The construction of new power systems presents higher requirements for the Power Internet of Things(PIoT)technology.The“source-grid-load-storage”architecture of a new power system requires PIoT to have a stronger mu...The construction of new power systems presents higher requirements for the Power Internet of Things(PIoT)technology.The“source-grid-load-storage”architecture of a new power system requires PIoT to have a stronger multi-source heterogeneous data fusion ability.Native graph databases have great advantages in dealing with multi-source heterogeneous data,which make them suitable for an increasing number of analytical computing tasks.However,only few existing graph database products have native support for matrix operation-related interfaces or functions,resulting in low efficiency when handling matrix calculations that are commonly encountered in power grids.In this paper,the matrix computation process is expressed by a strategy called graph description,which relies on the natural connection between the matrix and structure of the graph.Based on that,we implement matrix operations on graph database,including matrix multiplication,matrix decomposition,etc.Specifically,only the nodes relevant to the computation and their neighbors are concerned in the process,which prunes the influence of zero elements in the matrix and avoids useless iterations compared to the conventional matrix computation.Based on the graph description,a series of power grid computations can be implemented on graph database,which reduces redundant data import and export operations while leveraging the parallel computing capability of graph database.It promotes the efficiency of PIoT when handling multi-source heterogeneous data.An comprehensive experimental study over two different scale power system datasets compares the proposed method with Python and MATLAB baselines.The results reveal the superior performance of our proposed method in both power flow and N-1 contingency computations.展开更多
Based on Neumman series and epsilon-algorithm, an efficient computation for dynamic responses of systems with arbitrary time-varying characteristics is investigated. Avoiding the calculation for the inverses of the eq...Based on Neumman series and epsilon-algorithm, an efficient computation for dynamic responses of systems with arbitrary time-varying characteristics is investigated. Avoiding the calculation for the inverses of the equivalent stiffness matrices in each time step, the computation effort of the proposed method is reduced compared with the full analysis of Newmark method. The validity and applications of the proposed method are illustrated by a 4-DOF spring-mass system with periodical time-varying stiffness properties and a truss structure with arbitrary time-varying lumped mass. It shows that good approximate results can be obtained by the proposed method compared with the responses obtained by the full analysis of Newmark method.展开更多
In this paper,we provide a new approach to data encryption using generalized inverses.Encryption is based on the implementation of weighted Moore–Penrose inverse A y MNenxmT over the nx8 constant matrix.The square He...In this paper,we provide a new approach to data encryption using generalized inverses.Encryption is based on the implementation of weighted Moore–Penrose inverse A y MNenxmT over the nx8 constant matrix.The square Hermitian positive definite matrix N8x8 p is the key.The proposed solution represents a very strong key since the number of different variants of positive definite matrices of order 8 is huge.We have provided NIST(National Institute of Standards and Technology)quality assurance tests for a random generated Hermitian matrix(a total of 10 different tests and additional analysis with approximate entropy and random digression).In the additional testing of the quality of the random matrix generated,we can conclude that the results of our analysis satisfy the defined strict requirements.This proposed MP encryption method can be applied effectively in the encryption and decryption of images in multi-party communications.In the experimental part of this paper,we give a comparison of encryption methods between machine learning methods.Machine learning algorithms could be compared by achieved results of classification concentrating on classes.In a comparative analysis,we give results of classifying of advanced encryption standard(AES)algorithm and proposed encryption method based on Moore–Penrose inverse.展开更多
