The present study addresses the problem of fault estimation for a specific class of nonlinear time-varying complex networks,utilizing an unknown-input-observer approach within the framework of dynamic event-triggered ...The present study addresses the problem of fault estimation for a specific class of nonlinear time-varying complex networks,utilizing an unknown-input-observer approach within the framework of dynamic event-triggered mechanism(DETM).In order to optimize communication resource utilization,the DETM is employed to determine whether the current measurement data should be transmitted to the estimator or not.To guarantee a satisfactory estimation performance for the fault signal,an unknown-input-observer-based estimator is constructed to decouple the estimation error dynamics from the influence of fault signals.The aim of this paper is to find the suitable estimator parameters under the effects of DETM such that both the state estimates and fault estimates are confined within two sets of closed ellipsoid domains.The techniques of recursive matrix inequality are applied to derive sufficient conditions for the existence of the desired estimator,ensuring that the specified performance requirements are met under certain conditions.Then,the estimator gains are derived by minimizing the ellipsoid domain in the sense of trace and a recursive estimator parameter design algorithm is then provided.Finally,a numerical example is conducted to demonstrate the effectiveness of the designed estimator.展开更多
Cascading failure can cause great damage to complex networks, so it is of great significance to improve the network robustness against cascading failure. Many previous existing works on load-redistribution strategies ...Cascading failure can cause great damage to complex networks, so it is of great significance to improve the network robustness against cascading failure. Many previous existing works on load-redistribution strategies require global information, which is not suitable for large scale networks, and some strategies based on local information assume that the load of a node is always its initial load before the network is attacked, and the load of the failure node is redistributed to its neighbors according to their initial load or initial residual capacity. This paper proposes a new load-redistribution strategy based on local information considering an ever-changing load. It redistributes the loads of the failure node to its nearest neighbors according to their current residual capacity, which makes full use of the residual capacity of the network. Experiments are conducted on two typical networks and two real networks, and the experimental results show that the new load-redistribution strategy can reduce the size of cascading failure efficiently.展开更多
In this paper, the problem of exponential synchronization of complex dynamical networks with Markovian jumping parameters using sampled-data and Mode-dependent probabilistic time-varying coupling delays is investigate...In this paper, the problem of exponential synchronization of complex dynamical networks with Markovian jumping parameters using sampled-data and Mode-dependent probabilistic time-varying coupling delays is investigated. The sam- pling period is assumed to be time-varying and bounded. The information of probability distribution of the time-varying delay is considered and transformed into parameter matrices of the transferred complex dynamical network model. Based on the condition, the design method of the desired sampled data controller is proposed. By constructing a new Lyapunov functional with triple integral terms, delay-distribution-dependent exponential synchronization criteria are derived in the form of linear matrix inequalities. Finally, two numerical examples are given to illustrate the effectiveness of the proposed methods.展开更多
Exponential estimates and sufficient conditions for the exponential synchronization of complex dynamical networks with bounded time-varying delays are given in terms of linear matrix inequalities (LMIs). A generaliz...Exponential estimates and sufficient conditions for the exponential synchronization of complex dynamical networks with bounded time-varying delays are given in terms of linear matrix inequalities (LMIs). A generalized complex networks model involving both neutral delays and retarded ones is presented. The exponential synchronization problem of the complex networks is converted equivalently into the exponential stability problem of a group of uncorrelated delay functional differential equations with mixed timevarying delays. By utilizing the free weighting matrix technique, a less conservative delay-dependent synchronization criterion is derived. An illustrative example is provided to demonstrate the effectiveness of the proposed method.展开更多
This paper deals with the pinning synchronization of nonlinearly coupled complex networks with time-varying coupling delays and time-varying delays in the dynamical nodes.We control a part of the nodes of the complex ...This paper deals with the pinning synchronization of nonlinearly coupled complex networks with time-varying coupling delays and time-varying delays in the dynamical nodes.We control a part of the nodes of the complex networks by using adaptive feedback controllers and adjusting the time-varying coupling strengths.Based on the Lyapunov-Krasovskii stability theory for functional differential equations and a linear matrix inequality(LMI),some sufficient conditions for the synchronization are derived.A numerical simulation example is also provided to verify the correctness and the effectiveness of the proposed scheme.展开更多
