A new method of parameter identification based on linear time-frequencyrepresentation and Hubert transform is proposed to identity modal parameters of linear time-varyingsystems from measured vibration responses. Usin...A new method of parameter identification based on linear time-frequencyrepresentation and Hubert transform is proposed to identity modal parameters of linear time-varyingsystems from measured vibration responses. Using Gabor expansion and synthesis theory, measuredresponses are represented in the time-frequency domain and modal components are reconstructed bytime-frequency filtering. The Hilbert transform is applied to obtain time histories of the amplitudeand phase angle of each modal component, from which time-varying frequencies and damping ratios areidentified. The proposed method has been demonstrated with a numerical example in which a lineartime-varying system of two degrees of freedom is used to validate the identification scheme based ontime-frequency representation. Simulation results have indicated that time-frequency representationpresents an effective tool for modal parameter identification of time-varying systems.展开更多
A time-varying modal parameter identification method combined with Bayesian information criterion(BIC)and grey correlation analysis(GCA)is presented for a kind of thermo-elastic structures with sparse natural frequenc...A time-varying modal parameter identification method combined with Bayesian information criterion(BIC)and grey correlation analysis(GCA)is presented for a kind of thermo-elastic structures with sparse natural frequencies and subject to an unsteady temperature field.To demonstrate the method,the thermo-elastic structure to be identified is taken as a simply-supported beam with an axially movable boundary and subject to both random excitation and an unsteady temperature field,and the dynamic outputs of the beam are first simulated as the measured data for the identification.Then,an improved time-varying autoregressive(TVAR)model is generated from the simulated input and output of the system.The time-varying coefficients of the TVAR model are expanded as a finite set of time basis functions that facilitate the time-varying coefficients to be time-invariant.According to the BIC for preliminarily determining the scope of the order number,the grey system theory is introduced to determine the order of TVAR and the dimension of the basis functions simultaneously via the absolute grey correlation degree(AGCD).Finally,the time-varying instantaneous frequencies of the system are estimated by using the recursive least squares method.The identified results are capable of tracking the slow time-varying natural frequencies with high accuracy no matter for noise-free or noisy estimation.展开更多
In this paper, a filtering method is presented to estimate time-varying parameters of a missile dual control system with tail fins and reaction jets as control variables. In this method, the long-short-term memory(LST...In this paper, a filtering method is presented to estimate time-varying parameters of a missile dual control system with tail fins and reaction jets as control variables. In this method, the long-short-term memory(LSTM) neural network is nested into the extended Kalman filter(EKF) to modify the Kalman gain such that the filtering performance is improved in the presence of large model uncertainties. To avoid the unstable network output caused by the abrupt changes of system states,an adaptive correction factor is introduced to correct the network output online. In the process of training the network, a multi-gradient descent learning mode is proposed to better fit the internal state of the system, and a rolling training is used to implement an online prediction logic. Based on the Lyapunov second method, we discuss the stability of the system, the result shows that when the training error of neural network is sufficiently small, the system is asymptotically stable. With its application to the estimation of time-varying parameters of a missile dual control system, the LSTM-EKF shows better filtering performance than the EKF and adaptive EKF(AEKF) when there exist large uncertainties in the system model.展开更多
Modal parameters can accurately characterize the structural dynamic properties and assess the physical state of the structure.Therefore,it is particularly significant to identify the structural modal parameters accordi...Modal parameters can accurately characterize the structural dynamic properties and assess the physical state of the structure.Therefore,it is particularly significant to identify the structural modal parameters according to the monitoring data information in the structural health monitoring(SHM)system,so as to provide a scientific basis for structural damage identification and dynamic model modification.In view of this,this paper reviews methods for identifying structural modal parameters under environmental excitation and briefly describes how to identify structural damages based on the derived modal parameters.The paper primarily introduces data-driven modal parameter recognition methods(e.g.,time-domain,frequency-domain,and time-frequency-domain methods,etc.),briefly describes damage identification methods based on the variations of modal parameters(e.g.,natural frequency,modal shapes,and curvature modal shapes,etc.)and modal validation methods(e.g.,Stability Diagram and Modal Assurance Criterion,etc.).The current status of the application of artificial intelligence(AI)methods in the direction of modal parameter recognition and damage identification is further discussed.Based on the pre-vious analysis,the main development trends of structural modal parameter recognition and damage identification methods are given to provide scientific references for the optimized design and functional upgrading of SHM systems.展开更多
