The delay-dependent absolute stability for a class of Lurie systems with interval time-varying delay is studied. By employing an augmented Lyapunov functional and combining a free-weighting matrix approach and the rec...The delay-dependent absolute stability for a class of Lurie systems with interval time-varying delay is studied. By employing an augmented Lyapunov functional and combining a free-weighting matrix approach and the reciprocal convex technique, an improved stability condition is derived in terms of linear matrix inequalities (LMIs). By retaining some useful terms that are usually ignored in the derivative of the Lyapunov function, the proposed sufficient condition depends not only on the lower and upper bounds of both the delay and its derivative, but it also depends on their differences, which has wider application fields than those of present results. Moreover, a new type of equality expression is developed to handle the sector bounds of the nonlinear function, which achieves fewer LMIs in the derived condition, compared with those based on the convex representation. Therefore, the proposed method is less conservative than the existing ones. Simulation examples are given to demonstrate the validity of the approach.展开更多
The problem of the stability for a class of stochastic systems with time-varying interval delay and the norm-bounded uncertainty is investigated. Utilizing the information of both the lower and the upper bounds of the...The problem of the stability for a class of stochastic systems with time-varying interval delay and the norm-bounded uncertainty is investigated. Utilizing the information of both the lower and the upper bounds of the interval time-varying delay, a novel Lyapunov-Krasovskii functional is constructed. The delay-dependent sufficient criteria are derived in terms of linear matrix inequalities (LMIs), which can be easily checked by the LMI in the Matlab toolbox. Based on the Jensen integral inequality, neither model transformations nor bounding techniques for cross terms is employed, so the derived criteria are less conservative than the existing results. Meanwhile, the computational complexity of the obtained stability conditions is reduced because no redundant matrix is introduced. A numerical example is given to show the effectiveness and the benefits of the proposed method.展开更多
The problem of passivity analysis is investigated for uncertain stochastic neural networks with discrete interval and distributed time-varying delays.The parameter uncertainties are assumed to be norm bounded and the ...The problem of passivity analysis is investigated for uncertain stochastic neural networks with discrete interval and distributed time-varying delays.The parameter uncertainties are assumed to be norm bounded and the delay is assumed to be time-varying and belongs to a given interval,which means that the lower and upper bounds of interval time-varying delays are available.By constructing proper Lyapunov-Krasovskii functional and employing a combination of the free-weighting matrix method and stochastic analysis technique,new delay-dependent passivity conditions are derived in terms of linear matrix inequalities(LMIs).Finally,numerical examples are given to show the less conservatism of the proposed conditions.展开更多
The robust stability and robust stabilization problems for discrete singular systems with interval time-varying delay and linear fractional uncertainty are discussed. A new delay-dependent criterion is established for...The robust stability and robust stabilization problems for discrete singular systems with interval time-varying delay and linear fractional uncertainty are discussed. A new delay-dependent criterion is established for the nominal discrete singular delay systems to be regular, causal and stable by employing the linear matrix inequality (LMI) approach. It is shown that the newly proposed criterion can provide less conservative results than some existing ones. Then, with this criterion, the problems of robust stability and robust stabilization for uncertain discrete singular delay systems are solved, and the delay-dependent LMI conditions are obtained. Finally, numerical examples are given to illustrate the effectiveness of the proposed approach.展开更多
This paper is concerned with the design of a memory state feedback controller for linear systems with interval time-varying delays.The time delay is assumed to be a time-varying continuous function belonging to a give...This paper is concerned with the design of a memory state feedback controller for linear systems with interval time-varying delays.The time delay is assumed to be a time-varying continuous function belonging to a given interval,which means that the lower and upper bounds of time-varying delay are available.First,a less conservative delay-range-dependent stability criteria is proposed by using a new interval fraction method.In the process of controller synthesis,the history information of system is considered in the controller design by introducing the lower delay state.Moreover,the usual memoryless state feedback controller for the underlying systems could be considered as a special case of the memory case.Finally,two numerical examples are given to show the effectiveness of the proposed method.展开更多
