The levered-dual response(LEDAR)Coulomb-damped system attains near resonant vibration isolation by differential preloads/offsets in linear springs.It takes the advantages of both the preloads/offsets in linear springs...The levered-dual response(LEDAR)Coulomb-damped system attains near resonant vibration isolation by differential preloads/offsets in linear springs.It takes the advantages of both the preloads/offsets in linear springs and the guiderail friction for realizing different levels of vibration isolation.The isolation capacities are investigated on the strategies with both the horizontal and vertical guiderails,with the horizontal rail only,and without guiderails.The compressive preloads generally result in the consumption of most of the initial excitation energy so as to overcome the potential threshold.The isolation onsets at the frequency ratio of 1∓0.095 on the left-hand side(LHS)and the right-hand side(RHS)of the lever are relative to the load plate connector.The observed near resonant isolation thus makes the LEDAR system a candidate for the isolation of the mechanical systems about resonance while opening a path for simultaneous harvesterisolation functions and passive functions at extreme frequencies.展开更多
It is widely known that the seismic response characteristics of a soil site depends heavily on several key dynamic properties of the soil stratum,such as predominant frequency and damping ratio.A widely used method fo...It is widely known that the seismic response characteristics of a soil site depends heavily on several key dynamic properties of the soil stratum,such as predominant frequency and damping ratio.A widely used method for estimating the predominant frequency of a soil site by using microtremor records,proposed by Nakamura,is investigated to determine its effectiveness in estimating the damping ratio.The authors conducted some microtremor measurements of soil sites in Hong Kong and found that Nakamura's method might also be used to estimate the damping ratio of a soil site.Damping ratio data from several typical soil sites were obtained from both Nakamura's ratio curves using the half power point method and resonant column tests.Regression analysis indicates that there is a strong correlation between the damping ratios derived from these two different approaches.展开更多
Tibetan heritage buildings have a high historical and cultural value. They have endured adverse environmental loadings over hundreds of years without significant damage. However, there are few reports on their structu...Tibetan heritage buildings have a high historical and cultural value. They have endured adverse environmental loadings over hundreds of years without significant damage. However, there are few reports on their structural characteristics under normal environmental loadings and their behavior under dynamic loadings. In this research, a typical Tibetan wooden wall-frame building is selected to study its dynamic characteristics. Field measurements of the structure were conducted under environmental excitation to collect acceleration responses. The stochastic subspace identification (SSI) method was adopted to calculate the structural modal parameters and obtain the out-of-plane vibration characteristics of the slab and frames. The results indicated that the wall-frame structure had a lower out-of-plane stiffness and greater in-plane stiffness due to the presence of stone walls. Due to poor identified damping ratio estimates from the SSI method, a method based on the variance upper bound was proposed to complement the existing variance lower bound method for estimating the modal damping ratio to address the significant damping variability obtained from different points and measurements. The feasibility of the proposed method was illustrated with the measured data from the floor slab of the structure. The variance lower and upper bound methods both provided consistent results compared to those from the traditional SSI method.展开更多
A nonlinear model of anti-backlash gear with time-varying friction and mesh stiffness was proposed for the further study on dynamic characteristics of anti-backlash gear. In order to improve the model precision, appli...A nonlinear model of anti-backlash gear with time-varying friction and mesh stiffness was proposed for the further study on dynamic characteristics of anti-backlash gear. In order to improve the model precision, applied force analysis was completed in detail, and single or double tooth meshing states of two gear pairs at any timing were determined according to the meshing characteristic of anti-backlash gear. The influences of friction and variations of damping ratio on dynamic transmission error were analyzed finally by numerical calculation and the results show that anti-backlash gear can increase the composite mesh stiffness comparing with the mesh stiffness of the normal gear pair. At the pitch points where the frictions change their signs, additional impulsive effects are observed. The width of impulsive in the same value of center frequency is wider than that without friction, and the amplitude is lower. When gear pairs mesh in and out, damping can reduce the vibration and impact.展开更多
This paper presents results from a series of stress-controlled undrained cyclic triaxial tests on the undisturbed marine silty clay,silt,and fine sand soils obtained from the Bohai Sea,China.Emphasis is placed on the ...This paper presents results from a series of stress-controlled undrained cyclic triaxial tests on the undisturbed marine silty clay,silt,and fine sand soils obtained from the Bohai Sea,China.Emphasis is placed on the major factors for predominating the dynamic shear modulus(G)and damping ratio(λ)in the shear strain amplitude(γ_(a))from 10^(-5) to 10^(-2),involving depth,sedimentary facies types,and water content of marine soils.The empirical equations of the small-strain shear modulus(G_(max))and damping ratio(λ_(min))using a single-variable of depth H are established for the three marine soils.A remarkable finding is that the curves of shear modulus reduction(G/G_(max))and the damping ratio(λ)with increasing