Offshore platforms are susceptible to structural damage due to prolonged exposure to random loads,such as wind,waves,and currents.This is particularly true for platforms that have been in service for an extended perio...Offshore platforms are susceptible to structural damage due to prolonged exposure to random loads,such as wind,waves,and currents.This is particularly true for platforms that have been in service for an extended period.Identifying the modal parameters of offshore platforms is crucial for damage diagno sis,as it serves as a prerequisite and foundation for the process.Therefore,it holds great significance to prioritize the identification of these parameters.Aiming at the shortcomings of the traditional Fast Bayesian Fast Fourier Transform(FBFFT) method,this paper proposes a modal parameter identification method based on Automatic Frequency Domain Decomposition(AFDD) and optimized FBFFT.By introducing the AFDD method and Powell optimization algorithm,this method can automatically identify the initial value of natural frequency and solve the objective function efficiently and simply.In order to verify the feasibility and effectiveness of the proposed method,it is used to identify the modal parameters of the IASC-ASCE benchmark model and the j acket platform structure model,and the Most Probable Value(MPV) of the modal parameters and their respective posterior uncertainties are successfully identified.The identification results of the IASC-ASCE benc hmark model are compared with the identification re sults of the MODE-ID method,which verifies the effectivene ss and accuracy of the proposed method for identifying modal parameters.It provides a simple and feasible method for quantifying the influence of uncertain factors such as environmental parameters on the identification results,and also provide s a reference for modal parameter identification of other large structures.展开更多
In view of the feature of flight flutter test data with atmospheric turbulence excitation, a method which combines wavelet transformation with random decrement technique for identifying flight flutter modal parameters...In view of the feature of flight flutter test data with atmospheric turbulence excitation, a method which combines wavelet transformation with random decrement technique for identifying flight flutter modal parameters is presented. This approach firstly uses random decrement technique to gain free decays corresponding to the acceleration response of the structure to some non-zero initial conditions. Then the continuous Morlet wavelet transformation of the free decays is performed; and the Parseval formula and residue theorem are used to simplify the transformation. The maximal wavelet transformation coefficients in different scales are searched out by means of band-filtering characteristic of Morlet wavelet, and then the modal parameters are identified according to the relationships with maximal modulus and angle of the wavelet transform. In addition, the condition of modal uncoupling is discussed according to variation trend of flight flutter modal parameters in the flight flutter state. The analysis results of simulation and flight flutter test data show that this approach is not only simple, effective and feasible, but also having good noise immunity.展开更多
Modals of the machine/tool and machine/part system are the principal factors affecting the stability of a milling process. Based on the modeling of chatter stability of milling process,the influence of modal parameter...Modals of the machine/tool and machine/part system are the principal factors affecting the stability of a milling process. Based on the modeling of chatter stability of milling process,the influence of modal parameters on chatter stability lobes independently or jointly has been analyzed by simulation. Peak-to-valley specific value,lobe coefficient and the corresponding calculation formula have been put forward. General laws and steps of modal simplification for multimodality system have been summarized.展开更多
As a critical component of the railway vehicle, underframe equipment has a great influence on the ride comfort of railway vehicles due to their big mass and active vibration. Therefore, study on the relationship betwe...As a critical component of the railway vehicle, underframe equipment has a great influence on the ride comfort of railway vehicles due to their big mass and active vibration. Therefore, study on the relationship between suspension parameters of underframe equipment and the modal frequency of carbody is extremely crucial for con trolling the ride quality of railway vehicles. In this paper, a finite element model of the carbody was developed to investigate the effects of the suspension location, the mass of the suspension equipment, and the suspension frequency on the mode of the carbody. Then, the matching relationship between the suspension parameters and the modal frequency of the carbody was studied through the transfer function. In addition, roller rig tests were performed to verify the numerical simulation model of the carbody. The results show that the suspension parameters of the underframe equipment have a great influence on the mode of the carbody, especially for the frequency of the first bending mode. To improve the frequency of carbody highfrequency bending and reduce energy transfer, equipment with a large mass should be suspended toward the middle of the carbody. The weight of the equipment strongly affects the first bending frequency and energy transfer of the carbody. The frequency of heavy suspended equipment should be sufficiently low to increase the transmissibility of high frequencies and improve the vibration characteristics of the carbody. Although the bending frequency of the carbody can be improved effec tively by increasing the suspension stiffness of thesuspension equipment, in order to reduce carbody vibration effectively, the suspension frequency of the equipment should be slightly lower than the carbody bending frequency.展开更多