The problem of delay-dependent asymptotic stability for neurM networks with interval time-varying delay is investigated. Based on the idea of delay decomposition method, a new type of Lyapunov Krasovskii functional is...The problem of delay-dependent asymptotic stability for neurM networks with interval time-varying delay is investigated. Based on the idea of delay decomposition method, a new type of Lyapunov Krasovskii functional is constructed. Several novel delay-dependent stability criteria are presented in terms of linear matrix inequality by using the Jensen integral inequality and a new convex combination technique. Numerical examples are given to demonstrate that the proposed method is effective and less conservative.展开更多
In this paper, the robust H∞control problem for a class of stochastic systems with interval time-varying and distributed delays is discussed. The system under study involves parameter uncertainty, stochastic disturba...In this paper, the robust H∞control problem for a class of stochastic systems with interval time-varying and distributed delays is discussed. The system under study involves parameter uncertainty, stochastic disturbance, interval time-varying,and distributed delay. The aim is to design a delay-dependent robust H∞control which ensures the robust asymptotic stability of the given system and to express it in the form of linear matrix inequalities(LMIs). Numerical examples are given to demonstrate the effectiveness of the proposed method. The results are also compared with the existing results to show its conservativeness.展开更多
This paper is concerned with the problem of robust stability for a class of Markovian jumping stochastic neural networks (MJSNNs) subject to mode-dependent time-varying interval delay and state-multiplicative noise....This paper is concerned with the problem of robust stability for a class of Markovian jumping stochastic neural networks (MJSNNs) subject to mode-dependent time-varying interval delay and state-multiplicative noise. Based on the Lyapunov-Krasovskii functional and a stochastic analysis approach, some new delay-dependent sufficient conditions are obtained in the linear matrix inequality (LMI) format such that delayed MJSNNs are globally asymptotically stable in the mean-square sense for all admissible uncertainties. An important feature of the results is that the stability criteria are dependent on not only the lower bound and upper bound of delay for all modes but also the covariance matrix consisting of the correlation coefficient. Numerical examples are given to illustrate the effectiveness.展开更多
This paper proposes a class of parallel interval matrix multisplitting AOR methods far solving systems of interval linear equations and discusses their convergence properties under the conditions that the coefficient ...This paper proposes a class of parallel interval matrix multisplitting AOR methods far solving systems of interval linear equations and discusses their convergence properties under the conditions that the coefficient matrices are interval H-matrices.展开更多
This paper investigates the problem of delay-dependent robust stability analysis for a class of neutral systems with interval time-varying delays and nonlinear perturbations. Such nonlinear perturbations are with time...This paper investigates the problem of delay-dependent robust stability analysis for a class of neutral systems with interval time-varying delays and nonlinear perturbations. Such nonlinear perturbations are with time-varying but norm-bounded characteristics. Based on a new Lyapunov-Krasovskii functional, together ,sith a free-weighting matrices technique, improved delay-dependent stability criteria are established. It is shown that less conservative results can be obtained in terms of linear matrix inequalities (LMIs). Numerical examples are provided to demonstrate the effectiveness and less conservatism of the proposed approach.展开更多
New robust exponential stabilization criteria for interval time-varying delay systems with norm-bounded uncertainties are proposed. Based on the free-weighting matrices and new Lyapunov-Krasovskii functionals, such cr...New robust exponential stabilization criteria for interval time-varying delay systems with norm-bounded uncertainties are proposed. Based on the free-weighting matrices and new Lyapunov-Krasovskii functionals, such criteria are obtained by dealing with system model directly and designing memoryless state feedback controllers and expressed in terms of linear matrix inequalities (LMIs). Moreover, the criteria are applicable to the case whether the derivative of the time-varying delay is bounded or not. The state decay rate is estimated by the corresponding LMIs. Numerical examples are given to illustrate the effectiveness of the proposed method.展开更多
