Recent research in cross-domain intelligence fault diagnosis of machinery still has some problems,such as relatively ideal speed conditions and sample conditions.In engineering practice,the rotational speed of the mac...Recent research in cross-domain intelligence fault diagnosis of machinery still has some problems,such as relatively ideal speed conditions and sample conditions.In engineering practice,the rotational speed of the machine is often transient and time-varying,which makes the sample annotation increasingly expensive.Meanwhile,the number of samples collected from different health states is often unbalanced.To deal with the above challenges,a complementary-label(CL)adversarial domain adaptation fault diagnosis network(CLADAN)is proposed under time-varying rotational speed and weakly-supervised conditions.In the weakly supervised learning condition,machine prior information is used for sample annotation via cost-friendly complementary label learning.A diagnosticmodel learning strategywith discretized category probabilities is designed to avoidmulti-peak distribution of prediction results.In adversarial training process,we developed virtual adversarial regularization(VAR)strategy,which further enhances the robustness of the model by adding adversarial perturbations in the target domain.Comparative experiments on two case studies validated the superior performance of the proposed method.展开更多
In time-variant reliability problems,there are a lot of uncertain variables from different sources.Therefore,it is important to consider these uncertainties in engineering.In addition,time-variant reliability problems...In time-variant reliability problems,there are a lot of uncertain variables from different sources.Therefore,it is important to consider these uncertainties in engineering.In addition,time-variant reliability problems typically involve a complexmultilevel nested optimization problem,which can result in an enormous amount of computation.To this end,this paper studies the time-variant reliability evaluation of structures with stochastic and bounded uncertainties using a mixed probability and convex set model.In this method,the stochastic process of a limit-state function with mixed uncertain parameters is first discretized and then converted into a timeindependent reliability problem.Further,to solve the double nested optimization problem in hybrid reliability calculation,an efficient iterative scheme is designed in standard uncertainty space to determine the most probable point(MPP).The limit state function is linearized at these points,and an innovative random variable is defined to solve the equivalent static reliability analysis model.The effectiveness of the proposed method is verified by two benchmark numerical examples and a practical engineering problem.展开更多
This paper studies the problem of time-varying formation control with finite-time prescribed performance for nonstrict feedback second-order multi-agent systems with unmeasured states and unknown nonlinearities.To eli...This paper studies the problem of time-varying formation control with finite-time prescribed performance for nonstrict feedback second-order multi-agent systems with unmeasured states and unknown nonlinearities.To eliminate nonlinearities,neural networks are applied to approximate the inherent dynamics of the system.In addition,due to the limitations of the actual working conditions,each follower agent can only obtain the locally measurable partial state information of the leader agent.To address this problem,a neural network state observer based on the leader state information is designed.Then,a finite-time prescribed performance adaptive output feedback control strategy is proposed by restricting the sliding mode surface to a prescribed region,which ensures that the closed-loop system has practical finite-time stability and that formation errors of the multi-agent systems converge to the prescribed performance bound in finite time.Finally,a numerical simulation is provided to demonstrate the practicality and effectiveness of the developed algorithm.展开更多
A simulated oil viscosity prediction model is established according to the relationship between simulated oil viscosity and geometric mean value of T2spectrum,and the time-varying law of simulated oil viscosity in por...A simulated oil viscosity prediction model is established according to the relationship between simulated oil viscosity and geometric mean value of T2spectrum,and the time-varying law of simulated oil viscosity in porous media is quantitatively characterized by nuclear magnetic resonance(NMR)experiments of high multiple waterflooding.A new NMR wettability index formula is derived based on NMR relaxation theory to quantitatively characterize the time-varying law of rock wettability during waterflooding combined with high-multiple waterflooding experiment in sandstone cores.The remaining oil viscosity in the core is positively correlated with the displacing water multiple.The remaining oil viscosity increases rapidly when the displacing water multiple is low,and increases slowly when the displacing water multiple is high.The variation of remaining oil viscosity is related to the reservoir heterogeneity.The stronger the reservoir homogeneity,the higher the content of heavy components in the remaining oil and the higher the viscosity.The reservoir wettability changes after water injection:the oil-wet reservoir changes into water-wet reservoir,while the water-wet reservoir becomes more hydrophilic;the degree of change enhances with the increase of displacing water multiple.There is a high correlation between the time-varying oil viscosity and the time-varying wettability,and the change of oil viscosity cannot be ignored.The NMR wettability index calculated by considering the change of oil viscosity is more consistent with the tested Amott(spontaneous imbibition)wettability index,which agrees more with the time-varying law of reservoir wettability.展开更多
To analyze the effects of a time-varying viscosity on the penetration length of grouting,in this study cement slur-ries with varying water-cement ratios have been investigated using the Bingham’sfluidflow equation and ...To analyze the effects of a time-varying viscosity on the penetration length of grouting,in this study cement slur-ries with varying water-cement ratios have been investigated using the Bingham’sfluidflow equation and a dis-crete element method.Afluid-solid coupling numerical model has been introduced accordingly,and its accuracy has been validated through comparison of theoretical and numerical solutions.For different fracture forms(a single fracture,a branch fracture,and a fracture network),the influence of the time-varying viscosity on the slurry length range has been investigated,considering the change in the fracture aperture.The results show that under different fracture forms and the same grouting process conditions,the influence of the time-varying viscosity on the seepage length is 0.350 m.展开更多
