In this paper, for controlling the spread of plant diseases, a nonautonomous SEIS (Susceptible → Exposed → Infectious → Susceptible) epidemic model with a general nonlinear incidence rate and time-varying impulsive...In this paper, for controlling the spread of plant diseases, a nonautonomous SEIS (Susceptible → Exposed → Infectious → Susceptible) epidemic model with a general nonlinear incidence rate and time-varying impulsive control strategy is proposed and investigated. This novel model could result in an objective criterion on how to control plant disease transmission by replanting of healthy plants and removal of infected plants. Using the method of small amplitude perturbation, the sufficient conditions under which guarantee the globally attractive of the disease-free periodic solution and the permanence of the disease are obtained, that is, the disease dies out if R12>1.展开更多
A whole impulsive control scheme of nonlinear systems with time-varying delays, which is an extension for impulsive control of nonlinear systems without time delay, is presented in this paper. Utilizing the Lyapunov f...A whole impulsive control scheme of nonlinear systems with time-varying delays, which is an extension for impulsive control of nonlinear systems without time delay, is presented in this paper. Utilizing the Lyapunov functions and the impulsive-type comparison principles, we establish a series of different conditions under which impulsively controlled nonlinear systems with time-varying delays are asymptotically stable. Then we estimate upper bounds of impulse interval and time-varying delays for asymptotically stable control. Finally a numerical example is given to illustrate the effectiveness of the method.展开更多
A scheme for the impulsive control of nonlinear systems with time-varying delays is investigated in this paper. Based on the Lyapunov-like stability theorem for impulsive functional differential equations (FDEs), so...A scheme for the impulsive control of nonlinear systems with time-varying delays is investigated in this paper. Based on the Lyapunov-like stability theorem for impulsive functional differential equations (FDEs), some sufficient conditions are presented to guarantee the uniform asymptotic stability of impulsively controlled nonlinear systems with time-varying delays. These conditions are more effective and less conservative than those obtained. Finally, two numerical examples are provided to demonstrate the effectiveness of the proposed method.展开更多
The problem of delay-dependent exponential stability is investigated for impulsive stochastic systems with time-varying delay. Although the exponential stability of impulsive stochastic delay systems has been discusse...The problem of delay-dependent exponential stability is investigated for impulsive stochastic systems with time-varying delay. Although the exponential stability of impulsive stochastic delay systems has been discussed by several authors, few works have been done on delay-dependent exponential stability of impulsive stochastic delay systems. Firstly, the Lyapunov-Krasovskii functional method combing the free-weighting matrix approach is applied to investigate this problem. Some delay-dependent mean square exponential stability criteria are derived in terms of linear matrix inequalities. In particular, the estimate of the exponential convergence rate is also provided, which depends on system parameters and impulsive effects. The obtained results show that the system will stable if the impulses' frequency and amplitude are suitably related to the increase or decrease of the continuous flows, and impulses may be used as controllers to stabilize the underlying stochastic system. Numerical examples are given to show the effectiveness of the results.展开更多
In this paper, Hopfield neural networks with impulse and leakage time-varying delay are considered. New sufficient conditions for global asymptotical stability of the equilibrium point are derived by using Lyapunov-Kr...In this paper, Hopfield neural networks with impulse and leakage time-varying delay are considered. New sufficient conditions for global asymptotical stability of the equilibrium point are derived by using Lyapunov-Kravsovskii functional, model transformation and some analysis techniques. The criterion of stability depends on the impulse and the bounds of the leakage time-varying delay and its derivative, and is presented in terms of a linear matrix inequality (LMI).展开更多
In this paper, an impulsive control strategy is proposed for a class of nonlinear stochastic dynamical networks with time-varying delay. Using the Lyapunov stability theory, a sufficient verifiable criterion for the e...In this paper, an impulsive control strategy is proposed for a class of nonlinear stochastic dynamical networks with time-varying delay. Using the Lyapunov stability theory, a sufficient verifiable criterion for the exponential synchronization is derived analytically. Finally, a numerical simulation example is provided to verify the effectiveness of the proposed approach.展开更多
This paper is concerned with the set-membership filtering problem for a class of linear time-varying systems with norm-bounded noises and impulsive measurement outliers.A new representation is proposed to model the me...This paper is concerned with the set-membership filtering problem for a class of linear time-varying systems with norm-bounded noises and impulsive measurement outliers.A new representation is proposed to model the measurement outlier by an impulsive signal whose minimum interval length(i.e.,the minimum duration between two adjacent impulsive signals)and minimum norm(i.e.,the minimum of the norms of all impulsive signals)are larger than certain thresholds that are adjustable according to engineering practice.In order to guarantee satisfactory filtering performance,a so-called parameter-dependent set-membership filter is put forward that is capable of generating a time-varying ellipsoidal region containing the true system state.First,a novel outlier detection strategy is developed,based on a dedicatedly constructed input-output model,to examine whether the received measurement is corrupted by an outlier.Then,through the outcome of the outlier detection,the gain matrix of the desired filter and the corresponding ellipsoidal region are calculated by solving two recursive difference equations.Furthermore,the ultimate boundedness issue on the time-varying ellipsoidal region is thoroughly investigated.Finally,a simulation example is provided to demonstrate the effectiveness of our proposed parameter-dependent set-membership filtering strategy.展开更多