This paper deals with the cluster exponential synchronization of a class ot complex networks wlm nyorm coupm^g and time-varying delay. Through constructing an appropriate Lyapunov-Krasovskii functional and applying th...This paper deals with the cluster exponential synchronization of a class ot complex networks wlm nyorm coupm^g and time-varying delay. Through constructing an appropriate Lyapunov-Krasovskii functional and applying the theory of the Kronecker product of matrices and the linear matrix inequality (LMI) technique, several novel sufficient conditions for cluster exponential synchronization are obtained. These cluster exponential synchronization conditions adopt the bounds of both time delay and its derivative, which are less conservative. Finally, the numerical simulations are performed to show the effectiveness of the theoretical results.展开更多
A semi-analytical form of complex modal analysis is proposed for the time-variant dynamical problem of rotating pipe conveying fluid system.The complex mode superposition method is introduced for the dynamic analysis ...A semi-analytical form of complex modal analysis is proposed for the time-variant dynamical problem of rotating pipe conveying fluid system.The complex mode superposition method is introduced for the dynamic analysis in the time and frequency domains,in which appropriate orthogonality conditions are constructed to decouple the time-variant equation of motion.Consequently,complex frequencies and modes of vibration are analytically formulated and the variations of frequencies and damping of the system are evaluated.Numerical time-variant example of rotating pipe conveying fluid illustrates the effectiveness and accuracy of this method.Furthermore,the proposed solution scheme is also applicable to other similar time-variant dynamical problems.展开更多
Objective: Most of the western music consists of a melody and an accompaniment. The melody is referred to as the foreground, with the accompaniment the background. In visual processing, the lateral occipital complex (...Objective: Most of the western music consists of a melody and an accompaniment. The melody is referred to as the foreground, with the accompaniment the background. In visual processing, the lateral occipital complex (LOC) is known to participate in foreground and background segregation. We investigated the role of LOC in music processing with use of positron emission tomography (PET). Method: Musically na?ve subjects listened to unfamiliar novel melodies with (accompaniment condition) and without the accompaniment (melodic condition). Using a PET subtraction technique, we studied changes in regional cerebral blood flow (rCBF) during the accompaniment condition compared to the melodic condition. Results: The accompanyment condition was associated with bilateral increase of rCBF at the lateral and medial surfaces of both occipital lobes, medial parts of fusiform gyri, cingulate gyri, precentral gyri, insular cortices, and cerebellum. During the melodic condition, the activation at the anterior and posterior portions of the temporal lobes, medial surface of the frontal lobes, inferior frontal gyri, orbitofrontal cortices, inferior parietal lobules, and cerebellum was observed. Conclusions: The LOC participates in recognition of melody with accompaniment, a phenomenon that can be regarded as foreground and background segregation in auditory processing. The fusiform cortex which was known to participate in the color recognition might be activated by the recognition of flourish sounds by the accompaniment, compared to melodic condition. It is supposed that the LOC and fusiform cortex play similar functions beyond the difference of sensory modalities.展开更多
Synchronization of high-order discrete-time complex networks with undirected topologies is studied and the impacts of time delays are investigated. Firstly,by the state decomposition,synchronization problems are trans...Synchronization of high-order discrete-time complex networks with undirected topologies is studied and the impacts of time delays are investigated. Firstly,by the state decomposition,synchronization problems are transformed into asymptotic stability ones of multiple lower dimensional time-delayed subsystems. Then,linear matrix inequality( LMI) criteria for synchronization are given,which can guarantee the scalability of complex networks since they only include three LMI constraints independent of the number of agents. Moreover,an explicit expression of the synchronization function is presented,which can describe the synchronization behavior of all agents in complex networks. Finally,a numerical example is given to demonstrate the theoretical results,where it is shown that if the gain matrices of synchronization protocols satisfy LMI criteria for synchronization,synchronization can be achieved.展开更多
This paper presents a new robust adaptive synchronization method for a class of uncertain dynamical complex networks with network failures and coupling time-varying delays. Adaptive schemes are proposed to adjust cont...This paper presents a new robust adaptive synchronization method for a class of uncertain dynamical complex networks with network failures and coupling time-varying delays. Adaptive schemes are proposed to adjust controller parameters for the faulty network compensations, as well as to estimate the upper and lower bounds of delayed state errors and perturbations to compensate the effects of delay and perturbation on-line without assuming symmetry or irreducibility of networks. It is shown that, through Lyapunov stability theory, distributed adaptive controllers con- structed by the adaptive schemes are successful in ensuring the achievement of asymptotic synchronization of networks in the present of faulty and delayed networks, and perturbation inputs. A Chua's circuit network example is finally given to show the effectiveness of the proposed synchronization criteria.展开更多