In this paper,a class of time-varying output group formation containment control problem of general linear hetero-geneous multiagent systems(MASs)is investigated under directed topology.The MAS is composed of a number...In this paper,a class of time-varying output group formation containment control problem of general linear hetero-geneous multiagent systems(MASs)is investigated under directed topology.The MAS is composed of a number of tracking leaders,formation leaders and followers,where two different types of leaders are used to provide reference trajectories for movement and to achieve certain formations,respectively.Firstly,compen-sators are designed whose states are estimations of tracking lead-ers,based on which,a controller is developed for each formation leader to accomplish the expected formation.Secondly,two event-triggered compensators are proposed for each follower to evalu-ate the state and formation information of the formation leaders in the same group,respectively.Subsequently,a control protocol is designed for each follower,utilizing the output information,to guide the output towards the convex hull generated by the forma-tion leaders within the group.Next,the triggering sequence in this paper is decomposed into two sequences,and the inter-event intervals of these two triggering conditions are provided to rule out the Zeno behavior.Finally,a numerical simulation is intro-duced to confirm the validity of the proposed results.展开更多
The present study addresses the problem of fault estimation for a specific class of nonlinear time-varying complex networks,utilizing an unknown-input-observer approach within the framework of dynamic event-triggered ...The present study addresses the problem of fault estimation for a specific class of nonlinear time-varying complex networks,utilizing an unknown-input-observer approach within the framework of dynamic event-triggered mechanism(DETM).In order to optimize communication resource utilization,the DETM is employed to determine whether the current measurement data should be transmitted to the estimator or not.To guarantee a satisfactory estimation performance for the fault signal,an unknown-input-observer-based estimator is constructed to decouple the estimation error dynamics from the influence of fault signals.The aim of this paper is to find the suitable estimator parameters under the effects of DETM such that both the state estimates and fault estimates are confined within two sets of closed ellipsoid domains.The techniques of recursive matrix inequality are applied to derive sufficient conditions for the existence of the desired estimator,ensuring that the specified performance requirements are met under certain conditions.Then,the estimator gains are derived by minimizing the ellipsoid domain in the sense of trace and a recursive estimator parameter design algorithm is then provided.Finally,a numerical example is conducted to demonstrate the effectiveness of the designed estimator.展开更多
The combination of structural health monitoring and vibration control is of great importance to provide components of smart structures.While synthetic algorithms have been proposed,adaptive control that is compatible ...The combination of structural health monitoring and vibration control is of great importance to provide components of smart structures.While synthetic algorithms have been proposed,adaptive control that is compatible with changing conditions still needs to be used,and time-varying systems are required to be simultaneously estimated with the application of adaptive control.In this research,the identification of structural time-varying dynamic characteristics and optimized simple adaptive control are integrated.First,reduced variations of physical parameters are estimated online using the multiple forgetting factor recursive least squares(MFRLS)method.Then,the energy from the structural vibration is simultaneously specified to optimize the control force with the identified parameters to be operational.Optimization is also performed based on the probability density function of the energy under the seismic excitation at any time.Finally,the optimal control force is obtained by the simple adaptive control(SAC)algorithm and energy coefficient.A numerical example and benchmark structure are employed to investigate the efficiency of the proposed approach.The simulation results revealed the effectiveness of the integrated online identification and optimal adaptive control in systems.展开更多
In this paper, a filtering method is presented to estimate time-varying parameters of a missile dual control system with tail fins and reaction jets as control variables. In this method, the long-short-term memory(LST...In this paper, a filtering method is presented to estimate time-varying parameters of a missile dual control system with tail fins and reaction jets as control variables. In this method, the long-short-term memory(LSTM) neural network is nested into the extended Kalman filter(EKF) to modify the Kalman gain such that the filtering performance is improved in the presence of large model uncertainties. To avoid the unstable network output caused by the abrupt changes of system states,an adaptive correction factor is introduced to correct the network output online. In the process of training the network, a multi-gradient descent learning mode is proposed to better fit the internal state of the system, and a rolling training is used to implement an online prediction logic. Based on the Lyapunov second method, we discuss the stability of the system, the result shows that when the training error of neural network is sufficiently small, the system is asymptotically stable. With its application to the estimation of time-varying parameters of a missile dual control system, the LSTM-EKF shows better filtering performance than the EKF and adaptive EKF(AEKF) when there exist large uncertainties in the system model.展开更多
The strong noise produced by the leakage of electricity from marine seismic streamers is often received with seismic signals during marine seismic exploration. Traditional denoising methods show unsatisfactory effects...The strong noise produced by the leakage of electricity from marine seismic streamers is often received with seismic signals during marine seismic exploration. Traditional denoising methods show unsatisfactory effects when eliminating strong noise of this kind. Assuming that the strong noise signals have the same statistical properties, a blind source separation (BSS) algorithm is proposed in this paper that results in a new denoising algorithm based on the constrained multi-user kurtosis (MUK) optimization criterion. This method can separate strong noise that shares the same statistical properties as the seismic data records and then eliminate them. Theoretical and field data processing all show that the denoising algorithm, based on multi-user kurtosis optimization criterion, is valid for eliminating the strong noise which is produced by the leakage of electricity from the marine seismic streamer so as to preserve more effective signals and increase the signal-noise ratio. This method is feasible and widely applicable.展开更多