γ_(a) of the three marine soils can be simply determined through a set of explicit expressions with the two variables of depth H and water content W.This finding is validated by independent experimental data from the literature.At the similar depths,the G value of the marine soils of terrestrial facies is the largest,followed b_(y) the neritic facies,and the G value of the marine soils of abyssal facies is the smallest.The sedimentary facies types of the marine soils have slight effect on theλvalue.Another significant finding is that the shear modulus reduction curves plotted against the γ_(a) of the three marine soils at the similar depths are significantly below those of the corresponding terrigenous soils,while the damping curves plotted against γ_(a) are just the opposite.The results presented in this paper serve as a worthful reference for the evaluation of seabed seismic site effects in the Bohai Sea due to lack of experimental data.展开更多
Under repeated freezing and thawing in deep seasonal frozen regions, the stability and strength of the soil are imposed in the form of large uneven settlement, instability and strength reduction, which affect the norm...Under repeated freezing and thawing in deep seasonal frozen regions, the stability and strength of the soil are imposed in the form of large uneven settlement, instability and strength reduction, which affect the normal operation of railway lines. This study is to obtain the influencing rules of freeze-thaw on the dynamic properties (dynamic strain, confining pressure and compactness) of silty sand. Based on an amount of inner tests, the dynamic modulus and damping ratio properties of silty soil subjected to repeated freeze-thaw cycles were deeply researched and analyzed. The results are as follows: At the same dynamic strain, the relationship of dynamic stress and freeze-thaw cycles presents negative cor- relation, and the relationship of dynamic stress, confining pressure and compactness present positive correlation. The dynamic modulus double decreases while the damping ratio double increases with incremental increase in dynamic strain. The dynamic modulus sharply decreases while the damping ratio increases with incremental increase in freeze-thaw cycles, and then the changes level off after six freeze-thaw cycles. The dynamic modulus increases while the damping ratio decreases as the confining pressure and compactness increase at the same strain level.展开更多
Recycled waste tires when mixed with soil can play an important role as lightweight materials in retaining walls and embankments, machine foundations and railroad track beds in seismic zones. Having high damping chara...Recycled waste tires when mixed with soil can play an important role as lightweight materials in retaining walls and embankments, machine foundations and railroad track beds in seismic zones. Having high damping characteristic, rubbers can be used as either soil alternative or mixed with soil to reduce vibration when seismic loads are of great concern. Therefore, the objective of this work was to evaluate the dynamic properties of such mixtures prior to practical applications. To this reason, torsional resonant column and dynamic triaxial experiments were carried out and the effect of the important parameters like rubber content and ratio of mean grain size of rubber solids versus soil solids(D50,r/D50,s) on dynamic response of mixtures in a range of low to high shearing strain amplitude from about 4×10-4% to 2.7% were investigated. Considering engineering applications, specimens were prepared almost at the maximum dry density and optimum moisture content to model a mixture layer above the ground water table and in low precipitation region. The results show that tire inclusion significantly reduces the shear modulus and increases the damping ratio of the mixtures. Also decrease in D50,r/D50,s causes the mixture to exhibit more rubber-like behavior. Finally, normalized shear modulus versus shearing strain amplitude curve was proposed for engineering practice.展开更多
The dynamic shear modulus ratio and damping ratio of sandy gravel are important parameters for the seismic response analysis of valley geomorphic sites,which have an important impact on the determination of design gro...The dynamic shear modulus ratio and damping ratio of sandy gravel are important parameters for the seismic response analysis of valley geomorphic sites,which have an important impact on the determination of design ground motion parameters. In this paper,the dynamic triaxial test of sandy gravels has been performed based on the project of the Shangluo Seismic Microzonation. Combined with the other results of sandy gravel,the recommended results of slightly dense,medium dense and dense sandy gravel were obtained. By building the typical site model,the influence of the dynamic shear modulus ratio and the damping ratio uncertainty on the seismic response of the site is studied. The results show that the uncertainty of the average of the dynamic shear modulus ratio and the damping ratio ± 1 times the standard deviation has little effect on the peak acceleration of the sandy gravel site,and the rationality of the grouping and statistical results is explained. Under different probability levels,the change in the shear modulus ratio and damping ratio leads to a significant difference in the high frequency response spectrum.The response spectrum of 0. 04-0. 1s ranges from about 20%,but it has little effect on the long period spectrum of more than 1. 0s. The study of dynamic shear modulus ratio and damping ratio of sandy gravel has the ability to improve the reliability of the designing ground motion parameters.展开更多
The chaotic system is sensitive to the initial value, and this can be applied in the weak signal detection. There are periodic, critical and chaotic states in a chaotic system. When the system is in the critical stat...The chaotic system is sensitive to the initial value, and this can be applied in the weak signal detection. There are periodic, critical and chaotic states in a chaotic system. When the system is in the critical state, a small perturbation of system,n parameter may lead to a qualitative change of the system's state. This paper introduces a new method to detect weak signals by the way of disturbing the damping ratio. The authors choose the duffing equation, using MATLAB to carry on the simulation, to study the changes of the system when the signal to be measured is added to the damping ratio. By means of observing the phase loots chart and time damin chart, the weak signal will be detected.展开更多
