility curves for corroded bridges at the system level and considers the realistic time-varying dependence among component seismic demands. Bas...This paper presents a copula technique to develop time-variant seismic fragility curves for corroded bridges at the system level and considers the realistic time-varying dependence among component seismic demands. Based on material deterioration mechanisms and incremental dynamic analysis, the time-evolving seismic demands of components were obtained in the form of marginal probability distributions. The time-varying dependences among bridge components were then captured with the best fitting copula function, which was selected from the commonly used copula classes by the empirical distribution based analysis method. The system time-variant fragility curves at different damage states were developed and the effects of time-varying dependences among components on the bridge system fragility were investigated. The results indicate the time-varying dependence among components significantly affects the time-variant fragility of the bridge system. The copula technique captures the nonlinear dependence among component seismic demands accurately and easily by separating the marginal distributions and the dependence among them.展开更多
文摘当前各金融行业之间的联系日益密切,风险溢出进一步增强。在这一背景下,本文构建Vine-Copula模型,刻画银行业、保险业、基金业和证券业之间的风险相依关系,将上行广义Co Va R与下行广义Co Va R置于同一结构中,进一步研究当某一行业陷入风险时对其他金融行业的风险溢出效应。实证结果显示,各金融行业均存在显著的正向风险溢出效应,上行风险溢出与下行风险溢出表现出非对称性。分行业而言,证券业对其他行业的风险溢出效应最强,银行业和基金业的风险溢出效应较为平稳,而保险业的风险溢出也处于较高水平,应当重点关注证券业与保险业之间的风险溢出效应。本文研究明晰了金融行业间的风险溢出效应,有助于对我国经济“三期叠加”阶段性特征进行科学理解与准确研判,为防范与化解重大金融风险提供参考依据。
文摘考虑到股市系统性风险跨区域溢出问题,构建了多元的DCC-GJR-Copula-CoVaR(Dynamic Conditional Corelational,DCC;Glosten Jagannathan Runkle,GJR;Copula;Conditional Value at risk,CoVaR)模型,利用两步极大似然法估计模型参数,将31个省(直辖市、自治区)注册上市公司的股价省级综合指数,按照国家行政区域合并为10大区域市场股价综合指数.研究结果表明:该模型能度量股市系统性风险跨区域溢出的非对称性,而不同区域的风险贡献度差异较大,风险溢出具有地区差异.这为识别区域系统的重要性及防控股市系统性风险跨区域溢出具有重要的实践价值.
基金Natural Science Foundation of China under Grant No.51808376
文摘This paper presents a copula technique to develop time-variant seismic fragility curves for corroded bridges at the system level and considers the realistic time-varying dependence among component seismic demands. Based on material deterioration mechanisms and incremental dynamic analysis, the time-evolving seismic demands of components were obtained in the form of marginal probability distributions. The time-varying dependences among bridge components were then captured with the best fitting copula function, which was selected from the commonly used copula classes by the empirical distribution based analysis method. The system time-variant fragility curves at different damage states were developed and the effects of time-varying dependences among components on the bridge system fragility were investigated. The results indicate the time-varying dependence among components significantly affects the time-variant fragility of the bridge system. The copula technique captures the nonlinear dependence among component seismic demands accurately and easily by separating the marginal distributions and the dependence among them.