The location of an acute ischemic stroke is associated with its prognosis. The widely used Gaussian model-based parameter, apparent diffusion coefficient(ADC), cannot reveal microstructural changes in different locati...The location of an acute ischemic stroke is associated with its prognosis. The widely used Gaussian model-based parameter, apparent diffusion coefficient(ADC), cannot reveal microstructural changes in different locations or the degree of infarction. This prospective observational study was reviewed and approved by the Institutional Review Board of Xiamen Second Hospital, China(approval No. 2014002).Diffusion kurtosis imaging(DKI) was used to detect 199 lesions in 156 patients with acute ischemic stroke(61 males and 95 females), mean age 63.15 ± 12.34 years. A total of 199 lesions were located in the periventricular white matter(n = 52), corpus callosum(n = 14), cerebellum(n = 29), basal ganglia and thalamus(n = 21), brainstem(n = 21) and gray-white matter junctions(n = 62). Percentage changes of apparent diffusion coefficient(ΔADC) and DKI-derived indices(fractional anisotropy [ΔFA], mean diffusivity [ΔMD], axial diffusivity [ΔD_a], radial diffusivity ΔDr, mean kurtosis [ΔMK], axial kurtosis [ΔK_a], and radial kurtosis [ΔK_r]) of each lesion were computed relative to the normal contralateral region. The results showed that(1) there was no significant difference in ΔADC, ΔMD, ΔD_a or ΔD_r among almost all locations.(2) There was significant difference in ΔMK among almost all locations(except basal ganglia and thalamus vs. brain stem; basal ganglia and thalamus vs. gray-white matter junctions; and brainstem vs. gray-white matter junctions.(3) The degree of change in diffusional kurtosis in descending order was as follows: corpus callosum > periventricular white matter > brainstem > gray-white matter junctions > basal ganglia and thalamus > cerebellum. In conclusion, DKI could reveal the differences in microstructure changes among various locations affected by acute ischemic stroke, and performed better than diffusivity among all groups.展开更多
Diffusion kurtosis imaging can be used to assess pathophysiological changes in tissue structure and to diagnose central nervous system diseases. However, its sensitivity in assessing hippocampal differences between pa...Diffusion kurtosis imaging can be used to assess pathophysiological changes in tissue structure and to diagnose central nervous system diseases. However, its sensitivity in assessing hippocampal differences between patients with Alzheimer’s disease and those with amnestic mild cognitive impairment has not been characterized. Here, we examined 20 individuals with Alzheimer’s disease (11 men and 9 women, mean 73.2 ± 4.49 years), 20 with amnestic mild cognitive impairment (10 men and 10 women, mean 71.55 ± 4.77 years), and 20 normal controls (11 men and 9 women, mean 70.45 ± 5.04 years). We conducted diffusion kurtosis imaging, using a 3.0 T magnetic resonance scanner, to compare hippocampal differences among the three groups. The results demonstrated that the right hippocampal volume and bilateral mean kurtosis were remarkably smaller in individuals with Alzheimer’s disease compared with those with amnestic mild cognitive impairment and normal controls. Further, the mean kurtosis was lower in the amnestic mild cognitive impairment group compared with the normal control group. The mean diffusion in the left hippocampus was lower in the Alzheimer’s disease group than in the amnestic mild cognitive impairment and normal control groups, while the mean diffusion in the right hippocampus was lower in the Alzheimer’s disease group than in the normal control group. Fractional anisotropy was similar among the three groups. These results verify that bilateral mean kurtosis and mean diffusion are sensitive to the diagnosis of Alzheimer’s disease and amnestic mild cognitive impairment. This study was approved by the Ethics Review Board of Affiliated Sixth People’s Hospital of Shanghai Jiao Tong University, China on May 4, 2010 (approval No. 2010(C)-6).展开更多
A new variable step-size algorithm for a second-order lattice form structure adaptive infinite impulse response (IIR) notch filter to detection and estimation frequency of sinusoids in Gaussian noises is proposed. U...A new variable step-size algorithm for a second-order lattice form structure adaptive infinite impulse response (IIR) notch filter to detection and estimation frequency of sinusoids in Gaussian noises is proposed. Utilizing least square kurtosis of output signals as a cost function, the new gradient-based algorithm to update frequency of the adaptive IIR notch filter and the new variable step-size algorithm are given. The computer simulation results show that the proposed algorithm has better ability in suppressing colored Gaussian noises and better accuracy in estimating parameters at low SNR than previous algorithms.展开更多
This paper presents a copula technique to develop time-variant seismic fragility curves for corroded bridges at the system level and considers the realistic time-varying dependence among component seismic demands. Bas...This paper presents a copula technique to develop time-variant seismic fragility curves for corroded bridges at the system level and considers the realistic time-varying dependence among component seismic demands. Based on material deterioration mechanisms and incremental dynamic analysis, the time-evolving seismic demands of components were obtained in the form of marginal probability distributions. The time-varying dependences among bridge components were then captured with the best fitting copula function, which was selected from the commonly used copula classes by the empirical distribution based analysis method. The system time-variant fragility curves at different damage states were developed and the effects of time-varying dependences among components on the bridge system fragility were investigated. The results indicate the time-varying dependence among components significantly affects the time-variant fragility of the bridge system. The copula technique captures the nonlinear dependence among component seismic demands accurately and easily by separating the marginal distributions and the dependence among them.展开更多
On-off keying (OOK) is one of the modulation schemes for non-coherent impulse radio Ultra-wideband systems. In this paper, the utilization of the kurtosis detector (KD) and fourth power detector (FD) receivers for OOK...On-off keying (OOK) is one of the modulation schemes for non-coherent impulse radio Ultra-wideband systems. In this paper, the utilization of the kurtosis detector (KD) and fourth power detector (FD) receivers for OOK signaling is introduced. We investigate the effect of integration interval and the optimum threshold on the performance of energy detector (ED), KD and FD receivers. The semi analytic expression of BER is obtained by using generalized extreme value distribution function for KD and FD receivers. From performance point of view, the simulation results show that FD receiver outperforms KD and ED receivers. In contrast, the sensitivity to the optimum threshold is greatly reduced in KD receiver compared to ED and FD receivers.展开更多