Three recent breakthroughs due to AI in arts and science serve as motivation:An award winning digital image,protein folding,fast matrix multiplication.Many recent developments in artificial neural networks,particularl...Three recent breakthroughs due to AI in arts and science serve as motivation:An award winning digital image,protein folding,fast matrix multiplication.Many recent developments in artificial neural networks,particularly deep learning(DL),applied and relevant to computational mechanics(solid,fluids,finite-element technology)are reviewed in detail.Both hybrid and pure machine learning(ML)methods are discussed.Hybrid methods combine traditional PDE discretizations with ML methods either(1)to help model complex nonlinear constitutive relations,(2)to nonlinearly reduce the model order for efficient simulation(turbulence),or(3)to accelerate the simulation by predicting certain components in the traditional integration methods.Here,methods(1)and(2)relied on Long-Short-Term Memory(LSTM)architecture,with method(3)relying on convolutional neural networks.Pure ML methods to solve(nonlinear)PDEs are represented by Physics-Informed Neural network(PINN)methods,which could be combined with attention mechanism to address discontinuous solutions.Both LSTM and attention architectures,together with modern and generalized classic optimizers to include stochasticity for DL networks,are extensively reviewed.Kernel machines,including Gaussian processes,are provided to sufficient depth for more advanced works such as shallow networks with infinite width.Not only addressing experts,readers are assumed familiar with computational mechanics,but not with DL,whose concepts and applications are built up from the basics,aiming at bringing first-time learners quickly to the forefront of research.History and limitations of AI are recounted and discussed,with particular attention at pointing out misstatements or misconceptions of the classics,even in well-known references.Positioning and pointing control of a large-deformable beam is given as an example.展开更多
BACKGROUND Prostate cancer(PC)is one of the most common malignant tumors in men,and bone metastasis is one of its common complications,which seriously affects the quality of life and prognosis of patients.AIM To inves...BACKGROUND Prostate cancer(PC)is one of the most common malignant tumors in men,and bone metastasis is one of its common complications,which seriously affects the quality of life and prognosis of patients.AIM To investigate the diagnostic value of technetium-99m-methylene diphosphonate(99mTc-MDP)single photon emission computed tomography(SPECT)/CT imaging combined with the serum prostate-specific antigen(PSA)/free PSA ratio for PC bone metastasis(PCBM).METHODS One hundred patients with PC who visited the Hospital of Chengdu University of Traditional Chinese Medicine from January 2020 to January 2022 were recruited as the experimental(Exp)group,while 30 patients with benign prostatic lesions(BPLs)were recruited as the control(Ctrl)group.All patients underwent 99mTc-MDP SPECT/CT imaging and serum PSA/fPSA testing.The SPECT/CT imaging results and serum PSA/fPSA ratios of patients were analyzed to evaluate their diagnostic values for PCBM.RESULTS The difference in general information of the patients was not obvious,showing comparability.The two methods showed no visible differences in negative predictive value and sensitivity for patients with PCBM,but had great differences in positive predictive value and specificity(P<0.05).The PSA/fPSA ratio of patients with PC in the Exp group was lower than those with BPLs,and patients with PCBM had a much lower PSA/fPSA ratio than those without PC(P<0.05).The results confirmed that the combined use of 99mTc-MDP SPECT/CT imaging and serum PSA/fPSA ratio achieved a detection rate of 95%for PCBM.CONCLUSION The combination of 99mTc-MDP SPECT/CT and PSA/fPSA ratio is accurate and reliable for the diagnosis of PCBM,which provides an important reference for clinical practice.展开更多
The concepts of Rough Decision Support System (RDSS) and equivalence matrix are introduced in this paper. Based on a rough attribute vector tree (RAVT) method, two kinds of matrix computation algorithms — Recursive M...The concepts of Rough Decision Support System (RDSS) and equivalence matrix are introduced in this paper. Based on a rough attribute vector tree (RAVT) method, two kinds of matrix computation algorithms — Recursive Matrix Computation (RMC) and Parallel Matrix Computation (PMC) are proposed for rules extraction, attributes reduction and data cleaning finished synchronously. The algorithms emphasize the practicability and efficiency of rules generation. A case study of PMC is analyzed, and a comparison experiment of RMC algorithm shows that it is feasible and efficient for data mining and knowledge-discovery in RDSS.展开更多
Discrete element method can effectively simulate the discontinuity,inhomogeneity and large deformation and failure of rock and soil.Based on the innovative matrix computing of the discrete element method,the highperfo...Discrete element method can effectively simulate the discontinuity,inhomogeneity and large deformation and failure of rock and soil.Based on the innovative matrix computing of the discrete element method,the highperformance discrete element software MatDEM may handle millions of elements in one computer,and enables the discrete element simulation at the engineering scale.It supports heat calculation,multi-field and fluidsolid coupling numerical simulations.Furthermore,the software integrates pre-processing,solver,postprocessing,and powerful secondary development,allowing recompiling new discrete element software.The basic principles of the DEM,the implement and development of the MatDEM software,and its applications are introduced in this paper.The software and sample source code are available online(http://matdem.com).展开更多