In the field of automatic target recognition and tracking,traditional image complexity metrics,such as statistical variance and signal-to-noise ratio,all focus on single-frame images.However,there are few researches a...In the field of automatic target recognition and tracking,traditional image complexity metrics,such as statistical variance and signal-to-noise ratio,all focus on single-frame images.However,there are few researches about the complexity of image sequence.To solve this problem,a criterion of evaluating image sequence complexity is proposed.Firstly,to characterize this criterion quantitatively,two metrics for measuring the complexity of image sequence,namely feature space similarity degree of global background(FSSDGB)and feature space occultation degree of local background(FSODLB)are developed.Here,FSSDGB reflects the ability of global background to introduce false alarms based on feature space,and FSODLB represents the difference between target and local background based on feature space.Secondly,the feature space is optimized by the grey relational method and relevant features are removed so that FSSDGB and FSODLB are more reasonable to establish complexity of single-frame images.Finally,the image sequence complexity is not a linear sum of the single-frame image complexity.Target tracking errors often occur in high-complexity images and the tracking effect of low-complexity images is very well.The nonlinear transformation based on median(NTM)is proposed to construct complexity of image sequence.The experimental results show that the proposed metric is more valid than other metrics,such as sequence correlation(SC)and interframe change degree(IFCD),and it is highly relevant to the actual performance of automatic target tracking algorithms.展开更多
We investigate the quasi-synchronization of fractional-order complex networks(FCNs) with random coupling via quantized control. Firstly, based on the logarithmic quantizer theory and the Lyapunov stability theory, a n...We investigate the quasi-synchronization of fractional-order complex networks(FCNs) with random coupling via quantized control. Firstly, based on the logarithmic quantizer theory and the Lyapunov stability theory, a new quantized feedback controller, which can make all nodes of complex networks quasi-synchronization and eliminate the disturbance of random coupling in the system state, is designed under non-delay conditions. Secondly, we extend the theoretical results under non-delay conditions to time-varying delay conditions and design another form of quantization feedback controller to ensure that the network achieves quasi-synchronization. Furthermore, the error bound of quasi-synchronization is obtained.Finally, we verify the accuracy of our results using two numerical simulation examples.展开更多
This paper deals with the issue of synchronization of delayed complex networks. Differing from previous results, the delay interval [0, d(t)] is divided into some variable subintervals by employing a new method of w...This paper deals with the issue of synchronization of delayed complex networks. Differing from previous results, the delay interval [0, d(t)] is divided into some variable subintervals by employing a new method of weighting delays. Thus, new synchronization criteria for complex networks with time-varying delays are derived by applying this weighting-delay method and introducing some free weighting matrices. The obtained results have proved to be less conservative than previous results. The sufficient conditions of asymptotical synchronization are derived in the form of linear matrix inequality, which are easy to verify. Finally, several simulation examples are provided to show the effectiveness of the proposed results.展开更多
We deal with the problem of pinning sampled-data synchronization for a complex network with probabilistic time-varying coupling delay. The sampling period considered here is assumed to be less than a given bound. With...We deal with the problem of pinning sampled-data synchronization for a complex network with probabilistic time-varying coupling delay. The sampling period considered here is assumed to be less than a given bound. Without using the Kronecker product, a new synchronization error system is constructed by using the property of the random variable and input delay approach. Based on the Lyapunov theory, a delay-dependent pinning sampled-data synchronization criterion is derived in terms of linear matrix inequalities (LMIs) that can be solved effectively by using MATLAB LMI toolbox. Numerical examples are provided to demonstrate the effectiveness of the proposed scheme.展开更多
In this paper, we first investigate input passivity and output passivity for a class of impulsive complex networks with time-varying delays. By constructing suitable Lyapunov functionals, some input passivity and outp...In this paper, we first investigate input passivity and output passivity for a class of impulsive complex networks with time-varying delays. By constructing suitable Lyapunov functionals, some input passivity and output passivity conditions are derived for the impulsive complex networks. Finally, an example is given to show the effectiveness of the proposed criteria.展开更多