To study the impact of the trailing-edge wear on the vibrational behavior of wind-turbine blades,unworn blades and trailing-edge worn blades have been assessed through relevant modal tests.According to these experimen...To study the impact of the trailing-edge wear on the vibrational behavior of wind-turbine blades,unworn blades and trailing-edge worn blades have been assessed through relevant modal tests.According to these experiments,the natural frequencies of trailing-edge worn blades-1,-2,and-3 increase the most in the second to fourth order,thefifth order increases in the middle,and thefirst order increases the least.The damping ratio data indi-cate that,in general,thefirstfive-order damping ratios of trailing-edge worn blades-1 and trailing-edge worn blades-2 are reduced,and thefirstfive-order damping ratios of trailing-edge worn blades-3 are slightly improved.The mode shape diagram shows that the trailing-edge worn blades-1 and-2 have a large swing in the tip and the blade,whereas the second-and third-order vibration shapes of the trailing edge-worn blade-3 tend to be improved.Overall,all these results reveal that the blade’s mass and the wear area are the main fac-tors affecting the vibration characteristics of wind turbine blades.展开更多
In most MEMS devices, the moving micro-structures are surrounded by air which significantly affects their dynamics behaviors. The correct prediction of the squeeze-film air damping ratio is essential in MEMS (Micro-El...In most MEMS devices, the moving micro-structures are surrounded by air which significantly affects their dynamics behaviors. The correct prediction of the squeeze-film air damping ratio is essential in MEMS (Micro-Electro-Mechanical System) devices design. In the paper, a static test is proposed to measure the squeeze-film air damping ratios of capacitive MEMS accelerometer under different pressures. The unsealed chip of capacitive accelerometer is placed in vacuum extraction equipment and an open loop circuit is developed to apply step signal in the test. By charging the pressure and measuring the overshoot Mp and the settling time ts from the time response of the system, the damping ratio ξ?under different pressures can be calculated. Finite element method (FEM) based on the modified Reynolds equation is utilized to simulate the transient response of the micro-structure. Good correlation between experiment and FEM analysis is obtained. The proposed static test in this paper provides a new method to more easily measure the dynamic performances of micro-structures under various pressures.展开更多
A simple cantilever beam vibration test method made of biomorph and insect wing, were used to measure the vibrational stiffness and the air damping of insect wings. Vibration tests were performed in vacuum pressures t...A simple cantilever beam vibration test method made of biomorph and insect wing, were used to measure the vibrational stiffness and the air damping of insect wings. Vibration tests were performed in vacuum pressures to atmosphere and the wing stiffness and air damping factor were measured. The test method was found to be a viable method for measuring wing stiffness, natural frequencies and mode shapes. The vibrational deformation of the insect wings was found to be combination of bending and torsion because of unsymmetrical geometry of wing. The measured stiffness (K) of damselfly wings varied from 0.18 to 0.31 N/m and the air damping ratio ranged from 0.72 to 0.79. The undamped natural frequency (f<sub>n</sub>) at 13 kPa varied from 249 to 299 Hz and at atmosphere it varied from 168 to 198 Hz.展开更多
In order to improve the effectiveness of traditional time domain identification methods in identifying damping ratios, a new damping ratio identification method based on pattern search is proposed by fluctuating the r...In order to improve the effectiveness of traditional time domain identification methods in identifying damping ratios, a new damping ratio identification method based on pattern search is proposed by fluctuating the reliable natural frequency obtained through traditional time domain identification methods by about 10% to build the boundary conditions, using all the initial identification results to establish the free decay response of the system, and using the pattern search method to correct the initial identification results with the residual sum of squares between the free decay response and the actually measured free-decay signal as the objective function. The proposed method deals with the actually measured free-decay signal with curve fitting and avoids enlarging the identified error caused by intermediate conversion, so it can effectively improve the identified accuracy of damping ratios. Simulations for a room-sized vibration isolation foundation show that the relative errors of analyzed three damping ratios are down to 1.05%, 1.51% and 3.7% by the proposed method from 8.42%, 5.85% and 8.5% by STD method when the noise level is 10%.展开更多