Traditional modal parameter identifi cation methods have many disadvantages,especially when used for processing nonlinear and non-stationary signals.In addition,they are usually not able to accurately identify the dam...Traditional modal parameter identifi cation methods have many disadvantages,especially when used for processing nonlinear and non-stationary signals.In addition,they are usually not able to accurately identify the damping ratio and damage.In this study,methods based on the Hilbert-Huang transform(HHT) are investigated for structural modal parameter identifi cation and damage diagnosis.First,mirror extension and prediction via a radial basis function(RBF) neural network are used to restrain the troublesome end-effect issue in empirical mode decomposition(EMD),which is a crucial part of HHT.Then,the approaches based on HHT combined with other techniques,such as the random decrement technique(RDT),natural excitation technique(NExT) and stochastic subspace identifi cation(SSI),are proposed to identify modal parameters of structures.Furthermore,a damage diagnosis method based on the HHT is also proposed.Time-varying instantaneous frequency and instantaneous energy are used to identify the damage evolution of the structure.The relative amplitude of the Hilbert marginal spectrum is used to identify the damage location of the structure.Finally,acceleration records at gauge points from shaking table testing of a 12-story reinforced concrete frame model are taken to validate the proposed approaches.The results show that the proposed approaches based on HHT for modal parameter identifi cation and damage diagnosis are reliable and practical.展开更多
Tibetan heritage buildings have a high historical and cultural value. They have endured adverse environmental loadings over hundreds of years without significant damage. However, there are few reports on their structu...Tibetan heritage buildings have a high historical and cultural value. They have endured adverse environmental loadings over hundreds of years without significant damage. However, there are few reports on their structural characteristics under normal environmental loadings and their behavior under dynamic loadings. In this research, a typical Tibetan wooden wall-frame building is selected to study its dynamic characteristics. Field measurements of the structure were conducted under environmental excitation to collect acceleration responses. The stochastic subspace identification (SSI) method was adopted to calculate the structural modal parameters and obtain the out-of-plane vibration characteristics of the slab and frames. The results indicated that the wall-frame structure had a lower out-of-plane stiffness and greater in-plane stiffness due to the presence of stone walls. Due to poor identified damping ratio estimates from the SSI method, a method based on the variance upper bound was proposed to complement the existing variance lower bound method for estimating the modal damping ratio to address the significant damping variability obtained from different points and measurements. The feasibility of the proposed method was illustrated with the measured data from the floor slab of the structure. The variance lower and upper bound methods both provided consistent results compared to those from the traditional SSI method.展开更多
Modal parameters, including fundamental frequencies, damping ratios, and mode shapes, could be used to evaluate the health condition of structures. Automatic modal parameter identification, which plays an essential ro...Modal parameters, including fundamental frequencies, damping ratios, and mode shapes, could be used to evaluate the health condition of structures. Automatic modal parameter identification, which plays an essential role in realtime structural health monitoring, has become a popular topic in recent years. In this study, an automatic modal parameter identification procedure for high arch dams is proposed. The proposed procedure is implemented by combining the densitybased spatial clustering of applications with noise(DBSCAN) algorithm and the stochastic subspace identification(SSI). The 210-m-high Dagangshan Dam is investigated as an example to verify the feasibility of the procedure. The results show that the DBSCAN algorithm is robust enough to interpret the stabilization diagram from SSI and may avoid outline modes. This leads to the proposed procedure obtaining a better performance than the partitioned clustering and hierarchical clustering algorithms. In addition, the errors of the identified frequencies of the arch dam are within 4%, and the identified mode shapes are in agreement with those obtained from the finite element model, which implies that the proposed procedure is accurate enough to use in modal parameter identification. The procedure is feasible for online modal parameter identification and modal tracking of arch dams.展开更多