Often we encounter documents with text printed on complex color background. Readability of textual contents in such documents is very poor due to complexity of the background and mix up of color(s) of foreground text ...Often we encounter documents with text printed on complex color background. Readability of textual contents in such documents is very poor due to complexity of the background and mix up of color(s) of foreground text with colors of background. Automatic segmentation of foreground text in such document images is very much essential for smooth reading of the document contents either by human or by machine. In this paper we propose a novel approach to extract the foreground text in color document images having complex background. The proposed approach is a hybrid approach which combines connected component and texture feature analysis of potential text regions. The proposed approach utilizes Canny edge detector to detect all possible text edge pixels. Connected component analysis is performed on these edge pixels to identify candidate text regions. Because of background complexity it is also possible that a non-text region may be identified as a text region. This problem is overcome by analyzing the texture features of potential text region corresponding to each connected component. An unsupervised local thresholding is devised to perform foreground segmentation in detected text regions. Finally the text regions which are noisy are identified and reprocessed to further enhance the quality of retrieved foreground. The proposed approach can handle document images with varying background of multiple colors and texture;and foreground text in any color, font, size and orientation. Experimental results show that the proposed algorithm detects on an average 97.12% of text regions in the source document. Readability of the extracted foreground text is illustrated through Optical character recognition (OCR) in case the text is in English. The proposed approach is compared with some existing methods of foreground separation in document images. Experimental results show that our approach performs better.展开更多
We investigate a new cluster projective synchronization (CPS) scheme in time-varying delay coupled complex dynamical networks with nonidentical nodes. Based on the community structure of the networks, the controller...We investigate a new cluster projective synchronization (CPS) scheme in time-varying delay coupled complex dynamical networks with nonidentical nodes. Based on the community structure of the networks, the controllers are designed differently for the nodes in one community, which have direct connections to the nodes in the other communities and the nodes without direct connections to the nodes in the other communities. Some sufficient criteria are derived to ensure the nodes in the same group projectively synchronize and there is also projective synchronization between nodes in different groups. Particularly, the weight configuration matrix is not assumed to be symmetric or irreducible. The numerical simulations are performed to verify the effectiveness of the theoretical results.展开更多
A general model of linearly stochastically coupled identical connected neural networks with hybrid coupling is proposed, which is composed of constant coupling, coupling discrete time-varying delay and coupling distri...A general model of linearly stochastically coupled identical connected neural networks with hybrid coupling is proposed, which is composed of constant coupling, coupling discrete time-varying delay and coupling distributed timevarying delay. All the coupling terms are subjected to stochastic disturbances described in terms of Brownian motion, which reflects a more realistic dynamical behaviour of coupled systems in practice. Based on a simple adaptive feedback controller and stochastic stability theory, several sufficient criteria are presented to ensure the synchronization of linearly stochastically coupled complex networks with coupling mixed time-varying delays. Finally, numerical simulations illustrated by scale-free complex networks verify the effectiveness of the proposed controllers.展开更多
基金supported in part by the National Natural Science Foundation of China (62233012,62273087)the Research Fund for the Taishan Scholar Project of Shandong Province of Chinathe Shanghai Pujiang Program of China (22PJ1400400)。
文摘The present study addresses the problem of fault estimation for a specific class of nonlinear time-varying complex networks,utilizing an unknown-input-observer approach within the framework of dynamic event-triggered mechanism(DETM).In order to optimize communication resource utilization,the DETM is employed to determine whether the current measurement data should be transmitted to the estimator or not.To guarantee a satisfactory estimation performance for the fault signal,an unknown-input-observer-based estimator is constructed to decouple the estimation error dynamics from the influence of fault signals.The aim of this paper is to find the suitable estimator parameters under the effects of DETM such that both the state estimates and fault estimates are confined within two sets of closed ellipsoid domains.The techniques of recursive matrix inequality are applied to derive sufficient conditions for the existence of the desired estimator,ensuring that the specified performance requirements are met under certain conditions.Then,the estimator gains are derived by minimizing the ellipsoid domain in the sense of trace and a recursive estimator parameter design algorithm is then provided.Finally,a numerical example is conducted to demonstrate the effectiveness of the designed estimator.