The well-known Riccati differential equations play a key role in many fields,including problems in protein folding,control and stabilization,stochastic control,and cybersecurity(risk analysis and malware propaga-tion)...The well-known Riccati differential equations play a key role in many fields,including problems in protein folding,control and stabilization,stochastic control,and cybersecurity(risk analysis and malware propaga-tion).Quantum computer algorithms have the potential to implement faster approximate solutions to the Riccati equations compared with strictly classical algorithms.While systems with many qubits are still under development,there is significant interest in developing algorithms for near-term quantum computers to determine their accuracy and limitations.In this paper,we propose a hybrid quantum-classical algorithm,the Matrix Riccati Solver(MRS).This approach uses a transformation of variables to turn a set of nonlinear differential equation into a set of approximate linear differential equations(i.e.,second order non-constant coefficients)which can in turn be solved using a version of the Harrow-Hassidim-Lloyd(HHL)quantum algorithm for the case of Hermitian matrices.We implement this approach using the Qiskit language and compute near-term results using a 4 qubit IBM Q System quantum computer.Comparisons with classical results and areas for future research are discussed.展开更多
Feasible sets play an important role in model predictive control(MPC) optimal control problems(OCPs). This paper proposes a multi-parametric programming-based algorithm to compute the feasible set for OCP derived from...Feasible sets play an important role in model predictive control(MPC) optimal control problems(OCPs). This paper proposes a multi-parametric programming-based algorithm to compute the feasible set for OCP derived from MPC-based algorithms involving both spectrahedron(represented by linear matrix inequalities) and polyhedral(represented by a set of inequalities) constraints. According to the geometrical meaning of the inner product of vectors, the maximum length of the projection vector from the feasible set to a unit spherical coordinates vector is computed and the optimal solution has been proved to be one of the vertices of the feasible set. After computing the vertices,the convex hull of these vertices is determined which equals the feasible set. The simulation results show that the proposed method is especially efficient for low dimensional feasible set computation and avoids the non-unicity problem of optimizers as well as the memory consumption problem that encountered by projection algorithms.展开更多
This paper deals with the fixed-time adaptive time-varying matrix projective synchronization(ATVMPS)of different dimensional chaotic systems(DDCSs)with time delays and unknown parameters.Firstly,to estimate the unknow...This paper deals with the fixed-time adaptive time-varying matrix projective synchronization(ATVMPS)of different dimensional chaotic systems(DDCSs)with time delays and unknown parameters.Firstly,to estimate the unknown parameters,adaptive parameter updated laws are designed.Secondly,to realize the fixed-time ATVMPS of the time-delayed DDCSs,an adaptive delay-unrelated controller is designed,where time delays of chaotic systems are known or unknown.Thirdly,some simple fixed-time ATVMPS criteria are deduced,and the rigorous proof is provided by employing the inequality technique and Lyapunov theory.Furthermore,the settling time of fixed-time synchronization(Fix-TS)is obtained,which depends only on controller parameters and system parameters and is independent of the system’s initial states.Finally,simulation examples are presented to validate the theoretical analysis.展开更多
The delay-dependent absolute stability for a class of Lurie systems with interval time-varying delay is studied. By employing an augmented Lyapunov functional and combining a free-weighting matrix approach and the rec...The delay-dependent absolute stability for a class of Lurie systems with interval time-varying delay is studied. By employing an augmented Lyapunov functional and combining a free-weighting matrix approach and the reciprocal convex technique, an improved stability condition is derived in terms of linear matrix inequalities (LMIs). By retaining some useful terms that are usually ignored in the derivative of the Lyapunov function, the proposed sufficient condition depends not only on the lower and upper bounds of both the delay and its derivative, but it also depends on their differences, which has wider application fields than those of present results. Moreover, a new type of equality expression is developed to handle the sector bounds of the nonlinear function, which achieves fewer LMIs in the derived condition, compared with those based on the convex representation. Therefore, the proposed method is less conservative than the existing ones. Simulation examples are given to demonstrate the validity of the approach.展开更多
基金supported by the National Key R&D Program of China(2020YFB0905900).