Tuned mass dampers (TMDs) have been widely used in recent years to mitigate structural vibration. However, the damping mechanisms employed in the TMDs are mostly based on viscous dampers, which have several well-kno...Tuned mass dampers (TMDs) have been widely used in recent years to mitigate structural vibration. However, the damping mechanisms employed in the TMDs are mostly based on viscous dampers, which have several well-known disadvantages, such as oil leakage and difficult adjustment of damping ratio for an operating TMD. Alternatively, eddy current damping (ECD) that does not require any contact with the main structure is a potential solution. This paper discusses the design, analysis, manufacture and testing of a large-scale horizontal TMD based on ECD. First, the theoretical model of ECD is formulated, then one large-scale horizontal TMD using ECD is constructed, and finally performance tests of the TMD are conducted. The test results show that the proposed TMD has a very low intrinsic damping ratio, while the damping ratio due to ECD is the dominant damping source, which can be as large as 15% in a proper configuration. In addition, the damping ratios estimated with the theoretical model are roughly consistent with those identified from the test results, and the source of this error is investigated. Moreover, it is demonstrated that the damping ratio in the proposed TMD can be easily adjusted by varying the air gap between permanent magnets and conductive plates. In view of practical applications, possible improvements and feasibility considerations for the proposed TMD are then discussed. It is confirmed that the proposed TMD with ECD is reliable and feasible for use in structural vibration control.展开更多
A third-order correction was recently suggested to improve the accuracy of the half-power bandwidth method in estimating the damping of single DOF systems.This paper analyzes the accuracy of the half-power bandwidth m...A third-order correction was recently suggested to improve the accuracy of the half-power bandwidth method in estimating the damping of single DOF systems.This paper analyzes the accuracy of the half-power bandwidth method with the third-order correction in damping estimation for multi-DOF linear systems.Damping ratios in a two-DOF linear system are estimated using its displacement and acceleration frequency response curves,respectively.A wide range of important parameters that characterize the shape of these response curves are taken into account.Results show that the third-order correction may greatly improve the accuracy of the half-power bandwidth method in estimating damping in a two-DOF system.In spite of this,the half-power bandwidth method may significantly overestimate the damping ratios of two-DOF systems in some cases.展开更多
In combination with a wave action balance equation, a damping model for sea waves covered by oil films of a finite thickness is proposed. The damping model is not only related to the physical parameters of the oil fil...In combination with a wave action balance equation, a damping model for sea waves covered by oil films of a finite thickness is proposed. The damping model is not only related to the physical parameters of the oil film, but also related to environment parameters. Meanwhile, the parametric analyses have been also conducted to understand the sensitivity of the damping model to these parameters. And numerical simulations demonstrate that a kinematic viscosity, a surface/interfacial elasticity, a thickness, and a fractional filling factor cause more significant effects on a damping ratio than the other physical parameters of the oil film. From the simulation it is also found that the influences induced by a wind speed and a wind direction are also remarkable. On the other hand, for a thick emulsified oil film, the damping effect on the radar signal induced by the reduction of an effective dielectric constant should also be taken into account. The simulated results are compared with the damping ratio evaluated by the 15 ENVISAT ASAR images acquired during the Gulf of Mexico oil spill accident.展开更多
In this paper, it is shown that, a road vehicle 2DOF air damped quartercar suspension system can conveniently be transformed into a 2DOF air damped vibrating system representing an air damped dynamic vibration absorbe...In this paper, it is shown that, a road vehicle 2DOF air damped quartercar suspension system can conveniently be transformed into a 2DOF air damped vibrating system representing an air damped dynamic vibration absorber (DVA) with an appropriate change in the ratio μ of the main mass and the absorber mass i.e. when mass ratio μ >> 1. Also the effect of variation of the mass ratio, air damping ratio and air spring rate ratio, on the motion transmissibility at the resonant frequency of the main mass of the DVA has been dis- cussed. It is shown that, as the air damping ratio in the absorber system increases, there is a substantial decrease in the motion transmissibility of the main mass system where the air damper has been modeled as a Maxwell type. Optimal value of the air damping ratio for the minimum motion transmissibility of the main mass of the system has been determined. An experimental setup has been designed and developed with a control system to vary air pressure in the damper in the absorber system. The motion transmissibility characteristics of the main mass system have been obtained, and the optimal value of the air damping ratio has been determined for minimum motion transmissibility of the main mass of the展开更多
Reducing the self-noise and radiated noise of torpedo is an effective way to enhance its detection and concealment capabilities.After discussing the basic principle on noise and vibration control and main noise source...Reducing the self-noise and radiated noise of torpedo is an effective way to enhance its detection and concealment capabilities.After discussing the basic principle on noise and vibration control and main noise sources in torpedo,the application of damping treatment for noise and vibration absorption was proposed in this paper.Compared composite materials(damping and metal materials)used as segment joint,their different contributions to the damping performance of base structure were investigated.The results show that the damping material can be used as segment joint effectively in vibration control.Taking cantilever beam as an example,four different damping treatments were compared in natural frequency and damping loss factor,the results show the influences of different damping layer layouts on the structure damping performance,and offer a reference for the torpedo shell design.展开更多