In this paper, the pinning synchronization problem of stochastic delayed complex network (SDCN) is investigated by using a novel hybrid pinning controller. The proposed hybrid pinning controller is composed of adapt...In this paper, the pinning synchronization problem of stochastic delayed complex network (SDCN) is investigated by using a novel hybrid pinning controller. The proposed hybrid pinning controller is composed of adaptive controller and impulsive controller, where the two controllers are both added to a fraction of nodes in the network. Using the Lyapunov stability theory and the novel hybrid pinning controller, some sufficient conditions are derived for the exponential synchronization of such dynamical networks in mean square. Two numerical simulation examples are provided to verify the effectiveness of the proposed approach. The simulation results show that the proposed control scheme has a fast convergence rate compared with the conventional adaptive pinning method.展开更多
In this paper, we first investigate input passivity and output passivity for a class of impulsive complex networks with time-varying delays. By constructing suitable Lyapunov functionals, some input passivity and outp...In this paper, we first investigate input passivity and output passivity for a class of impulsive complex networks with time-varying delays. By constructing suitable Lyapunov functionals, some input passivity and output passivity conditions are derived for the impulsive complex networks. Finally, an example is given to show the effectiveness of the proposed criteria.展开更多
Wireless networks are characterized by nodes mobility, which makes the propagation environment time-varying and subject to fading. As a consequence, the statistical characteristics of the received signal vary continuo...Wireless networks are characterized by nodes mobility, which makes the propagation environment time-varying and subject to fading. As a consequence, the statistical characteristics of the received signal vary continuously, giving rise to a Doppler power spectral density (DPSD) that varies from one observation instant to the next. This paper is concerned with dynamical modeling of time-varying wireless fading channels, their estimation and parameter identification, and optimal power control from received signal measurement data. The wireless channel is characterized using a stochastic state-space form and derived by approximating the time-varying DPSD of the channel. The expected maximization and Kalman filter are employed to recursively identify and estimate the channel parameters and states, respectively, from online received signal strength measured data. Moreover, we investigate a centralized optimal power control algorithm based on predictable strategies and employing the estimated channel parameters and states. The proposed models together with the estimation and power control algorithms are tested using experimental measurement data and the results are presented.展开更多
文摘In this paper, for controlling the spread of plant diseases, a nonautonomous SEIS (Susceptible → Exposed → Infectious → Susceptible) epidemic model with a general nonlinear incidence rate and time-varying impulsive control strategy is proposed and investigated. This novel model could result in an objective criterion on how to control plant disease transmission by replanting of healthy plants and removal of infected plants. Using the method of small amplitude perturbation, the sufficient conditions under which guarantee the globally attractive of the disease-free periodic solution and the permanence of the disease are obtained, that is, the disease dies out if R12>1.
文摘A whole impulsive control scheme of nonlinear systems with time-varying delays, which is an extension for impulsive control of nonlinear systems without time delay, is presented in this paper. Utilizing the Lyapunov functions and the impulsive-type comparison principles, we establish a series of different conditions under which impulsively controlled nonlinear systems with time-varying delays are asymptotically stable. Then we estimate upper bounds of impulse interval and time-varying delays for asymptotically stable control. Finally a numerical example is given to illustrate the effectiveness of the method.
基金supported by the National Natural Science Foundation of China (Grant Nos 60534010,60774048,60728307,60804006 and 60521003)the National High Technology Research and Development Program of China (Grant No 2006AA04Z183)+1 种基金Liaoning Provincial Natural Science Foundation,China (Grant No 20062018)111 Project (Grant No B08015)
文摘A scheme for the impulsive control of nonlinear systems with time-varying delays is investigated in this paper. Based on the Lyapunov-like stability theorem for impulsive functional differential equations (FDEs), some sufficient conditions are presented to guarantee the uniform asymptotic stability of impulsively controlled nonlinear systems with time-varying delays. These conditions are more effective and less conservative than those obtained. Finally, two numerical examples are provided to demonstrate the effectiveness of the proposed method.
基金supported by the National Natural Science Foundation of China (60874114)the Fundamental Research Funds for the Central Universities, South China University of Technology (SCUT)(2009ZM0140)
文摘The problem of delay-dependent exponential stability is investigated for impulsive stochastic systems with time-varying delay. Although the exponential stability of impulsive stochastic delay systems has been discussed by several authors, few works have been done on delay-dependent exponential stability of impulsive stochastic delay systems. Firstly, the Lyapunov-Krasovskii functional method combing the free-weighting matrix approach is applied to investigate this problem. Some delay-dependent mean square exponential stability criteria are derived in terms of linear matrix inequalities. In particular, the estimate of the exponential convergence rate is also provided, which depends on system parameters and impulsive effects. The obtained results show that the system will stable if the impulses' frequency and amplitude are suitably related to the increase or decrease of the continuous flows, and impulses may be used as controllers to stabilize the underlying stochastic system. Numerical examples are given to show the effectiveness of the results.