We study the leader-following consensus stability and stabilization of networked multi-teleoperator systems with interval time-varying communication delays. With the construction of a suitable Lyapunov–Krasovskii fun...We study the leader-following consensus stability and stabilization of networked multi-teleoperator systems with interval time-varying communication delays. With the construction of a suitable Lyapunov–Krasovskii functional and the utilization of the reciprocally convex approach, novel delay-dependent consensus stability and stabilization conditions for the systems are established in terms of linear matrix inequalities, which can easily be solved by various effective optimization algorithms. One illustrative example is given to illustrate the effectiveness of the proposed methods.展开更多
The penalty equation of LCP is transformed into the absolute value equation, and then the existence of solutions for the penalty equation is proved by the regularity of the interval matrix. We propose a generalized Ne...The penalty equation of LCP is transformed into the absolute value equation, and then the existence of solutions for the penalty equation is proved by the regularity of the interval matrix. We propose a generalized Newton method for solving the linear complementarity problem with the regular interval matrix based on the nonlinear penalized equation. Further, we prove that this method is convergent. Numerical experiments are presented to show that the generalized Newton method is effective.展开更多
This paper deals with rnxn two-person non-zero sum games with interval pay-offs. An analytic method for solving such games is given. A pair of Nash Equilibrium is found by using the method. The analytic method is effe...This paper deals with rnxn two-person non-zero sum games with interval pay-offs. An analytic method for solving such games is given. A pair of Nash Equilibrium is found by using the method. The analytic method is effective to find at least one Nash Equilibrium (N.E) for two-person bimatrix games. Therefore, the analytic method for two-person bimatrix games is adapted to interval bimatrix games.展开更多
In this paper, we consider the problem of robust stability for a class of linear systems with interval time-varying delay under nonlinear perturbations using Lyapunov-Krasovskii (LK) functional approach. By partitio...In this paper, we consider the problem of robust stability for a class of linear systems with interval time-varying delay under nonlinear perturbations using Lyapunov-Krasovskii (LK) functional approach. By partitioning the delay-interval into two segments of equal length, and evaluating the time-derivative of a candidate LK functional in each segment of the delay-interval, a less conservative delay-dependent stability criterion is developed to compute the maximum allowable bound for the delay-range within which the system under consideration remains asymptotically stable. In addition to the delay-bi-segmentation analysis procedure, the reduction in conservatism of the proposed delay-dependent stability criterion over recently reported results is also attributed to the fact that the time-derivative of the LK functional is bounded tightly using a newly proposed bounding condition without neglecting any useful terms in the delay-dependent stability analysis. The analysis, subsequently, yields a stable condition in convex linear matrix inequality (LMI) framework that can be solved non-conservatively at boundary conditions using standard numerical packages. Furthermore, as the number of decision variables involved in the proposed stability criterion is less, the criterion is computationally more effective. The effectiveness of the proposed stability criterion is validated through some standard numerical examples.展开更多
A new method on the interval stability of networked control systems (NCSs) with random delay and data packet dropout is studied. Combining interval systems and NCSs, a graphic condition on judging interval stability...A new method on the interval stability of networked control systems (NCSs) with random delay and data packet dropout is studied. Combining interval systems and NCSs, a graphic condition on judging interval stability is presented in terms of the weighted diagraph theory in graph theory. Furthermore, utilizing the graph-theoretic algorithm, the delay-depended controller gains are obtained. Aiming at the same delay and data packed dropout, several controller gains are obtained, simultaneously. The example and simulation illustrate the effectiveness of the proposed method.展开更多
In this paper, a statistical analysis method is proposed to research life characteristics of products based on the partially accelerated life test. We discuss the statistical analysis for constant-stress partially acc...In this paper, a statistical analysis method is proposed to research life characteristics of products based on the partially accelerated life test. We discuss the statistical analysis for constant-stress partially accelerated life tests with Lomax distribution based on interval censored samples. The EM algorithm is used to obtain the maximum likelihood estimations(MLEs) and interval estimations for the shape parameter and acceleration factor.The average relative errors(AREs), mean square errors(MSEs), the confidence intervals for the parameters, and the influence of the sample size are discussed. The results show that the AREs and MSEs of the MLEs decrease with the increase of sample size. Finally, a simulation sample is used to estimate the reliability under different stress levels.展开更多