基金Project supported by the National Basic Research Program of China(Grant No.2013CB328903)the Special Fund of 2011 Internet of Things Development of Ministry of Industry and Information Technology,China(Grant No.2011BAJ03B13-2)+1 种基金the National Natural Science Foundation of China(Grant No.61473050)the Key Science and Technology Program of Chongqing,China(Grant No.cstc2012gg-yyjs40008)
文摘Cascading failure can cause great damage to complex networks, so it is of great significance to improve the network robustness against cascading failure. Many previous existing works on load-redistribution strategies require global information, which is not suitable for large scale networks, and some strategies based on local information assume that the load of a node is always its initial load before the network is attacked, and the load of the failure node is redistributed to its neighbors according to their initial load or initial residual capacity. This paper proposes a new load-redistribution strategy based on local information considering an ever-changing load. It redistributes the loads of the failure node to its nearest neighbors according to their current residual capacity, which makes full use of the residual capacity of the network. Experiments are conducted on two typical networks and two real networks, and the experimental results show that the new load-redistribution strategy can reduce the size of cascading failure efficiently.
基金Project supported by the NBHM Research Project (Grant Nos.2/48(7)/2012/NBHM(R.P.)/R and D II/12669)
文摘In this paper, the problem of exponential synchronization of complex dynamical networks with Markovian jumping parameters using sampled-data and Mode-dependent probabilistic time-varying coupling delays is investigated. The sam- pling period is assumed to be time-varying and bounded. The information of probability distribution of the time-varying delay is considered and transformed into parameter matrices of the transferred complex dynamical network model. Based on the condition, the design method of the desired sampled data controller is proposed. By constructing a new Lyapunov functional with triple integral terms, delay-distribution-dependent exponential synchronization criteria are derived in the form of linear matrix inequalities. Finally, two numerical examples are given to illustrate the effectiveness of the proposed methods.
基金supported by the National Key Fundamental Re-search Program (No. 2002CB312201-03)the National NaturalScience Foundation of China (No. 60575036)
文摘Exponential estimates and sufficient conditions for the exponential synchronization of complex dynamical networks with bounded time-varying delays are given in terms of linear matrix inequalities (LMIs). A generalized complex networks model involving both neutral delays and retarded ones is presented. The exponential synchronization problem of the complex networks is converted equivalently into the exponential stability problem of a group of uncorrelated delay functional differential equations with mixed timevarying delays. By utilizing the free weighting matrix technique, a less conservative delay-dependent synchronization criterion is derived. An illustrative example is provided to demonstrate the effectiveness of the proposed method.
基金Project supported by the National Natural Science Foundation of China (Grant No. 70871056)the Six Talents Peak Foundation of Jiangsu Province,China (Grant No. 2010-JY70-025)
文摘This paper deals with the pinning synchronization of nonlinearly coupled complex networks with time-varying coupling delays and time-varying delays in the dynamical nodes.We control a part of the nodes of the complex networks by using adaptive feedback controllers and adjusting the time-varying coupling strengths.Based on the Lyapunov-Krasovskii stability theory for functional differential equations and a linear matrix inequality(LMI),some sufficient conditions for the synchronization are derived.A numerical simulation example is also provided to verify the correctness and the effectiveness of the proposed scheme.