文摘The construction of new power systems presents higher requirements for the Power Internet of Things(PIoT)technology.The“source-grid-load-storage”architecture of a new power system requires PIoT to have a stronger multi-source heterogeneous data fusion ability.Native graph databases have great advantages in dealing with multi-source heterogeneous data,which make them suitable for an increasing number of analytical computing tasks.However,only few existing graph database products have native support for matrix operation-related interfaces or functions,resulting in low efficiency when handling matrix calculations that are commonly encountered in power grids.In this paper,the matrix computation process is expressed by a strategy called graph description,which relies on the natural connection between the matrix and structure of the graph.Based on that,we implement matrix operations on graph database,including matrix multiplication,matrix decomposition,etc.Specifically,only the nodes relevant to the computation and their neighbors are concerned in the process,which prunes the influence of zero elements in the matrix and avoids useless iterations compared to the conventional matrix computation.Based on the graph description,a series of power grid computations can be implemented on graph database,which reduces redundant data import and export operations while leveraging the parallel computing capability of graph database.It promotes the efficiency of PIoT when handling multi-source heterogeneous data.An comprehensive experimental study over two different scale power system datasets compares the proposed method with Python and MATLAB baselines.The results reveal the superior performance of our proposed method in both power flow and N-1 contingency computations.
基金supported by the Foundation of the Science and Technology of Jilin Province (20070541)985-Automotive Engineering of Jilin University and Innovation Fund for 985 Engineering of Jilin University (20080104).
文摘Based on Neumman series and epsilon-algorithm, an efficient computation for dynamic responses of systems with arbitrary time-varying characteristics is investigated. Avoiding the calculation for the inverses of the equivalent stiffness matrices in each time step, the computation effort of the proposed method is reduced compared with the full analysis of Newmark method. The validity and applications of the proposed method are illustrated by a 4-DOF spring-mass system with periodical time-varying stiffness properties and a truss structure with arbitrary time-varying lumped mass. It shows that good approximate results can be obtained by the proposed method compared with the responses obtained by the full analysis of Newmark method.
基金the support of Network Communication Technology(NCT)Research Groups,FTSM,UKM in providing facilities for this research.This paper is supported under the Dana Impak Perdana UKM DIP-2018-040 and Fundamental Research Grant Scheme FRGS/1/2018/TK04/UKM/02/7.
文摘In this paper,we provide a new approach to data encryption using generalized inverses.Encryption is based on the implementation of weighted Moore–Penrose inverse A y MNenxmT over the nx8 constant matrix.The square Hermitian positive definite matrix N8x8 p is the key.The proposed solution represents a very strong key since the number of different variants of positive definite matrices of order 8 is huge.We have provided NIST(National Institute of Standards and Technology)quality assurance tests for a random generated Hermitian matrix(a total of 10 different tests and additional analysis with approximate entropy and random digression).In the additional testing of the quality of the random matrix generated,we can conclude that the results of our analysis satisfy the defined strict requirements.This proposed MP encryption method can be applied effectively in the encryption and decryption of images in multi-party communications.In the experimental part of this paper,we give a comparison of encryption methods between machine learning methods.Machine learning algorithms could be compared by achieved results of classification concentrating on classes.In a comparative analysis,we give results of classifying of advanced encryption standard(AES)algorithm and proposed encryption method based on Moore–Penrose inverse.