BACKGROUND Early thrombolytic therapy is crucial to treat acute cerebral infarction,especially since the onset of thrombolytic therapy takes 1-6 h.Therefore,early diagnosis and evaluation of cerebral infarction is imp...BACKGROUND Early thrombolytic therapy is crucial to treat acute cerebral infarction,especially since the onset of thrombolytic therapy takes 1-6 h.Therefore,early diagnosis and evaluation of cerebral infarction is important.AIM To investigate the diagnostic value of magnetic resonance multi-delay threedimensional arterial spin labeling(3DASL)and diffusion kurtosis imaging(DKI)in evaluating the perfusion and infarct area size in patients with acute cerebral ischemia.METHODS Eighty-four patients who experienced acute cerebral ischemia from March 2019 to February 2021 were included.All patients in the acute stage underwent magnetic resonance-based examination,and the data were processed by the system’s own software.The apparent diffusion coefficient(ADC),average diffusion coefficient(MD),axial diffusion(AD),radial diffusion(RD),average kurtosis(MK),radial kurtosis(fairly RK),axial kurtosis(AK),and perfusion parameters post-labeling delays(PLD)in the focal area and its corresponding area were compared.The correlation between the lesion area of cerebral infarction under MK and MD and T2-weighted imaging(T2WI)was analyzed.RESULTS The DKI parameters of focal and control areas in the study subjects were compared.The ADC,MD,AD,and RD values in the lesion area were significantly lower than those in the control area.The MK,RK,and AK values in the lesion area were significantly higher than those in the control area.The MK/MD value in the infarct lesions was used to determine the matching situation.MK/MD<5 mm was considered matching and MK/MD≥5 mm was considered mismatching.PLD1.5s and PLD2.5s perfusion parameters in the central,peripheral,and control areas of the infarct lesions in MK/MD-matched and-unmatched patients were not significantly different.PLD1.5s and PLD2.5s perfusion parameter values in the central area of the infarct lesions in MK/MD-matched and-unmatched patients were significantly lower than those in peripheral and control areas.The MK and MD maps showed a lesion area of 20.08±5.74 cm^(2) and 22.09±5.58 cm^(2),respectively.T2WI showed a lesion area of 19.76±5.02 cm^(2).There were no significant differences in the cerebral infarction lesion areas measured using the three methods.MK,MD,and T2WI showed a good correlation.CONCLUSION DKI parameters showed significant difference between the focal and control areas in patients with acute ischemic cerebral infarction.3DASL can effectively determine the changes in perfusion levels in the lesion area.There was a high correlation between the area of the infarct lesions diagnosed by DKI and T2WI.展开更多
This study is concerned with the diagnosis of discrepancies in a steel truss bridge by identifying dynamic properties from the vibration response signals of the bridges.The vibration response signals collected at brid...This study is concerned with the diagnosis of discrepancies in a steel truss bridge by identifying dynamic properties from the vibration response signals of the bridges.The vibration response signals collected at bridges under three different vehicular speeds of 10 km/hr,20 km/hr,and 30 km/hr are analyzed using statistical features such as kurtosis,magnitude of peak-to-peak,root mean square,crest factor as well as impulse factor in time domain,and Stockwell transform in the time-frequency domain.The considered statistical features except for kurtosis show uncertain behavior.The Stockwell transform showed low-resolution outcomes when the presence of noise in the recorded vibration responses.The elimination of noise and extraction of meaningful dynamic properties from the vibration responses is done by applying a new method which comes from the fusion of Hilbert transform with Spectral kurtosis and bandpass filtering.The outcomes obtained from Hilbert transform processed residual signals which are further filtered using bandpass filter show more robustness and accuracy in characterizing bridge modal frequencies from the noisy vibration responses.The proposed method produces a high-resolution frequency response which can unveil the joint discrepancy in the bridge structure.展开更多
Under the assumption of strictly stationary process, this paper proposes a nonparametric model to test the kurtosis and conditional kurtosis for risk time series. We apply this method to the daily returns of S&P500 i...Under the assumption of strictly stationary process, this paper proposes a nonparametric model to test the kurtosis and conditional kurtosis for risk time series. We apply this method to the daily returns of S&P500 index and the Shanghai Composite Index, and simulate GARCH data for verifying the efficiency of the presented model. Our results indicate that the risk series distribution is heavily tailed, but the historical information can make its future distribution light-tailed. However the far future distribution's tails are little affected by the historical data.展开更多
In this study, the statistical powers of Kolmogorov-Smimov two-sample (KS-2) and Wald Wolfowitz (WW) tests, non-parametric tests used in testing data from two independent samples, have been compared in terms of fi...In this study, the statistical powers of Kolmogorov-Smimov two-sample (KS-2) and Wald Wolfowitz (WW) tests, non-parametric tests used in testing data from two independent samples, have been compared in terms of fixed skewness and fixed kurtosis by means of Monte Carlo simulation. This comparison has been made when the ratio of variance is two as well as with equal and different sample sizes for large sample volumes. The sample used in the study is: (25, 25), (25, 50), (25, 75), (25, 100), (50, 25), (50, 50), (50, 75), (50, 100), (75, 25), (75, 50), (75, 75), (75, 100), (100, 25), (100, 50), (100, 75), and (100, 100). According to the results of the study, it has been observed that the statistical power of both tests decreases when the coefficient of kurtosis is held fixed and the coefficient of skewness is reduced while it increases when the coefficient of skewness is held fixed and the coefficient of kurtosis is reduced. When the ratio of skewness is reduced in the case of fixed kurtosis, the WW test is stronger in sample volumes (25, 25), (25, 50), (25, 75), (25, 100), (50, 75), and (50, 100) while KS-2 test is stronger in other sample volumes. When the ratio of kurtosis is reduced in the case of fixed skewness, the statistical power of WW test is stronger in volume samples (25, 25), (25, 75), (25, 100), and (75, 25) while KS-2 test is stronger in other sample volumes.展开更多
基金Shanxi Scholarship Council of China(2022-141)Fundamental Research Program of Shanxi Province(202203021211096).