This paper deals with the problem of stability for systems with delay varying in an interval.A new Lyapunov functional,which makes use of the information of both the lower and upper bounds of the interval time-varying...This paper deals with the problem of stability for systems with delay varying in an interval.A new Lyapunov functional,which makes use of the information of both the lower and upper bounds of the interval time-varying delay,is proposed to derive some new stability criteria.Furthermore,the relationship of the time-varying delay and its lower bound and upper bound is taken into account.As a result,some less conservative delay-dependent stability criteria are obtained without ignoring any useful information in the derivative of Lyapunov functional,which are established in the forms of linear matrix inequalities.Numerical examples are provided to show that the obtained results are better than existing ones.展开更多
The fault detection problem for the nonlinear networked control system (NCS) with packet dropout and delay is investigated. A nonlinear stochastic system model is proposed to account for the NCS with random packet d...The fault detection problem for the nonlinear networked control system (NCS) with packet dropout and delay is investigated. A nonlinear stochastic system model is proposed to account for the NCS with random packet dropout and network- induced non-uniformly distributed time-varying delay in both from sensor to controller (S/C) and from controller to actuator (C/A). Based on the obtained NCS model, employing an observer-based fault detection filter as the residual generator, the addressed fault detection problem is converted into an auxiliary nonlinear H∞ control problem. Then, with the help of Lyapunov functional approach, a sufficient condition for the desired fault detection filter is constructed in terms of certain linear matrix inequalities, which depend on not only the delay interval but also the delay interval occurrence rate and successful packet communication rate. Especially, a trade-off phenomenon between the maximum allowable delay bound and successful data packet transmission rate is found, which is typically resulted from the limited bandwidth of communication networks. The effectiveness of the proposed method is demonstrated by a simulation example.展开更多
基金The National Natural Science Foundation of China(No.60835001,60875035,60905009,61004032,61004064,11071001)China Postdoctoral Science Foundation(No.201003546)+2 种基金the Ph.D.Programs Foundation of Ministry of Education of China(No.20093401110001)the Major Program of Higher Education of Anhui Province(No.KJ2010ZD02)the Natural Science Research Project of Higher Education of Anhui Province(No.KJ2011A020)
文摘The delay-dependent absolute stability for a class of Lurie systems with interval time-varying delay is studied. By employing an augmented Lyapunov functional and combining a free-weighting matrix approach and the reciprocal convex technique, an improved stability condition is derived in terms of linear matrix inequalities (LMIs). By retaining some useful terms that are usually ignored in the derivative of the Lyapunov function, the proposed sufficient condition depends not only on the lower and upper bounds of both the delay and its derivative, but it also depends on their differences, which has wider application fields than those of present results. Moreover, a new type of equality expression is developed to handle the sector bounds of the nonlinear function, which achieves fewer LMIs in the derived condition, compared with those based on the convex representation. Therefore, the proposed method is less conservative than the existing ones. Simulation examples are given to demonstrate the validity of the approach.
基金The National Natural Science Foundation of China(No.60874030,60574006,60404006)the Natural Science Foundation of the Jiangsu Higher Education Institutions of China(No.07KJB510125)
文摘The problem of the stability for a class of stochastic systems with time-varying interval delay and the norm-bounded uncertainty is investigated. Utilizing the information of both the lower and the upper bounds of the interval time-varying delay, a novel Lyapunov-Krasovskii functional is constructed. The delay-dependent sufficient criteria are derived in terms of linear matrix inequalities (LMIs), which can be easily checked by the LMI in the Matlab toolbox. Based on the Jensen integral inequality, neither model transformations nor bounding techniques for cross terms is employed, so the derived criteria are less conservative than the existing results. Meanwhile, the computational complexity of the obtained stability conditions is reduced because no redundant matrix is introduced. A numerical example is given to show the effectiveness and the benefits of the proposed method.