文摘Three recent breakthroughs due to AI in arts and science serve as motivation:An award winning digital image,protein folding,fast matrix multiplication.Many recent developments in artificial neural networks,particularly deep learning(DL),applied and relevant to computational mechanics(solid,fluids,finite-element technology)are reviewed in detail.Both hybrid and pure machine learning(ML)methods are discussed.Hybrid methods combine traditional PDE discretizations with ML methods either(1)to help model complex nonlinear constitutive relations,(2)to nonlinearly reduce the model order for efficient simulation(turbulence),or(3)to accelerate the simulation by predicting certain components in the traditional integration methods.Here,methods(1)and(2)relied on Long-Short-Term Memory(LSTM)architecture,with method(3)relying on convolutional neural networks.Pure ML methods to solve(nonlinear)PDEs are represented by Physics-Informed Neural network(PINN)methods,which could be combined with attention mechanism to address discontinuous solutions.Both LSTM and attention architectures,together with modern and generalized classic optimizers to include stochasticity for DL networks,are extensively reviewed.Kernel machines,including Gaussian processes,are provided to sufficient depth for more advanced works such as shallow networks with infinite width.Not only addressing experts,readers are assumed familiar with computational mechanics,but not with DL,whose concepts and applications are built up from the basics,aiming at bringing first-time learners quickly to the forefront of research.History and limitations of AI are recounted and discussed,with particular attention at pointing out misstatements or misconceptions of the classics,even in well-known references.Positioning and pointing control of a large-deformable beam is given as an example.
文摘BACKGROUND Prostate cancer(PC)is one of the most common malignant tumors in men,and bone metastasis is one of its common complications,which seriously affects the quality of life and prognosis of patients.AIM To investigate the diagnostic value of technetium-99m-methylene diphosphonate(99mTc-MDP)single photon emission computed tomography(SPECT)/CT imaging combined with the serum prostate-specific antigen(PSA)/free PSA ratio for PC bone metastasis(PCBM).METHODS One hundred patients with PC who visited the Hospital of Chengdu University of Traditional Chinese Medicine from January 2020 to January 2022 were recruited as the experimental(Exp)group,while 30 patients with benign prostatic lesions(BPLs)were recruited as the control(Ctrl)group.All patients underwent 99mTc-MDP SPECT/CT imaging and serum PSA/fPSA testing.The SPECT/CT imaging results and serum PSA/fPSA ratios of patients were analyzed to evaluate their diagnostic values for PCBM.RESULTS The difference in general information of the patients was not obvious,showing comparability.The two methods showed no visible differences in negative predictive value and sensitivity for patients with PCBM,but had great differences in positive predictive value and specificity(P<0.05).The PSA/fPSA ratio of patients with PC in the Exp group was lower than those with BPLs,and patients with PCBM had a much lower PSA/fPSA ratio than those without PC(P<0.05).The results confirmed that the combined use of 99mTc-MDP SPECT/CT imaging and serum PSA/fPSA ratio achieved a detection rate of 95%for PCBM.CONCLUSION The combination of 99mTc-MDP SPECT/CT and PSA/fPSA ratio is accurate and reliable for the diagnosis of PCBM,which provides an important reference for clinical practice.
文摘The concepts of Rough Decision Support System (RDSS) and equivalence matrix are introduced in this paper. Based on a rough attribute vector tree (RAVT) method, two kinds of matrix computation algorithms — Recursive Matrix Computation (RMC) and Parallel Matrix Computation (PMC) are proposed for rules extraction, attributes reduction and data cleaning finished synchronously. The algorithms emphasize the practicability and efficiency of rules generation. A case study of PMC is analyzed, and a comparison experiment of RMC algorithm shows that it is feasible and efficient for data mining and knowledge-discovery in RDSS.
基金Financial supports from the Natural Science Foundation of China(41761134089,41977218)Six Talent Peaks Project of Jiangsu Province(RJFW-003)the Fundamental Research Funds for the Central Universities(14380103)are gratefully acknowledged.
文摘Discrete element method can effectively simulate the discontinuity,inhomogeneity and large deformation and failure of rock and soil.Based on the innovative matrix computing of the discrete element method,the highperformance discrete element software MatDEM may handle millions of elements in one computer,and enables the discrete element simulation at the engineering scale.It supports heat calculation,multi-field and fluidsolid coupling numerical simulations.Furthermore,the software integrates pre-processing,solver,postprocessing,and powerful secondary development,allowing recompiling new discrete element software.The basic principles of the DEM,the implement and development of the MatDEM software,and its applications are introduced in this paper.The software and sample source code are available online(http://matdem.com).