文摘Recent research in cross-domain intelligence fault diagnosis of machinery still has some problems,such as relatively ideal speed conditions and sample conditions.In engineering practice,the rotational speed of the machine is often transient and time-varying,which makes the sample annotation increasingly expensive.Meanwhile,the number of samples collected from different health states is often unbalanced.To deal with the above challenges,a complementary-label(CL)adversarial domain adaptation fault diagnosis network(CLADAN)is proposed under time-varying rotational speed and weakly-supervised conditions.In the weakly supervised learning condition,machine prior information is used for sample annotation via cost-friendly complementary label learning.A diagnosticmodel learning strategywith discretized category probabilities is designed to avoidmulti-peak distribution of prediction results.In adversarial training process,we developed virtual adversarial regularization(VAR)strategy,which further enhances the robustness of the model by adding adversarial perturbations in the target domain.Comparative experiments on two case studies validated the superior performance of the proposed method.
基金partially supported by the National Natural Science Foundation of China(52375238)Science and Technology Program of Guangzhou(202201020213,202201020193,202201010399)GZHU-HKUST Joint Research Fund(YH202109).
文摘In time-variant reliability problems,there are a lot of uncertain variables from different sources.Therefore,it is important to consider these uncertainties in engineering.In addition,time-variant reliability problems typically involve a complexmultilevel nested optimization problem,which can result in an enormous amount of computation.To this end,this paper studies the time-variant reliability evaluation of structures with stochastic and bounded uncertainties using a mixed probability and convex set model.In this method,the stochastic process of a limit-state function with mixed uncertain parameters is first discretized and then converted into a timeindependent reliability problem.Further,to solve the double nested optimization problem in hybrid reliability calculation,an efficient iterative scheme is designed in standard uncertainty space to determine the most probable point(MPP).The limit state function is linearized at these points,and an innovative random variable is defined to solve the equivalent static reliability analysis model.The effectiveness of the proposed method is verified by two benchmark numerical examples and a practical engineering problem.
基金the National Natural Science Foundation of China(62203356)Fundamental Research Funds for the Central Universities of China(31020210502002)。
文摘This paper studies the problem of time-varying formation control with finite-time prescribed performance for nonstrict feedback second-order multi-agent systems with unmeasured states and unknown nonlinearities.To eliminate nonlinearities,neural networks are applied to approximate the inherent dynamics of the system.In addition,due to the limitations of the actual working conditions,each follower agent can only obtain the locally measurable partial state information of the leader agent.To address this problem,a neural network state observer based on the leader state information is designed.Then,a finite-time prescribed performance adaptive output feedback control strategy is proposed by restricting the sliding mode surface to a prescribed region,which ensures that the closed-loop system has practical finite-time stability and that formation errors of the multi-agent systems converge to the prescribed performance bound in finite time.Finally,a numerical simulation is provided to demonstrate the practicality and effectiveness of the developed algorithm.
基金Supported by the Original Exploration Project of National Natural Science Foundation of China(5215000105)Young Teachers Fund for Higher Education Institutions of Huo Yingdong Education Foundation(171043)。
文摘A simulated oil viscosity prediction model is established according to the relationship between simulated oil viscosity and geometric mean value of T2spectrum,and the time-varying law of simulated oil viscosity in porous media is quantitatively characterized by nuclear magnetic resonance(NMR)experiments of high multiple waterflooding.A new NMR wettability index formula is derived based on NMR relaxation theory to quantitatively characterize the time-varying law of rock wettability during waterflooding combined with high-multiple waterflooding experiment in sandstone cores.The remaining oil viscosity in the core is positively correlated with the displacing water multiple.The remaining oil viscosity increases rapidly when the displacing water multiple is low,and increases slowly when the displacing water multiple is high.The variation of remaining oil viscosity is related to the reservoir heterogeneity.The stronger the reservoir homogeneity,the higher the content of heavy components in the remaining oil and the higher the viscosity.The reservoir wettability changes after water injection:the oil-wet reservoir changes into water-wet reservoir,while the water-wet reservoir becomes more hydrophilic;the degree of change enhances with the increase of displacing water multiple.There is a high correlation between the time-varying oil viscosity and the time-varying wettability,and the change of oil viscosity cannot be ignored.The NMR wettability index calculated by considering the change of oil viscosity is more consistent with the tested Amott(spontaneous imbibition)wettability index,which agrees more with the time-varying law of reservoir wettability.
基金supported by the National Natural Science Foundation of China(Grant Numbers:U22A20234,42277170)the Key Research and Development Project of Hubei Province(Grant Number:2020BCB073).