基金supported by the National Natural Science Foundation of China (Grant Nos. 61074073 and 61034005)the Fundamental Research Funds for the Central Universities of China (Grant No. N110504001)the Open Project of the State Key Laboratory of Management and Control for Complex Systems, China (Grant No. 20110107)
文摘This paper deals with the cluster exponential synchronization of a class ot complex networks wlm nyorm coupm^g and time-varying delay. Through constructing an appropriate Lyapunov-Krasovskii functional and applying the theory of the Kronecker product of matrices and the linear matrix inequality (LMI) technique, several novel sufficient conditions for cluster exponential synchronization are obtained. These cluster exponential synchronization conditions adopt the bounds of both time delay and its derivative, which are less conservative. Finally, the numerical simulations are performed to show the effectiveness of the theoretical results.
基金supported by National Natural Science Foundation of China(Project No.11572229)Shanghai Chenguang Plan(Project No.14CG18)Fundamental Research Funds for the Central Universities(Project No.22120180063).
文摘A semi-analytical form of complex modal analysis is proposed for the time-variant dynamical problem of rotating pipe conveying fluid system.The complex mode superposition method is introduced for the dynamic analysis in the time and frequency domains,in which appropriate orthogonality conditions are constructed to decouple the time-variant equation of motion.Consequently,complex frequencies and modes of vibration are analytically formulated and the variations of frequencies and damping of the system are evaluated.Numerical time-variant example of rotating pipe conveying fluid illustrates the effectiveness and accuracy of this method.Furthermore,the proposed solution scheme is also applicable to other similar time-variant dynamical problems.
文摘Objective: Most of the western music consists of a melody and an accompaniment. The melody is referred to as the foreground, with the accompaniment the background. In visual processing, the lateral occipital complex (LOC) is known to participate in foreground and background segregation. We investigated the role of LOC in music processing with use of positron emission tomography (PET). Method: Musically na?ve subjects listened to unfamiliar novel melodies with (accompaniment condition) and without the accompaniment (melodic condition). Using a PET subtraction technique, we studied changes in regional cerebral blood flow (rCBF) during the accompaniment condition compared to the melodic condition. Results: The accompanyment condition was associated with bilateral increase of rCBF at the lateral and medial surfaces of both occipital lobes, medial parts of fusiform gyri, cingulate gyri, precentral gyri, insular cortices, and cerebellum. During the melodic condition, the activation at the anterior and posterior portions of the temporal lobes, medial surface of the frontal lobes, inferior frontal gyri, orbitofrontal cortices, inferior parietal lobules, and cerebellum was observed. Conclusions: The LOC participates in recognition of melody with accompaniment, a phenomenon that can be regarded as foreground and background segregation in auditory processing. The fusiform cortex which was known to participate in the color recognition might be activated by the recognition of flourish sounds by the accompaniment, compared to melodic condition. It is supposed that the LOC and fusiform cortex play similar functions beyond the difference of sensory modalities.
基金Sponsored by the National Natural Science Foundation of China(Grant No.61374054,61174067,61263002)the Shaanxi Province Natural Science Foundation Research Projection(Grant No.2013JQ8038)
文摘Synchronization of high-order discrete-time complex networks with undirected topologies is studied and the impacts of time delays are investigated. Firstly,by the state decomposition,synchronization problems are transformed into asymptotic stability ones of multiple lower dimensional time-delayed subsystems. Then,linear matrix inequality( LMI) criteria for synchronization are given,which can guarantee the scalability of complex networks since they only include three LMI constraints independent of the number of agents. Moreover,an explicit expression of the synchronization function is presented,which can describe the synchronization behavior of all agents in complex networks. Finally,a numerical example is given to demonstrate the theoretical results,where it is shown that if the gain matrices of synchronization protocols satisfy LMI criteria for synchronization,synchronization can be achieved.