Physical parameters are very important for vehicle dynamic modeling and analysis.However,most of physical parameter identification methods are assuming some physical parameters of vehicle are known,and the other unkno...Physical parameters are very important for vehicle dynamic modeling and analysis.However,most of physical parameter identification methods are assuming some physical parameters of vehicle are known,and the other unknown parameters can be identified.In order to identify physical parameters of vehicle in the case that all physical parameters are unknown,a methodology based on the State Variable Method(SVM) for physical parameter identification of two-axis on-road vehicle is presented.The modal parameters of the vehicle are identified by the SVM,furthermore,the physical parameters of the vehicle are estimated by least squares method.In numerical simulations,physical parameters of Ford Granada are chosen as parameters of vehicle model,and half-sine bump function is chosen to simulate tire stimulated by impulse excitation.The first numerical simulation shows that the present method can identify all of the physical parameters and the largest absolute value of percentage error of the identified physical parameter is 0.205%;and the effect of the errors of additional mass,structural parameter and measurement noise are discussed in the following simulations,the results shows that when signal contains 30 d B noise,the largest absolute value of percentage error of the identification is 3.78%.These simulations verify that the presented method is effective and accurate for physical parameter identification of two-axis on-road vehicles.The proposed methodology can identify all physical parameters of 7-DOF vehicle model by using free-decay responses of vehicle without need to assume some physical parameters are known.展开更多
Crack detection procedures by different modal parameters are analyzed for identifying a crack and its location and magnitude in a jacket platform. The first ten natural frequencies and modal shapes of the jacket model...Crack detection procedures by different modal parameters are analyzed for identifying a crack and its location and magnitude in a jacket platform. The first ten natural frequencies and modal shapes of the jacket models are obtained by numerical experiments based on NASTRAN Code. A crack at different locations and of different magnitudes is imposed in the model at the underwater beams. Then, the modal evaluation parameters are calculated numerically, to illustrate the evaluation of modal parameter criteria used in jacket crack detection. The sensitivities of different modal parameters to different cracks are analyzed. A new technique is presented for predicting the approximate location of a breakage in the absence of the data of an intact model. This method can be used to detect a crack in underwater members by use of incomplete mode shapes of the top members of the jacket.展开更多
In most of real operational conditions only response data are measurable while the actual excitations are unknown, so modal parameter must be extracted only from responses. This paper gives a theoretical formulation f...In most of real operational conditions only response data are measurable while the actual excitations are unknown, so modal parameter must be extracted only from responses. This paper gives a theoretical formulation for the cross-correlation functions and cross-power spectra between the outputs under the assumption of white-noise excitation. It widens the field of modal analysis under ambient excitation because many classical methods by impulse response functions or frequency response functions can be used easily for modal analysis under unknown excitation. The Polyreference Complex Exponential method and Eigensystem Realization Algorithm using cross-correlation functions in time domain and Orthogonal Polynomial method using cross-power spectra in frequency domain are applied to a steel frame to extract modal parameters under operational conditions. The modal properties of the steel frame from these three methods are compared with those from frequency response functions analysis. The results show that the modal analysis method using cross-correlation functions or cross-power spectra presented in this paper can extract modal parameters efficiently under unknown excitation.展开更多
This paper investigates adaptive containment control for a class of fractional-order multi-agent systems(FOMASs)with time-varying parameters and disturbances.By using the bounded estimation method,the difficulty gener...This paper investigates adaptive containment control for a class of fractional-order multi-agent systems(FOMASs)with time-varying parameters and disturbances.By using the bounded estimation method,the difficulty generated by the timevarying parameters and disturbances is overcome.The command filter is introduced to solve the complexity problem inherent in adaptive backstepping control.Meanwhile,in order to eliminate the effect of filter errors,a novel distributed error compensating scheme is constructed,in which only the local information from the neighbor agents is utilized.Then,a distributed adaptive containment control scheme for FOMASs is developed based on backstepping to guarantee that the outputs of all the followers are steered to the convex hull spanned by the leaders.Based on the extension of Barbalat's lemma to fractional-order integrals,it can be proven that the containment errors and the compensating signals have asymptotic convergence.Finally,three simulation examples are given to show the feasibility and effectiveness of the proposed control method.展开更多