文摘To analyze the effects of a time-varying viscosity on the penetration length of grouting,in this study cement slur-ries with varying water-cement ratios have been investigated using the Bingham’sfluidflow equation and a dis-crete element method.Afluid-solid coupling numerical model has been introduced accordingly,and its accuracy has been validated through comparison of theoretical and numerical solutions.For different fracture forms(a single fracture,a branch fracture,and a fracture network),the influence of the time-varying viscosity on the slurry length range has been investigated,considering the change in the fracture aperture.The results show that under different fracture forms and the same grouting process conditions,the influence of the time-varying viscosity on the seepage length is 0.350 m.
基金supported in part by the National Key Research and Development Program of China(2018YFA0702200)the National Natural Science Foundation of China(52377079,62203097,62373196)。
文摘In this paper,a class of time-varying output group formation containment control problem of general linear hetero-geneous multiagent systems(MASs)is investigated under directed topology.The MAS is composed of a number of tracking leaders,formation leaders and followers,where two different types of leaders are used to provide reference trajectories for movement and to achieve certain formations,respectively.Firstly,compen-sators are designed whose states are estimations of tracking lead-ers,based on which,a controller is developed for each formation leader to accomplish the expected formation.Secondly,two event-triggered compensators are proposed for each follower to evalu-ate the state and formation information of the formation leaders in the same group,respectively.Subsequently,a control protocol is designed for each follower,utilizing the output information,to guide the output towards the convex hull generated by the forma-tion leaders within the group.Next,the triggering sequence in this paper is decomposed into two sequences,and the inter-event intervals of these two triggering conditions are provided to rule out the Zeno behavior.Finally,a numerical simulation is intro-duced to confirm the validity of the proposed results.
基金supported in part by the National Natural Science Foundation of China (62233012,62273087)the Research Fund for the Taishan Scholar Project of Shandong Province of Chinathe Shanghai Pujiang Program of China (22PJ1400400)。
文摘The present study addresses the problem of fault estimation for a specific class of nonlinear time-varying complex networks,utilizing an unknown-input-observer approach within the framework of dynamic event-triggered mechanism(DETM).In order to optimize communication resource utilization,the DETM is employed to determine whether the current measurement data should be transmitted to the estimator or not.To guarantee a satisfactory estimation performance for the fault signal,an unknown-input-observer-based estimator is constructed to decouple the estimation error dynamics from the influence of fault signals.The aim of this paper is to find the suitable estimator parameters under the effects of DETM such that both the state estimates and fault estimates are confined within two sets of closed ellipsoid domains.The techniques of recursive matrix inequality are applied to derive sufficient conditions for the existence of the desired estimator,ensuring that the specified performance requirements are met under certain conditions.Then,the estimator gains are derived by minimizing the ellipsoid domain in the sense of trace and a recursive estimator parameter design algorithm is then provided.Finally,a numerical example is conducted to demonstrate the effectiveness of the designed estimator.
文摘The combination of structural health monitoring and vibration control is of great importance to provide components of smart structures.While synthetic algorithms have been proposed,adaptive control that is compatible with changing conditions still needs to be used,and time-varying systems are required to be simultaneously estimated with the application of adaptive control.In this research,the identification of structural time-varying dynamic characteristics and optimized simple adaptive control are integrated.First,reduced variations of physical parameters are estimated online using the multiple forgetting factor recursive least squares(MFRLS)method.Then,the energy from the structural vibration is simultaneously specified to optimize the control force with the identified parameters to be operational.Optimization is also performed based on the probability density function of the energy under the seismic excitation at any time.Finally,the optimal control force is obtained by the simple adaptive control(SAC)algorithm and energy coefficient.A numerical example and benchmark structure are employed to investigate the efficiency of the proposed approach.The simulation results revealed the effectiveness of the integrated online identification and optimal adaptive control in systems.
文摘In this paper, a filtering method is presented to estimate time-varying parameters of a missile dual control system with tail fins and reaction jets as control variables. In this method, the long-short-term memory(LSTM) neural network is nested into the extended Kalman filter(EKF) to modify the Kalman gain such that the filtering performance is improved in the presence of large model uncertainties. To avoid the unstable network output caused by the abrupt changes of system states,an adaptive correction factor is introduced to correct the network output online. In the process of training the network, a multi-gradient descent learning mode is proposed to better fit the internal state of the system, and a rolling training is used to implement an online prediction logic. Based on the Lyapunov second method, we discuss the stability of the system, the result shows that when the training error of neural network is sufficiently small, the system is asymptotically stable. With its application to the estimation of time-varying parameters of a missile dual control system, the LSTM-EKF shows better filtering performance than the EKF and adaptive EKF(AEKF) when there exist large uncertainties in the system model.
基金supported by the National Natural Science Foundation of China(No. 41176077)the State Oceanic Administration Young Marine Science Foundation(No. 2013702)
文摘The strong noise produced by the leakage of electricity from marine seismic streamers is often received with seismic signals during marine seismic exploration. Traditional denoising methods show unsatisfactory effects when eliminating strong noise of this kind. Assuming that the strong noise signals have the same statistical properties, a blind source separation (BSS) algorithm is proposed in this paper that results in a new denoising algorithm based on the constrained multi-user kurtosis (MUK) optimization criterion. This method can separate strong noise that shares the same statistical properties as the seismic data records and then eliminate them. Theoretical and field data processing all show that the denoising algorithm, based on multi-user kurtosis optimization criterion, is valid for eliminating the strong noise which is produced by the leakage of electricity from the marine seismic streamer so as to preserve more effective signals and increase the signal-noise ratio. This method is feasible and widely applicable.