基金supported by Department of Science and Technology,New Delhi,India(SR/S4/MS:485/07)
文摘The problem of passivity analysis is investigated for uncertain stochastic neural networks with discrete interval and distributed time-varying delays.The parameter uncertainties are assumed to be norm bounded and the delay is assumed to be time-varying and belongs to a given interval,which means that the lower and upper bounds of interval time-varying delays are available.By constructing proper Lyapunov-Krasovskii functional and employing a combination of the free-weighting matrix method and stochastic analysis technique,new delay-dependent passivity conditions are derived in terms of linear matrix inequalities(LMIs).Finally,numerical examples are given to show the less conservatism of the proposed conditions.
基金supported by Research Foundation of Education Bureau of Shannxi Province, PRC(No.2010JK400)
文摘The robust stability and robust stabilization problems for discrete singular systems with interval time-varying delay and linear fractional uncertainty are discussed. A new delay-dependent criterion is established for the nominal discrete singular delay systems to be regular, causal and stable by employing the linear matrix inequality (LMI) approach. It is shown that the newly proposed criterion can provide less conservative results than some existing ones. Then, with this criterion, the problems of robust stability and robust stabilization for uncertain discrete singular delay systems are solved, and the delay-dependent LMI conditions are obtained. Finally, numerical examples are given to illustrate the effectiveness of the proposed approach.
基金supported by the 111 Project(No.B08015)the National Natural Science Foundation of China(No.60534010,60572070,60774048,60728307)the Program for Changjiang Scholars and Innovative Research Groups of China(No.60521003)
文摘This paper is concerned with the design of a memory state feedback controller for linear systems with interval time-varying delays.The time delay is assumed to be a time-varying continuous function belonging to a given interval,which means that the lower and upper bounds of time-varying delay are available.First,a less conservative delay-range-dependent stability criteria is proposed by using a new interval fraction method.In the process of controller synthesis,the history information of system is considered in the controller design by introducing the lower delay state.Moreover,the usual memoryless state feedback controller for the underlying systems could be considered as a special case of the memory case.Finally,two numerical examples are given to show the effectiveness of the proposed method.
基金Supported by National Natural Science Foundation of China (60425310, 60574014), the Doctor Subject Foundation of China (20050533015, 200805330004), the Program for New Century Excellent Talents in University (NCET-06-0679), and the Natural Science Foundation of Hunan Province (08JJ1010)
基金supported by the Doctoral Startup Foundation of Taiyuan University of Science and Technology,China (Grant No. 20112010)
文摘The problem of delay-dependent asymptotic stability for neurM networks with interval time-varying delay is investigated. Based on the idea of delay decomposition method, a new type of Lyapunov Krasovskii functional is constructed. Several novel delay-dependent stability criteria are presented in terms of linear matrix inequality by using the Jensen integral inequality and a new convex combination technique. Numerical examples are given to demonstrate that the proposed method is effective and less conservative.
基金Project supported by the Fund from the Department of Science and Technology(DST)(Grant No.SR/FTP/MS-039/2011)
文摘In this paper, the robust H∞control problem for a class of stochastic systems with interval time-varying and distributed delays is discussed. The system under study involves parameter uncertainty, stochastic disturbance, interval time-varying,and distributed delay. The aim is to design a delay-dependent robust H∞control which ensures the robust asymptotic stability of the given system and to express it in the form of linear matrix inequalities(LMIs). Numerical examples are given to demonstrate the effectiveness of the proposed method. The results are also compared with the existing results to show its conservativeness.