In this paper,the influence of ground motion duration on the inelastic displacement ratio,C_(1),of highly damped SDOF systems is studied.For this purpose,two sets of spectrally equivalent long and short duration groun...In this paper,the influence of ground motion duration on the inelastic displacement ratio,C_(1),of highly damped SDOF systems is studied.For this purpose,two sets of spectrally equivalent long and short duration ground motion records were used in an analysis to isolate the effects of ground motion duration on.The effect of duration was evaluated for observed values of C_(1) by considering six ductility levels,and different damping and post-yield stiffness ratios.A new predictive equation of C_(1) also was developed for long and short duration records.Results of non-linear regression analysis of the current study provide an expression with which to quantify the duration effect.Based on the average values of estimated C_(1) ratios for long duration records divided by C_(1) for a short duration set,it is concluded that the maximum difference between long and short duration records occurs when the damping ratio is 0.3 and the post-yield stiffness ratio is equal to zero.展开更多
基金partially supported by the Nottingham Ningbo China Beacons of Excellence Research and Innovation Institute (No. I01211200001)LDS 2023 Educational Foundation of The University of Nottingham Ningbo China (No. E06221200002)
文摘The levered-dual response(LEDAR)Coulomb-damped system attains near resonant vibration isolation by differential preloads/offsets in linear springs.It takes the advantages of both the preloads/offsets in linear springs and the guiderail friction for realizing different levels of vibration isolation.The isolation capacities are investigated on the strategies with both the horizontal and vertical guiderails,with the horizontal rail only,and without guiderails.The compressive preloads generally result in the consumption of most of the initial excitation energy so as to overcome the potential threshold.The isolation onsets at the frequency ratio of 1∓0.095 on the left-hand side(LHS)and the right-hand side(RHS)of the lever are relative to the load plate connector.The observed near resonant isolation thus makes the LEDAR system a candidate for the isolation of the mechanical systems about resonance while opening a path for simultaneous harvesterisolation functions and passive functions at extreme frequencies.
基金Research project (PolyU 5076/97E),of the Department of Civil and Structural Engineering,The Hong Kong Polytechnic University
文摘It is widely known that the seismic response characteristics of a soil site depends heavily on several key dynamic properties of the soil stratum,such as predominant frequency and damping ratio.A widely used method for estimating the predominant frequency of a soil site by using microtremor records,proposed by Nakamura,is investigated to determine its effectiveness in estimating the damping ratio.The authors conducted some microtremor measurements of soil sites in Hong Kong and found that Nakamura's method might also be used to estimate the damping ratio of a soil site.Damping ratio data from several typical soil sites were obtained from both Nakamura's ratio curves using the half power point method and resonant column tests.Regression analysis indicates that there is a strong correlation between the damping ratios derived from these two different approaches.
基金National Natural Science Foundation of China under Grant No.51338001Natural Science Foundation of China under Grant Nos.51178028 and 51422801+2 种基金the Fundamental Research Funds for the Central Universities under Grant No.2014YJS087Program for New Century Excellent Talents in University under Grant No.NCET-11-0571111 Project of China under Grant No.B13002
文摘Tibetan heritage buildings have a high historical and cultural value. They have endured adverse environmental loadings over hundreds of years without significant damage. However, there are few reports on their structural characteristics under normal environmental loadings and their behavior under dynamic loadings. In this research, a typical Tibetan wooden wall-frame building is selected to study its dynamic characteristics. Field measurements of the structure were conducted under environmental excitation to collect acceleration responses. The stochastic subspace identification (SSI) method was adopted to calculate the structural modal parameters and obtain the out-of-plane vibration characteristics of the slab and frames. The results indicated that the wall-frame structure had a lower out-of-plane stiffness and greater in-plane stiffness due to the presence of stone walls. Due to poor identified damping ratio estimates from the SSI method, a method based on the variance upper bound was proposed to complement the existing variance lower bound method for estimating the modal damping ratio to address the significant damping variability obtained from different points and measurements. The feasibility of the proposed method was illustrated with the measured data from the floor slab of the structure. The variance lower and upper bound methods both provided consistent results compared to those from the traditional SSI method.
基金Project(51175505)supported by the National Natural Science Foundation of China
文摘A nonlinear model of anti-backlash gear with time-varying friction and mesh stiffness was proposed for the further study on dynamic characteristics of anti-backlash gear. In order to improve the model precision, applied force analysis was completed in detail, and single or double tooth meshing states of two gear pairs at any timing were determined according to the meshing characteristic of anti-backlash gear. The influences of friction and variations of damping ratio on dynamic transmission error were analyzed finally by numerical calculation and the results show that anti-backlash gear can increase the composite mesh stiffness comparing with the mesh stiffness of the normal gear pair. At the pitch points where the frictions change their signs, additional impulsive effects are observed. The width of impulsive in the same value of center frequency is wider than that without friction, and the amplitude is lower. When gear pairs mesh in and out, damping can reduce the vibration and impact.