基金supported by the Science and Technology Planned Project from Xiamen Science and Technology Bureau,China,No.3502Z20154065(to LHZ)the Joint Project for Xiamen Key Diseases from Xiamen Science and Technology Bureau,China,No.3502Z20149032(to GG)
文摘The location of an acute ischemic stroke is associated with its prognosis. The widely used Gaussian model-based parameter, apparent diffusion coefficient(ADC), cannot reveal microstructural changes in different locations or the degree of infarction. This prospective observational study was reviewed and approved by the Institutional Review Board of Xiamen Second Hospital, China(approval No. 2014002).Diffusion kurtosis imaging(DKI) was used to detect 199 lesions in 156 patients with acute ischemic stroke(61 males and 95 females), mean age 63.15 ± 12.34 years. A total of 199 lesions were located in the periventricular white matter(n = 52), corpus callosum(n = 14), cerebellum(n = 29), basal ganglia and thalamus(n = 21), brainstem(n = 21) and gray-white matter junctions(n = 62). Percentage changes of apparent diffusion coefficient(ΔADC) and DKI-derived indices(fractional anisotropy [ΔFA], mean diffusivity [ΔMD], axial diffusivity [ΔD_a], radial diffusivity ΔDr, mean kurtosis [ΔMK], axial kurtosis [ΔK_a], and radial kurtosis [ΔK_r]) of each lesion were computed relative to the normal contralateral region. The results showed that(1) there was no significant difference in ΔADC, ΔMD, ΔD_a or ΔD_r among almost all locations.(2) There was significant difference in ΔMK among almost all locations(except basal ganglia and thalamus vs. brain stem; basal ganglia and thalamus vs. gray-white matter junctions; and brainstem vs. gray-white matter junctions.(3) The degree of change in diffusional kurtosis in descending order was as follows: corpus callosum > periventricular white matter > brainstem > gray-white matter junctions > basal ganglia and thalamus > cerebellum. In conclusion, DKI could reveal the differences in microstructure changes among various locations affected by acute ischemic stroke, and performed better than diffusivity among all groups.
基金supported by the Shanghai Municipal Education Commission-Gaofeng Clinical Medicine in China,No.2016427(to YHL)the Clinical Science and Technology Innovation Project of Shanghai Shen Kang Hospital Development Center in China,No.SHDC22015038(to YHL)the Shanghai Municipal Science and Technology Commission Medical Guide Project in China,No.16411968900(to YHL)
文摘Diffusion kurtosis imaging can be used to assess pathophysiological changes in tissue structure and to diagnose central nervous system diseases. However, its sensitivity in assessing hippocampal differences between patients with Alzheimer’s disease and those with amnestic mild cognitive impairment has not been characterized. Here, we examined 20 individuals with Alzheimer’s disease (11 men and 9 women, mean 73.2 ± 4.49 years), 20 with amnestic mild cognitive impairment (10 men and 10 women, mean 71.55 ± 4.77 years), and 20 normal controls (11 men and 9 women, mean 70.45 ± 5.04 years). We conducted diffusion kurtosis imaging, using a 3.0 T magnetic resonance scanner, to compare hippocampal differences among the three groups. The results demonstrated that the right hippocampal volume and bilateral mean kurtosis were remarkably smaller in individuals with Alzheimer’s disease compared with those with amnestic mild cognitive impairment and normal controls. Further, the mean kurtosis was lower in the amnestic mild cognitive impairment group compared with the normal control group. The mean diffusion in the left hippocampus was lower in the Alzheimer’s disease group than in the amnestic mild cognitive impairment and normal control groups, while the mean diffusion in the right hippocampus was lower in the Alzheimer’s disease group than in the normal control group. Fractional anisotropy was similar among the three groups. These results verify that bilateral mean kurtosis and mean diffusion are sensitive to the diagnosis of Alzheimer’s disease and amnestic mild cognitive impairment. This study was approved by the Ethics Review Board of Affiliated Sixth People’s Hospital of Shanghai Jiao Tong University, China on May 4, 2010 (approval No. 2010(C)-6).
文摘A new variable step-size algorithm for a second-order lattice form structure adaptive infinite impulse response (IIR) notch filter to detection and estimation frequency of sinusoids in Gaussian noises is proposed. Utilizing least square kurtosis of output signals as a cost function, the new gradient-based algorithm to update frequency of the adaptive IIR notch filter and the new variable step-size algorithm are given. The computer simulation results show that the proposed algorithm has better ability in suppressing colored Gaussian noises and better accuracy in estimating parameters at low SNR than previous algorithms.
基金Natural Science Foundation of China under Grant No.51808376
文摘This paper presents a copula technique to develop time-variant seismic fragility curves for corroded bridges at the system level and considers the realistic time-varying dependence among component seismic demands. Based on material deterioration mechanisms and incremental dynamic analysis, the time-evolving seismic demands of components were obtained in the form of marginal probability distributions. The time-varying dependences among bridge components were then captured with the best fitting copula function, which was selected from the commonly used copula classes by the empirical distribution based analysis method. The system time-variant fragility curves at different damage states were developed and the effects of time-varying dependences among components on the bridge system fragility were investigated. The results indicate the time-varying dependence among components significantly affects the time-variant fragility of the bridge system. The copula technique captures the nonlinear dependence among component seismic demands accurately and easily by separating the marginal distributions and the dependence among them.
文摘On-off keying (OOK) is one of the modulation schemes for non-coherent impulse radio Ultra-wideband systems. In this paper, the utilization of the kurtosis detector (KD) and fourth power detector (FD) receivers for OOK signaling is introduced. We investigate the effect of integration interval and the optimum threshold on the performance of energy detector (ED), KD and FD receivers. The semi analytic expression of BER is obtained by using generalized extreme value distribution function for KD and FD receivers. From performance point of view, the simulation results show that FD receiver outperforms KD and ED receivers. In contrast, the sensitivity to the optimum threshold is greatly reduced in KD receiver compared to ED and FD receivers.