基金Project supported by the Funds for Creative Research Groups of China(Grant No.60821063)the National Basic Research Program of China(Grant No.2009CB320604)+2 种基金the National Natural Science Foundation of China(Grant No.60974043)the 111 Project(Grant No.B08015)the Science and Technology Research Project of the Educational Department of Liaoning Province of China(Grant No.2008S156)
文摘This paper presents a new robust adaptive synchronization method for a class of uncertain dynamical complex networks with network failures and coupling time-varying delays. Adaptive schemes are proposed to adjust controller parameters for the faulty network compensations, as well as to estimate the upper and lower bounds of delayed state errors and perturbations to compensate the effects of delay and perturbation on-line without assuming symmetry or irreducibility of networks. It is shown that, through Lyapunov stability theory, distributed adaptive controllers con- structed by the adaptive schemes are successful in ensuring the achievement of asymptotic synchronization of networks in the present of faulty and delayed networks, and perturbation inputs. A Chua's circuit network example is finally given to show the effectiveness of the proposed synchronization criteria.
基金supported by the National Natural Science Foundation of China(61703337)Shanghai Aerospace Science and Technology Innovation Fund(SAST2017-082)
文摘In the field of automatic target recognition and tracking,traditional image complexity metrics,such as statistical variance and signal-to-noise ratio,all focus on single-frame images.However,there are few researches about the complexity of image sequence.To solve this problem,a criterion of evaluating image sequence complexity is proposed.Firstly,to characterize this criterion quantitatively,two metrics for measuring the complexity of image sequence,namely feature space similarity degree of global background(FSSDGB)and feature space occultation degree of local background(FSODLB)are developed.Here,FSSDGB reflects the ability of global background to introduce false alarms based on feature space,and FSODLB represents the difference between target and local background based on feature space.Secondly,the feature space is optimized by the grey relational method and relevant features are removed so that FSSDGB and FSODLB are more reasonable to establish complexity of single-frame images.Finally,the image sequence complexity is not a linear sum of the single-frame image complexity.Target tracking errors often occur in high-complexity images and the tracking effect of low-complexity images is very well.The nonlinear transformation based on median(NTM)is proposed to construct complexity of image sequence.The experimental results show that the proposed metric is more valid than other metrics,such as sequence correlation(SC)and interframe change degree(IFCD),and it is highly relevant to the actual performance of automatic target tracking algorithms.
基金supported by the Anhui Provincial Development and Reform Commission New Energy Vehicles and Intelligent Connected Automobile Industry Technology Innovation Project。
文摘We investigate the quasi-synchronization of fractional-order complex networks(FCNs) with random coupling via quantized control. Firstly, based on the logarithmic quantizer theory and the Lyapunov stability theory, a new quantized feedback controller, which can make all nodes of complex networks quasi-synchronization and eliminate the disturbance of random coupling in the system state, is designed under non-delay conditions. Secondly, we extend the theoretical results under non-delay conditions to time-varying delay conditions and design another form of quantization feedback controller to ensure that the network achieves quasi-synchronization. Furthermore, the error bound of quasi-synchronization is obtained.Finally, we verify the accuracy of our results using two numerical simulation examples.
基金supported by the National Natural Science Foundation of China (Grant Nos. 50977008,60774048 and 61034005)the Research Fund for the Doctoral Program of China Higher Education (Grant No. 20070145015)the National High Technology Research and Development Program of China (Grant No. 2009AA04Z127)
文摘This paper deals with the issue of synchronization of delayed complex networks. Differing from previous results, the delay interval [0, d(t)] is divided into some variable subintervals by employing a new method of weighting delays. Thus, new synchronization criteria for complex networks with time-varying delays are derived by applying this weighting-delay method and introducing some free weighting matrices. The obtained results have proved to be less conservative than previous results. The sufficient conditions of asymptotical synchronization are derived in the form of linear matrix inequality, which are easy to verify. Finally, several simulation examples are provided to show the effectiveness of the proposed results.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61203049 and 61303020)the Natural Science Foundation of Shanxi Province of China(Grant No.2013021018-3)the Doctoral Startup Foundation of Taiyuan University of Science and Technology,China(Grant No.20112010)
文摘We deal with the problem of pinning sampled-data synchronization for a complex network with probabilistic time-varying coupling delay. The sampling period considered here is assumed to be less than a given bound. Without using the Kronecker product, a new synchronization error system is constructed by using the property of the random variable and input delay approach. Based on the Lyapunov theory, a delay-dependent pinning sampled-data synchronization criterion is derived in terms of linear matrix inequalities (LMIs) that can be solved effectively by using MATLAB LMI toolbox. Numerical examples are provided to demonstrate the effectiveness of the proposed scheme.