基金National Natural Science Foundation of China under Grant Nos.51978334 and 51978335。
文摘This paper presents results from a series of stress-controlled undrained cyclic triaxial tests on the undisturbed marine silty clay,silt,and fine sand soils obtained from the Bohai Sea,China.Emphasis is placed on the major factors for predominating the dynamic shear modulus(G)and damping ratio(λ)in the shear strain amplitude(γ_(a))from 10^(-5) to 10^(-2),involving depth,sedimentary facies types,and water content of marine soils.The empirical equations of the small-strain shear modulus(G_(max))and damping ratio(λ_(min))using a single-variable of depth H are established for the three marine soils.A remarkable finding is that the curves of shear modulus reduction(G/G_(max))and the damping ratio(λ)with increasing γ_(a) of the three marine soils can be simply determined through a set of explicit expressions with the two variables of depth H and water content W.This finding is validated by independent experimental data from the literature.At the similar depths,the G value of the marine soils of terrestrial facies is the largest,followed b_(y) the neritic facies,and the G value of the marine soils of abyssal facies is the smallest.The sedimentary facies types of the marine soils have slight effect on theλvalue.Another significant finding is that the shear modulus reduction curves plotted against the γ_(a) of the three marine soils at the similar depths are significantly below those of the corresponding terrigenous soils,while the damping curves plotted against γ_(a) are just the opposite.The results presented in this paper serve as a worthful reference for the evaluation of seabed seismic site effects in the Bohai Sea due to lack of experimental data.
基金funded by the National Key Basic Research Development Plan of China (Grant No. 2012CB026104)the National Natural Science Foundation (NSFC) of China (Grant Nos.51208320 and 51171281)
文摘Under repeated freezing and thawing in deep seasonal frozen regions, the stability and strength of the soil are imposed in the form of large uneven settlement, instability and strength reduction, which affect the normal operation of railway lines. This study is to obtain the influencing rules of freeze-thaw on the dynamic properties (dynamic strain, confining pressure and compactness) of silty sand. Based on an amount of inner tests, the dynamic modulus and damping ratio properties of silty soil subjected to repeated freeze-thaw cycles were deeply researched and analyzed. The results are as follows: At the same dynamic strain, the relationship of dynamic stress and freeze-thaw cycles presents negative cor- relation, and the relationship of dynamic stress, confining pressure and compactness present positive correlation. The dynamic modulus double decreases while the damping ratio double increases with incremental increase in dynamic strain. The dynamic modulus sharply decreases while the damping ratio increases with incremental increase in freeze-thaw cycles, and then the changes level off after six freeze-thaw cycles. The dynamic modulus increases while the damping ratio decreases as the confining pressure and compactness increase at the same strain level.
文摘Recycled waste tires when mixed with soil can play an important role as lightweight materials in retaining walls and embankments, machine foundations and railroad track beds in seismic zones. Having high damping characteristic, rubbers can be used as either soil alternative or mixed with soil to reduce vibration when seismic loads are of great concern. Therefore, the objective of this work was to evaluate the dynamic properties of such mixtures prior to practical applications. To this reason, torsional resonant column and dynamic triaxial experiments were carried out and the effect of the important parameters like rubber content and ratio of mean grain size of rubber solids versus soil solids(D50,r/D50,s) on dynamic response of mixtures in a range of low to high shearing strain amplitude from about 4×10-4% to 2.7% were investigated. Considering engineering applications, specimens were prepared almost at the maximum dry density and optimum moisture content to model a mixture layer above the ground water table and in low precipitation region. The results show that tire inclusion significantly reduces the shear modulus and increases the damping ratio of the mixtures. Also decrease in D50,r/D50,s causes the mixture to exhibit more rubber-like behavior. Finally, normalized shear modulus versus shearing strain amplitude curve was proposed for engineering practice.
基金sponsored by the Earthquake Disaster Prevention and ReductionProgram for the 12th “Five-year Plan” of Shaanxi Province(SCZC2012-TP-905/1)
文摘The dynamic shear modulus ratio and damping ratio of sandy gravel are important parameters for the seismic response analysis of valley geomorphic sites,which have an important impact on the determination of design ground motion parameters. In this paper,the dynamic triaxial test of sandy gravels has been performed based on the project of the Shangluo Seismic Microzonation. Combined with the other results of sandy gravel,the recommended results of slightly dense,medium dense and dense sandy gravel were obtained. By building the typical site model,the influence of the dynamic shear modulus ratio and the damping ratio uncertainty on the seismic response of the site is studied. The results show that the uncertainty of the average of the dynamic shear modulus ratio and the damping ratio ± 1 times the standard deviation has little effect on the peak acceleration of the sandy gravel site,and the rationality of the grouping and statistical results is explained. Under different probability levels,the change in the shear modulus ratio and damping ratio leads to a significant difference in the high frequency response spectrum.The response spectrum of 0. 04-0. 1s ranges from about 20%,but it has little effect on the long period spectrum of more than 1. 0s. The study of dynamic shear modulus ratio and damping ratio of sandy gravel has the ability to improve the reliability of the designing ground motion parameters.
