Due to the appearance and the study of the ornithopter and flexible-wing micro air vehicles, etc., the time-varying systems become more and more important and ubiquitous in the study of the mechanics. In this letter, ...Due to the appearance and the study of the ornithopter and flexible-wing micro air vehicles, etc., the time-varying systems become more and more important and ubiquitous in the study of the mechanics. In this letter, the sufficient conditions of the uniform asymptotic stability are first presented for the delayed time-varying linear differential equations with any time delay by employing the Dini derivative, Lozinskii measure and the generalized scalar Halanay delayed differential inequality. They are especially based on the estimation of the arbitrary solutions but not the fundamental solution matrix since their solutions' space is infinite-dimensional. Then some sufficient conditions of the stability, asymptotic stability and uniform asymptotic stability of the delayed time-varying linear system with a sufficiently small time delay are reported by employing Taylor expansion and Dini derivative. It implies that these stabilities can be guaranteed by the Lozinskii measure of the matrix composing of the time delay and the coefficient matrices of the system.展开更多
The problem of the robust fault detection filter design for time-varying delays switched systems is considered in the framework of mixed H-/H∞. Firstly, the weighted H∞ performance index is utilized as the robustnes...The problem of the robust fault detection filter design for time-varying delays switched systems is considered in the framework of mixed H-/H∞. Firstly, the weighted H∞ performance index is utilized as the robustness performance, and the H- index is used as the sensitivity performance for obtaining the robust fault detection filter. Then a novel multiple Lyapunov-Krasovskii function is proposed for deriving sufficient existence conditions of the robust fault detection filter based on the average dwell time technique. By introducing slack matrix variable, the coupling between the Lyapunov matrix and system matrix is removed, and the conservatism of results is reduced. Based on the robust fault detection filter, residual is generated and evaluated for detecting faults. In addition, the results of this paper are dependent on time delays,and represented in the form of linear matrix inequalities. Finally,the simulation example verifies the effectiveness of the proposed method.展开更多
In this paper,the robust stability issue of switched uncertain multidelay systems resulting from actuator failures is considered.Based on the average dwell time approach,a set of suitable switching signals is designed...In this paper,the robust stability issue of switched uncertain multidelay systems resulting from actuator failures is considered.Based on the average dwell time approach,a set of suitable switching signals is designed by using the total activation time ratio between the stable subsystem and the unstable one.It is first proven that the resulting closed-loop system is robustly exponentially stable for some allowable upper bound of delays if the nominal system with zero delay is exponentially stable under these switching laws.Particularly,the maximal upper bound of delays can be obtained from the linear matrix inequalities.At last,the effectiveness of the proposed method is demonstrated by a simulation example.展开更多
基金supported by the National Natural Science Foundation of China(10702065 and 11372282)
文摘Due to the appearance and the study of the ornithopter and flexible-wing micro air vehicles, etc., the time-varying systems become more and more important and ubiquitous in the study of the mechanics. In this letter, the sufficient conditions of the uniform asymptotic stability are first presented for the delayed time-varying linear differential equations with any time delay by employing the Dini derivative, Lozinskii measure and the generalized scalar Halanay delayed differential inequality. They are especially based on the estimation of the arbitrary solutions but not the fundamental solution matrix since their solutions' space is infinite-dimensional. Then some sufficient conditions of the stability, asymptotic stability and uniform asymptotic stability of the delayed time-varying linear system with a sufficiently small time delay are reported by employing Taylor expansion and Dini derivative. It implies that these stabilities can be guaranteed by the Lozinskii measure of the matrix composing of the time delay and the coefficient matrices of the system.
基金supported by the National Natural Science Foundation of China(6127316261403104)
文摘The problem of the robust fault detection filter design for time-varying delays switched systems is considered in the framework of mixed H-/H∞. Firstly, the weighted H∞ performance index is utilized as the robustness performance, and the H- index is used as the sensitivity performance for obtaining the robust fault detection filter. Then a novel multiple Lyapunov-Krasovskii function is proposed for deriving sufficient existence conditions of the robust fault detection filter based on the average dwell time technique. By introducing slack matrix variable, the coupling between the Lyapunov matrix and system matrix is removed, and the conservatism of results is reduced. Based on the robust fault detection filter, residual is generated and evaluated for detecting faults. In addition, the results of this paper are dependent on time delays,and represented in the form of linear matrix inequalities. Finally,the simulation example verifies the effectiveness of the proposed method.
基金supported by the National Basic Research Program of China (No. 2007CB714006)the National Natural Science Foundation(No. 61074020)
文摘In this paper,the robust stability issue of switched uncertain multidelay systems resulting from actuator failures is considered.Based on the average dwell time approach,a set of suitable switching signals is designed by using the total activation time ratio between the stable subsystem and the unstable one.It is first proven that the resulting closed-loop system is robustly exponentially stable for some allowable upper bound of delays if the nominal system with zero delay is exponentially stable under these switching laws.Particularly,the maximal upper bound of delays can be obtained from the linear matrix inequalities.At last,the effectiveness of the proposed method is demonstrated by a simulation example.