基金supported by the National Natural Science Foundation of China (Grant Nos 60534010,60774048,60728307,60804006,60521003)the National High Technology Research and Development Program of China (863 Program) (Grant No 2006AA04Z183)+2 种基金the Natural Science Foundation of Liaoning Province of China (Grant No 20062018)973 Project (Grant No 2009CB320601)111 Project (Grant No B08015)
文摘This paper is concerned with the problem of robust stability for a class of Markovian jumping stochastic neural networks (MJSNNs) subject to mode-dependent time-varying interval delay and state-multiplicative noise. Based on the Lyapunov-Krasovskii functional and a stochastic analysis approach, some new delay-dependent sufficient conditions are obtained in the linear matrix inequality (LMI) format such that delayed MJSNNs are globally asymptotically stable in the mean-square sense for all admissible uncertainties. An important feature of the results is that the stability criteria are dependent on not only the lower bound and upper bound of delay for all modes but also the covariance matrix consisting of the correlation coefficient. Numerical examples are given to illustrate the effectiveness.
文摘This paper proposes a class of parallel interval matrix multisplitting AOR methods far solving systems of interval linear equations and discusses their convergence properties under the conditions that the coefficient matrices are interval H-matrices.
基金Sponsored by the National Natural Science Foundation of China(Grant No.61004038)
文摘This paper investigates the problem of delay-dependent robust stability analysis for a class of neutral systems with interval time-varying delays and nonlinear perturbations. Such nonlinear perturbations are with time-varying but norm-bounded characteristics. Based on a new Lyapunov-Krasovskii functional, together ,sith a free-weighting matrices technique, improved delay-dependent stability criteria are established. It is shown that less conservative results can be obtained in terms of linear matrix inequalities (LMIs). Numerical examples are provided to demonstrate the effectiveness and less conservatism of the proposed approach.
基金supported by the Science and Technology Project of Liaoning Provincial Education Department
文摘New robust exponential stabilization criteria for interval time-varying delay systems with norm-bounded uncertainties are proposed. Based on the free-weighting matrices and new Lyapunov-Krasovskii functionals, such criteria are obtained by dealing with system model directly and designing memoryless state feedback controllers and expressed in terms of linear matrix inequalities (LMIs). Moreover, the criteria are applicable to the case whether the derivative of the time-varying delay is bounded or not. The state decay rate is estimated by the corresponding LMIs. Numerical examples are given to illustrate the effectiveness of the proposed method.
基金MEST&DGIST(12-IT-04,Development of the Medical&IT Convergence System)the Basic Science Research Program through the National Research Foundation of Korea(NRF)funded by the Ministry of Education,Science and Technology(Grant Nos.2011-0009273 and 2012-0000479)
文摘We study the leader-following consensus stability and stabilization of networked multi-teleoperator systems with interval time-varying communication delays. With the construction of a suitable Lyapunov–Krasovskii functional and the utilization of the reciprocally convex approach, novel delay-dependent consensus stability and stabilization conditions for the systems are established in terms of linear matrix inequalities, which can easily be solved by various effective optimization algorithms. One illustrative example is given to illustrate the effectiveness of the proposed methods.
文摘The penalty equation of LCP is transformed into the absolute value equation, and then the existence of solutions for the penalty equation is proved by the regularity of the interval matrix. We propose a generalized Newton method for solving the linear complementarity problem with the regular interval matrix based on the nonlinear penalized equation. Further, we prove that this method is convergent. Numerical experiments are presented to show that the generalized Newton method is effective.
文摘This paper deals with rnxn two-person non-zero sum games with interval pay-offs. An analytic method for solving such games is given. A pair of Nash Equilibrium is found by using the method. The analytic method is effective to find at least one Nash Equilibrium (N.E) for two-person bimatrix games. Therefore, the analytic method for two-person bimatrix games is adapted to interval bimatrix games.