文摘The chaotic system is sensitive to the initial value, and this can be applied in the weak signal detection. There are periodic, critical and chaotic states in a chaotic system. When the system is in the critical state, a small perturbation of system,n parameter may lead to a qualitative change of the system's state. This paper introduces a new method to detect weak signals by the way of disturbing the damping ratio. The authors choose the duffing equation, using MATLAB to carry on the simulation, to study the changes of the system when the signal to be measured is added to the damping ratio. By means of observing the phase loots chart and time damin chart, the weak signal will be detected.
基金supported by the National Natural Science Foundation Project(Nos.51966018 and 51466015)the Key Research&Development Program of Xinjiang(Grant No.2022B01003).
文摘To study the impact of the trailing-edge wear on the vibrational behavior of wind-turbine blades,unworn blades and trailing-edge worn blades have been assessed through relevant modal tests.According to these experiments,the natural frequencies of trailing-edge worn blades-1,-2,and-3 increase the most in the second to fourth order,thefifth order increases in the middle,and thefirst order increases the least.The damping ratio data indi-cate that,in general,thefirstfive-order damping ratios of trailing-edge worn blades-1 and trailing-edge worn blades-2 are reduced,and thefirstfive-order damping ratios of trailing-edge worn blades-3 are slightly improved.The mode shape diagram shows that the trailing-edge worn blades-1 and-2 have a large swing in the tip and the blade,whereas the second-and third-order vibration shapes of the trailing edge-worn blade-3 tend to be improved.Overall,all these results reveal that the blade’s mass and the wear area are the main fac-tors affecting the vibration characteristics of wind turbine blades.
文摘In most MEMS devices, the moving micro-structures are surrounded by air which significantly affects their dynamics behaviors. The correct prediction of the squeeze-film air damping ratio is essential in MEMS (Micro-Electro-Mechanical System) devices design. In the paper, a static test is proposed to measure the squeeze-film air damping ratios of capacitive MEMS accelerometer under different pressures. The unsealed chip of capacitive accelerometer is placed in vacuum extraction equipment and an open loop circuit is developed to apply step signal in the test. By charging the pressure and measuring the overshoot Mp and the settling time ts from the time response of the system, the damping ratio ξ?under different pressures can be calculated. Finite element method (FEM) based on the modified Reynolds equation is utilized to simulate the transient response of the micro-structure. Good correlation between experiment and FEM analysis is obtained. The proposed static test in this paper provides a new method to more easily measure the dynamic performances of micro-structures under various pressures.
文摘A simple cantilever beam vibration test method made of biomorph and insect wing, were used to measure the vibrational stiffness and the air damping of insect wings. Vibration tests were performed in vacuum pressures to atmosphere and the wing stiffness and air damping factor were measured. The test method was found to be a viable method for measuring wing stiffness, natural frequencies and mode shapes. The vibrational deformation of the insect wings was found to be combination of bending and torsion because of unsymmetrical geometry of wing. The measured stiffness (K) of damselfly wings varied from 0.18 to 0.31 N/m and the air damping ratio ranged from 0.72 to 0.79. The undamped natural frequency (f<sub>n</sub>) at 13 kPa varied from 249 to 299 Hz and at atmosphere it varied from 168 to 198 Hz.
基金Sponsored by the National Natural Science Foundation of China (Grant No.50675052)
文摘In order to improve the effectiveness of traditional time domain identification methods in identifying damping ratios, a new damping ratio identification method based on pattern search is proposed by fluctuating the reliable natural frequency obtained through traditional time domain identification methods by about 10% to build the boundary conditions, using all the initial identification results to establish the free decay response of the system, and using the pattern search method to correct the initial identification results with the residual sum of squares between the free decay response and the actually measured free-decay signal as the objective function. The proposed method deals with the actually measured free-decay signal with curve fitting and avoids enlarging the identified error caused by intermediate conversion, so it can effectively improve the identified accuracy of damping ratios. Simulations for a room-sized vibration isolation foundation show that the relative errors of analyzed three damping ratios are down to 1.05%, 1.51% and 3.7% by the proposed method from 8.42%, 5.85% and 8.5% by STD method when the noise level is 10%.