文摘BACKGROUND Early thrombolytic therapy is crucial to treat acute cerebral infarction,especially since the onset of thrombolytic therapy takes 1-6 h.Therefore,early diagnosis and evaluation of cerebral infarction is important.AIM To investigate the diagnostic value of magnetic resonance multi-delay threedimensional arterial spin labeling(3DASL)and diffusion kurtosis imaging(DKI)in evaluating the perfusion and infarct area size in patients with acute cerebral ischemia.METHODS Eighty-four patients who experienced acute cerebral ischemia from March 2019 to February 2021 were included.All patients in the acute stage underwent magnetic resonance-based examination,and the data were processed by the system’s own software.The apparent diffusion coefficient(ADC),average diffusion coefficient(MD),axial diffusion(AD),radial diffusion(RD),average kurtosis(MK),radial kurtosis(fairly RK),axial kurtosis(AK),and perfusion parameters post-labeling delays(PLD)in the focal area and its corresponding area were compared.The correlation between the lesion area of cerebral infarction under MK and MD and T2-weighted imaging(T2WI)was analyzed.RESULTS The DKI parameters of focal and control areas in the study subjects were compared.The ADC,MD,AD,and RD values in the lesion area were significantly lower than those in the control area.The MK,RK,and AK values in the lesion area were significantly higher than those in the control area.The MK/MD value in the infarct lesions was used to determine the matching situation.MK/MD<5 mm was considered matching and MK/MD≥5 mm was considered mismatching.PLD1.5s and PLD2.5s perfusion parameters in the central,peripheral,and control areas of the infarct lesions in MK/MD-matched and-unmatched patients were not significantly different.PLD1.5s and PLD2.5s perfusion parameter values in the central area of the infarct lesions in MK/MD-matched and-unmatched patients were significantly lower than those in peripheral and control areas.The MK and MD maps showed a lesion area of 20.08±5.74 cm^(2) and 22.09±5.58 cm^(2),respectively.T2WI showed a lesion area of 19.76±5.02 cm^(2).There were no significant differences in the cerebral infarction lesion areas measured using the three methods.MK,MD,and T2WI showed a good correlation.CONCLUSION DKI parameters showed significant difference between the focal and control areas in patients with acute ischemic cerebral infarction.3DASL can effectively determine the changes in perfusion levels in the lesion area.There was a high correlation between the area of the infarct lesions diagnosed by DKI and T2WI.
文摘This study is concerned with the diagnosis of discrepancies in a steel truss bridge by identifying dynamic properties from the vibration response signals of the bridges.The vibration response signals collected at bridges under three different vehicular speeds of 10 km/hr,20 km/hr,and 30 km/hr are analyzed using statistical features such as kurtosis,magnitude of peak-to-peak,root mean square,crest factor as well as impulse factor in time domain,and Stockwell transform in the time-frequency domain.The considered statistical features except for kurtosis show uncertain behavior.The Stockwell transform showed low-resolution outcomes when the presence of noise in the recorded vibration responses.The elimination of noise and extraction of meaningful dynamic properties from the vibration responses is done by applying a new method which comes from the fusion of Hilbert transform with Spectral kurtosis and bandpass filtering.The outcomes obtained from Hilbert transform processed residual signals which are further filtered using bandpass filter show more robustness and accuracy in characterizing bridge modal frequencies from the noisy vibration responses.The proposed method produces a high-resolution frequency response which can unveil the joint discrepancy in the bridge structure.
基金supported by the National Natural Science Foundation of China (Grant No.60773081)the Key Project of Shanghai Municipality (Grant No.S30104)
文摘Under the assumption of strictly stationary process, this paper proposes a nonparametric model to test the kurtosis and conditional kurtosis for risk time series. We apply this method to the daily returns of S&P500 index and the Shanghai Composite Index, and simulate GARCH data for verifying the efficiency of the presented model. Our results indicate that the risk series distribution is heavily tailed, but the historical information can make its future distribution light-tailed. However the far future distribution's tails are little affected by the historical data.
文摘In this study, the statistical powers of Kolmogorov-Smimov two-sample (KS-2) and Wald Wolfowitz (WW) tests, non-parametric tests used in testing data from two independent samples, have been compared in terms of fixed skewness and fixed kurtosis by means of Monte Carlo simulation. This comparison has been made when the ratio of variance is two as well as with equal and different sample sizes for large sample volumes. The sample used in the study is: (25, 25), (25, 50), (25, 75), (25, 100), (50, 25), (50, 50), (50, 75), (50, 100), (75, 25), (75, 50), (75, 75), (75, 100), (100, 25), (100, 50), (100, 75), and (100, 100). According to the results of the study, it has been observed that the statistical power of both tests decreases when the coefficient of kurtosis is held fixed and the coefficient of skewness is reduced while it increases when the coefficient of skewness is held fixed and the coefficient of kurtosis is reduced. When the ratio of skewness is reduced in the case of fixed kurtosis, the WW test is stronger in sample volumes (25, 25), (25, 50), (25, 75), (25, 100), (50, 75), and (50, 100) while KS-2 test is stronger in other sample volumes. When the ratio of kurtosis is reduced in the case of fixed skewness, the statistical power of WW test is stronger in volume samples (25, 25), (25, 75), (25, 100), and (75, 25) while KS-2 test is stronger in other sample volumes.