文摘The well-known Riccati differential equations play a key role in many fields,including problems in protein folding,control and stabilization,stochastic control,and cybersecurity(risk analysis and malware propaga-tion).Quantum computer algorithms have the potential to implement faster approximate solutions to the Riccati equations compared with strictly classical algorithms.While systems with many qubits are still under development,there is significant interest in developing algorithms for near-term quantum computers to determine their accuracy and limitations.In this paper,we propose a hybrid quantum-classical algorithm,the Matrix Riccati Solver(MRS).This approach uses a transformation of variables to turn a set of nonlinear differential equation into a set of approximate linear differential equations(i.e.,second order non-constant coefficients)which can in turn be solved using a version of the Harrow-Hassidim-Lloyd(HHL)quantum algorithm for the case of Hermitian matrices.We implement this approach using the Qiskit language and compute near-term results using a 4 qubit IBM Q System quantum computer.Comparisons with classical results and areas for future research are discussed.
基金supported by the Natural Science Foundation of Zhejiang Province(LR17F030002)the Science Fund for Creative Research Groups of the National Natural Science Foundation of China(61621002)
文摘Feasible sets play an important role in model predictive control(MPC) optimal control problems(OCPs). This paper proposes a multi-parametric programming-based algorithm to compute the feasible set for OCP derived from MPC-based algorithms involving both spectrahedron(represented by linear matrix inequalities) and polyhedral(represented by a set of inequalities) constraints. According to the geometrical meaning of the inner product of vectors, the maximum length of the projection vector from the feasible set to a unit spherical coordinates vector is computed and the optimal solution has been proved to be one of the vertices of the feasible set. After computing the vertices,the convex hull of these vertices is determined which equals the feasible set. The simulation results show that the proposed method is especially efficient for low dimensional feasible set computation and avoids the non-unicity problem of optimizers as well as the memory consumption problem that encountered by projection algorithms.
基金supported by the National Natural Science Foundation of China under Grant 61977004.This support is gratefully acknowledged.
文摘This paper deals with the fixed-time adaptive time-varying matrix projective synchronization(ATVMPS)of different dimensional chaotic systems(DDCSs)with time delays and unknown parameters.Firstly,to estimate the unknown parameters,adaptive parameter updated laws are designed.Secondly,to realize the fixed-time ATVMPS of the time-delayed DDCSs,an adaptive delay-unrelated controller is designed,where time delays of chaotic systems are known or unknown.Thirdly,some simple fixed-time ATVMPS criteria are deduced,and the rigorous proof is provided by employing the inequality technique and Lyapunov theory.Furthermore,the settling time of fixed-time synchronization(Fix-TS)is obtained,which depends only on controller parameters and system parameters and is independent of the system’s initial states.Finally,simulation examples are presented to validate the theoretical analysis.
基金The National Natural Science Foundation of China(No.60835001,60875035,60905009,61004032,61004064,11071001)China Postdoctoral Science Foundation(No.201003546)+2 种基金the Ph.D.Programs Foundation of Ministry of Education of China(No.20093401110001)the Major Program of Higher Education of Anhui Province(No.KJ2010ZD02)the Natural Science Research Project of Higher Education of Anhui Province(No.KJ2011A020)
文摘The delay-dependent absolute stability for a class of Lurie systems with interval time-varying delay is studied. By employing an augmented Lyapunov functional and combining a free-weighting matrix approach and the reciprocal convex technique, an improved stability condition is derived in terms of linear matrix inequalities (LMIs). By retaining some useful terms that are usually ignored in the derivative of the Lyapunov function, the proposed sufficient condition depends not only on the lower and upper bounds of both the delay and its derivative, but it also depends on their differences, which has wider application fields than those of present results. Moreover, a new type of equality expression is developed to handle the sector bounds of the nonlinear function, which achieves fewer LMIs in the derived condition, compared with those based on the convex representation. Therefore, the proposed method is less conservative than the existing ones. Simulation examples are given to demonstrate the validity of the approach.