基金supported by National Natural Science Foundation of China (No. 10971240, No. 6100404, No. 61074057)Natural Science Foundation of Chongqing Province of China(No. CSTC2008BB2364)+1 种基金Foundation of Science and Technology Project of Chongqing Education Commission(No. KJ080806)Fundamental Research Funds for the Central Universities, China(No. YWF-10-01-A19)
文摘In this paper, we first investigate input passivity and output passivity for a class of impulsive complex networks with time-varying delays. By constructing suitable Lyapunov functionals, some input passivity and output passivity conditions are derived for the impulsive complex networks. Finally, an example is given to show the effectiveness of the proposed criteria.
文摘Often we encounter documents with text printed on complex color background. Readability of textual contents in such documents is very poor due to complexity of the background and mix up of color(s) of foreground text with colors of background. Automatic segmentation of foreground text in such document images is very much essential for smooth reading of the document contents either by human or by machine. In this paper we propose a novel approach to extract the foreground text in color document images having complex background. The proposed approach is a hybrid approach which combines connected component and texture feature analysis of potential text regions. The proposed approach utilizes Canny edge detector to detect all possible text edge pixels. Connected component analysis is performed on these edge pixels to identify candidate text regions. Because of background complexity it is also possible that a non-text region may be identified as a text region. This problem is overcome by analyzing the texture features of potential text region corresponding to each connected component. An unsupervised local thresholding is devised to perform foreground segmentation in detected text regions. Finally the text regions which are noisy are identified and reprocessed to further enhance the quality of retrieved foreground. The proposed approach can handle document images with varying background of multiple colors and texture;and foreground text in any color, font, size and orientation. Experimental results show that the proposed algorithm detects on an average 97.12% of text regions in the source document. Readability of the extracted foreground text is illustrated through Optical character recognition (OCR) in case the text is in English. The proposed approach is compared with some existing methods of foreground separation in document images. Experimental results show that our approach performs better.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 70871056 and 71271103)the Six Talents Peak Foundation of Jiangsu Province,China
文摘We investigate a new cluster projective synchronization (CPS) scheme in time-varying delay coupled complex dynamical networks with nonidentical nodes. Based on the community structure of the networks, the controllers are designed differently for the nodes in one community, which have direct connections to the nodes in the other communities and the nodes without direct connections to the nodes in the other communities. Some sufficient criteria are derived to ensure the nodes in the same group projectively synchronize and there is also projective synchronization between nodes in different groups. Particularly, the weight configuration matrix is not assumed to be symmetric or irreducible. The numerical simulations are performed to verify the effectiveness of the theoretical results.
基金Project supported by the National Natural Science Foundation of China (Grant No 60874113)
文摘A general model of linearly stochastically coupled identical connected neural networks with hybrid coupling is proposed, which is composed of constant coupling, coupling discrete time-varying delay and coupling distributed timevarying delay. All the coupling terms are subjected to stochastic disturbances described in terms of Brownian motion, which reflects a more realistic dynamical behaviour of coupled systems in practice. Based on a simple adaptive feedback controller and stochastic stability theory, several sufficient criteria are presented to ensure the synchronization of linearly stochastically coupled complex networks with coupling mixed time-varying delays. Finally, numerical simulations illustrated by scale-free complex networks verify the effectiveness of the proposed controllers.