基金State Key Program of Natural Science Foundation of China Under Grant No.50738002
文摘Tuned mass dampers (TMDs) have been widely used in recent years to mitigate structural vibration. However, the damping mechanisms employed in the TMDs are mostly based on viscous dampers, which have several well-known disadvantages, such as oil leakage and difficult adjustment of damping ratio for an operating TMD. Alternatively, eddy current damping (ECD) that does not require any contact with the main structure is a potential solution. This paper discusses the design, analysis, manufacture and testing of a large-scale horizontal TMD based on ECD. First, the theoretical model of ECD is formulated, then one large-scale horizontal TMD using ECD is constructed, and finally performance tests of the TMD are conducted. The test results show that the proposed TMD has a very low intrinsic damping ratio, while the damping ratio due to ECD is the dominant damping source, which can be as large as 15% in a proper configuration. In addition, the damping ratios estimated with the theoretical model are roughly consistent with those identified from the test results, and the source of this error is investigated. Moreover, it is demonstrated that the damping ratio in the proposed TMD can be easily adjusted by varying the air gap between permanent magnets and conductive plates. In view of practical applications, possible improvements and feasibility considerations for the proposed TMD are then discussed. It is confirmed that the proposed TMD with ECD is reliable and feasible for use in structural vibration control.
基金National Natural Science Foundation under Grant No. 51179093National Basic Research Program of China under Grant No. 2011CB013602Program for New Century Excellent Talents in University under Grant No.NCET-10-0531
文摘A third-order correction was recently suggested to improve the accuracy of the half-power bandwidth method in estimating the damping of single DOF systems.This paper analyzes the accuracy of the half-power bandwidth method with the third-order correction in damping estimation for multi-DOF linear systems.Damping ratios in a two-DOF linear system are estimated using its displacement and acceleration frequency response curves,respectively.A wide range of important parameters that characterize the shape of these response curves are taken into account.Results show that the third-order correction may greatly improve the accuracy of the half-power bandwidth method in estimating damping in a two-DOF system.In spite of this,the half-power bandwidth method may significantly overestimate the damping ratios of two-DOF systems in some cases.
基金The Young Scientists Fund of the National Natural Science Foundation of China under contract No.41106153China Postdoctoral Science Foundation Funded Project under contract No.2012M521293
文摘In combination with a wave action balance equation, a damping model for sea waves covered by oil films of a finite thickness is proposed. The damping model is not only related to the physical parameters of the oil film, but also related to environment parameters. Meanwhile, the parametric analyses have been also conducted to understand the sensitivity of the damping model to these parameters. And numerical simulations demonstrate that a kinematic viscosity, a surface/interfacial elasticity, a thickness, and a fractional filling factor cause more significant effects on a damping ratio than the other physical parameters of the oil film. From the simulation it is also found that the influences induced by a wind speed and a wind direction are also remarkable. On the other hand, for a thick emulsified oil film, the damping effect on the radar signal induced by the reduction of an effective dielectric constant should also be taken into account. The simulated results are compared with the damping ratio evaluated by the 15 ENVISAT ASAR images acquired during the Gulf of Mexico oil spill accident.
文摘In this paper, it is shown that, a road vehicle 2DOF air damped quartercar suspension system can conveniently be transformed into a 2DOF air damped vibrating system representing an air damped dynamic vibration absorber (DVA) with an appropriate change in the ratio μ of the main mass and the absorber mass i.e. when mass ratio μ >> 1. Also the effect of variation of the mass ratio, air damping ratio and air spring rate ratio, on the motion transmissibility at the resonant frequency of the main mass of the DVA has been dis- cussed. It is shown that, as the air damping ratio in the absorber system increases, there is a substantial decrease in the motion transmissibility of the main mass system where the air damper has been modeled as a Maxwell type. Optimal value of the air damping ratio for the minimum motion transmissibility of the main mass of the system has been determined. An experimental setup has been designed and developed with a control system to vary air pressure in the damper in the absorber system. The motion transmissibility characteristics of the main mass system have been obtained, and the optimal value of the air damping ratio has been determined for minimum motion transmissibility of the main mass of the
文摘Reducing the self-noise and radiated noise of torpedo is an effective way to enhance its detection and concealment capabilities.After discussing the basic principle on noise and vibration control and main noise sources in torpedo,the application of damping treatment for noise and vibration absorption was proposed in this paper.Compared composite materials(damping and metal materials)used as segment joint,their different contributions to the damping performance of base structure were investigated.The results show that the damping material can be used as segment joint effectively in vibration control.Taking cantilever beam as an example,four different damping treatments were compared in natural frequency and damping loss factor,the results show the influences of different damping layer layouts on the structure damping performance,and offer a reference for the torpedo shell design.
文摘In this paper,the influence of ground motion duration on the inelastic displacement ratio,C_(1),of highly damped SDOF systems is studied.For this purpose,two sets of spectrally equivalent long and short duration ground motion records were used in an analysis to isolate the effects of ground motion duration on.The effect of duration was evaluated for observed values of C_(1) by considering six ductility levels,and different damping and post-yield stiffness ratios.A new predictive equation of C_(1) also was developed for long and short duration records.Results of non-linear regression analysis of the current study provide an expression with which to quantify the duration effect.Based on the average values of estimated C_(1) ratios for long duration records divided by C_(1) for a short duration set,it is concluded that the maximum difference between long and short duration records occurs when the damping ratio is 0.3 and the post-yield stiffness ratio is equal to zero.