文摘In this paper, Hopfield neural networks with impulse and leakage time-varying delay are considered. New sufficient conditions for global asymptotical stability of the equilibrium point are derived by using Lyapunov-Kravsovskii functional, model transformation and some analysis techniques. The criterion of stability depends on the impulse and the bounds of the leakage time-varying delay and its derivative, and is presented in terms of a linear matrix inequality (LMI).
文摘In this paper, an impulsive control strategy is proposed for a class of nonlinear stochastic dynamical networks with time-varying delay. Using the Lyapunov stability theory, a sufficient verifiable criterion for the exponential synchronization is derived analytically. Finally, a numerical simulation example is provided to verify the effectiveness of the proposed approach.
基金supported in part by the National Natural Science Foundation of China(61703245,61873148,61933007)the China Postdoctoral Science Foundation(2018T110702)+3 种基金the Postdoctoral Special Innovation Foundation of of Shandong Province of China(201701015)the European Union’s Horizon 2020 Research and Innovation Programme(820776(INTEGRADDE))the Royal Society of the UKthe Alexander von Humboldt Foundation of Germany。
文摘This paper is concerned with the set-membership filtering problem for a class of linear time-varying systems with norm-bounded noises and impulsive measurement outliers.A new representation is proposed to model the measurement outlier by an impulsive signal whose minimum interval length(i.e.,the minimum duration between two adjacent impulsive signals)and minimum norm(i.e.,the minimum of the norms of all impulsive signals)are larger than certain thresholds that are adjustable according to engineering practice.In order to guarantee satisfactory filtering performance,a so-called parameter-dependent set-membership filter is put forward that is capable of generating a time-varying ellipsoidal region containing the true system state.First,a novel outlier detection strategy is developed,based on a dedicatedly constructed input-output model,to examine whether the received measurement is corrupted by an outlier.Then,through the outcome of the outlier detection,the gain matrix of the desired filter and the corresponding ellipsoidal region are calculated by solving two recursive difference equations.Furthermore,the ultimate boundedness issue on the time-varying ellipsoidal region is thoroughly investigated.Finally,a simulation example is provided to demonstrate the effectiveness of our proposed parameter-dependent set-membership filtering strategy.
基金supported by the National Natural Science Foundation of China (Grant No. 60874113)the Research Fund for the Doctoral Program of Higher Education of China (Grant No. 200802550007)+3 种基金the Key Foundation Project of Shanghai,China(Grant No. 09JC1400700)the Key Creative Project of Shanghai Education Community,China (Grant No. 09ZZ66)the National Basic Research Development Program of China (Grant No. 2010CB731400)the Research Grants Council of the Hong Kong Special Administrative Region,China (Grant No. PolyU 5212/07E)
文摘In this paper, the pinning synchronization problem of stochastic delayed complex network (SDCN) is investigated by using a novel hybrid pinning controller. The proposed hybrid pinning controller is composed of adaptive controller and impulsive controller, where the two controllers are both added to a fraction of nodes in the network. Using the Lyapunov stability theory and the novel hybrid pinning controller, some sufficient conditions are derived for the exponential synchronization of such dynamical networks in mean square. Two numerical simulation examples are provided to verify the effectiveness of the proposed approach. The simulation results show that the proposed control scheme has a fast convergence rate compared with the conventional adaptive pinning method.
基金supported by National Natural Science Foundation of China (No. 10971240, No. 6100404, No. 61074057)Natural Science Foundation of Chongqing Province of China(No. CSTC2008BB2364)+1 种基金Foundation of Science and Technology Project of Chongqing Education Commission(No. KJ080806)Fundamental Research Funds for the Central Universities, China(No. YWF-10-01-A19)
文摘In this paper, we first investigate input passivity and output passivity for a class of impulsive complex networks with time-varying delays. By constructing suitable Lyapunov functionals, some input passivity and output passivity conditions are derived for the impulsive complex networks. Finally, an example is given to show the effectiveness of the proposed criteria.
文摘Wireless networks are characterized by nodes mobility, which makes the propagation environment time-varying and subject to fading. As a consequence, the statistical characteristics of the received signal vary continuously, giving rise to a Doppler power spectral density (DPSD) that varies from one observation instant to the next. This paper is concerned with dynamical modeling of time-varying wireless fading channels, their estimation and parameter identification, and optimal power control from received signal measurement data. The wireless channel is characterized using a stochastic state-space form and derived by approximating the time-varying DPSD of the channel. The expected maximization and Kalman filter are employed to recursively identify and estimate the channel parameters and states, respectively, from online received signal strength measured data. Moreover, we investigate a centralized optimal power control algorithm based on predictable strategies and employing the estimated channel parameters and states. The proposed models together with the estimation and power control algorithms are tested using experimental measurement data and the results are presented.