文摘In this paper, we consider the problem of robust stability for a class of linear systems with interval time-varying delay under nonlinear perturbations using Lyapunov-Krasovskii (LK) functional approach. By partitioning the delay-interval into two segments of equal length, and evaluating the time-derivative of a candidate LK functional in each segment of the delay-interval, a less conservative delay-dependent stability criterion is developed to compute the maximum allowable bound for the delay-range within which the system under consideration remains asymptotically stable. In addition to the delay-bi-segmentation analysis procedure, the reduction in conservatism of the proposed delay-dependent stability criterion over recently reported results is also attributed to the fact that the time-derivative of the LK functional is bounded tightly using a newly proposed bounding condition without neglecting any useful terms in the delay-dependent stability analysis. The analysis, subsequently, yields a stable condition in convex linear matrix inequality (LMI) framework that can be solved non-conservatively at boundary conditions using standard numerical packages. Furthermore, as the number of decision variables involved in the proposed stability criterion is less, the criterion is computationally more effective. The effectiveness of the proposed stability criterion is validated through some standard numerical examples.
基金partially supported by the National Natural Science Foundation of China (60574011).
文摘A new method on the interval stability of networked control systems (NCSs) with random delay and data packet dropout is studied. Combining interval systems and NCSs, a graphic condition on judging interval stability is presented in terms of the weighted diagraph theory in graph theory. Furthermore, utilizing the graph-theoretic algorithm, the delay-depended controller gains are obtained. Aiming at the same delay and data packed dropout, several controller gains are obtained, simultaneously. The example and simulation illustrate the effectiveness of the proposed method.
基金Supported by National Natural Science Foundation of China(11271039)
文摘In this paper, a statistical analysis method is proposed to research life characteristics of products based on the partially accelerated life test. We discuss the statistical analysis for constant-stress partially accelerated life tests with Lomax distribution based on interval censored samples. The EM algorithm is used to obtain the maximum likelihood estimations(MLEs) and interval estimations for the shape parameter and acceleration factor.The average relative errors(AREs), mean square errors(MSEs), the confidence intervals for the parameters, and the influence of the sample size are discussed. The results show that the AREs and MSEs of the MLEs decrease with the increase of sample size. Finally, a simulation sample is used to estimate the reliability under different stress levels.
基金supported by the National Natural Science Foundation of China (60874025)the Natural Science Foundation of Hunan Province(10JJ6098)the Scientific Research Fund of Hunan Provincial Education Department (10C0638)
文摘This paper deals with the problem of stability for systems with delay varying in an interval.A new Lyapunov functional,which makes use of the information of both the lower and upper bounds of the interval time-varying delay,is proposed to derive some new stability criteria.Furthermore,the relationship of the time-varying delay and its lower bound and upper bound is taken into account.As a result,some less conservative delay-dependent stability criteria are obtained without ignoring any useful information in the derivative of Lyapunov functional,which are established in the forms of linear matrix inequalities.Numerical examples are provided to show that the obtained results are better than existing ones.
基金supported by the National Natural Science Foundation of China (60874053 60574088)
文摘The fault detection problem for the nonlinear networked control system (NCS) with packet dropout and delay is investigated. A nonlinear stochastic system model is proposed to account for the NCS with random packet dropout and network- induced non-uniformly distributed time-varying delay in both from sensor to controller (S/C) and from controller to actuator (C/A). Based on the obtained NCS model, employing an observer-based fault detection filter as the residual generator, the addressed fault detection problem is converted into an auxiliary nonlinear H∞ control problem. Then, with the help of Lyapunov functional approach, a sufficient condition for the desired fault detection filter is constructed in terms of certain linear matrix inequalities, which depend on not only the delay interval but also the delay interval occurrence rate and successful packet communication rate. Especially, a trade-off phenomenon between the maximum allowable delay bound and successful data packet transmission rate is found, which is typically resulted from the limited bandwidth of communication networks. The effectiveness of the proposed method is demonstrated by a simulation example.