Empirical mode decomposition (EMD) is proposed to identify linear structure under non-stationary excitation,and non-white noise coefficient is introduced under the assumption of random signals consisting of white nois...Empirical mode decomposition (EMD) is proposed to identify linear structure under non-stationary excitation,and non-white noise coefficient is introduced under the assumption of random signals consisting of white noise and non-white noise signals. The cross-correlation function of response signal is decomposed into mode functions and residue by EMD method. The identification technique of the modal parameters of single freedom degree is applied to each mode function to obtain natural frequencies, damping ratios and mode shapes. The results of identification of the five-degree freedom linear system demonstrate that the proposed method is effective in identifying the parameters of linear structures under non-stationary ambient excitation.展开更多
An adaptive Fourier Transform (FT) with an optimal window has been proposed for the time-frequency analysis of nonstationary time series. The method allows for a good estimation of both frequency and amplitude of th...An adaptive Fourier Transform (FT) with an optimal window has been proposed for the time-frequency analysis of nonstationary time series. The method allows for a good estimation of both frequency and amplitude of the spectrum and can be easily applied to the general case of time-varying signals. The evaluation of the proposed approach has been performed on measured time-varying signals from a suspension bridge model and a steel frame model whose data have the typical non-stationary characteristics. The numerical results show that the proposed approach can overcome some of the difficulties encountered in the classic Fourier transform technique and can achieve higher computation accuracy.展开更多
For modal parameter estimation of offshore structures, one has to deal with two challenges: 1) identify the interested frequencies, and 2) reduce the number of false modes. In this article, we propose an improved meth...For modal parameter estimation of offshore structures, one has to deal with two challenges: 1) identify the interested frequencies, and 2) reduce the number of false modes. In this article, we propose an improved method of modal parameter estimation by reconstructing a new signal only with interested frequencies. The approach consists of three steps: 1) isolation and reconstruction of interested frequencies using FFT filtering, 2) smoothness of reconstructed signals, and 3) extraction of interested modal parameters in time domain. The theoretical improvement is that the frequency response function(FRF) of filtered signals is smoothed based on singular value decomposition technique. The elimination of false modes is realized by reconstructing a block data matrix of the eigensystem realization algorithm(ERA) using the filtered and smoothed signals. The advantage is that the efficiency of the identification process of modal parameters will be improved greatly without introducing any false modes. A five-DOF mass-spring system is chosen to illustrate the procedure and demonstrate the performance of the proposed scheme. Numerical results indicate that interested frequencies can be isolated successfully using FFT filtering, and unexpected peaks in auto spectral density can be removed effectively. In addition, interested modal parameters, such as frequencies and damping ratios, can be identified properly by reconstructing the Hankel matrix with a small dimension of ERA, even the original signal has measurement noises.展开更多
On Line Parameter Identification Technique (OLPIT) was presented according to ambient excitation characteristics and the response cross-correlation function that is a sum of decaying sinusoids of the same form as the ...On Line Parameter Identification Technique (OLPIT) was presented according to ambient excitation characteristics and the response cross-correlation function that is a sum of decaying sinusoids of the same form as the impulse response function of the original system. OLPIT is a new method of identification modal parameters from response of structures under ambient excitation. OLPIT is different from NExT (natural excitation technique) based on ITD method in four aspects: ① The algorithm is improved by the singular-value decomposition (SVD). ② Multi-value of b r in the Ibrahim Time Domain (ITD) is avoided. ③ OLPIT is used in both SIMO (single input, multi-output) and MIMO (multi input, multi-output). ④ The precision of modal parameter identificatioin is improved. The simulation studies demonstrate that the method is effective in identifying complex modes even with close frequencies and is robust to measurement noise.展开更多
Sensitivity analysis is one of the effective methods in the dynamic modification. The sensitivity of the modal parameters such as the natural frequencies and mode shapes in undamped free vibration of mechanical transm...Sensitivity analysis is one of the effective methods in the dynamic modification. The sensitivity of the modal parameters such as the natural frequencies and mode shapes in undamped free vibration of mechanical transmission system is analyzed in this paper.In particular,the sensitivities of the modal parameters to physical parameters of shaft system such as the inertia and stiffness are given.A calculation formula for dynamic modification is presented based on the analysis of modal parameter.With a mechanical transmission system as an example, the sensitivities of natural frequencies and modes shape are calculated and analyzed. Furthermore, the dynamic modification is also carried out and a good result is obtained.展开更多
基金Automobile Industrial Science Foundation of Shanghai (No.2000187)
文摘A new method of parameter identification based on linear time-frequencyrepresentation and Hubert transform is proposed to identity modal parameters of linear time-varyingsystems from measured vibration responses. Using Gabor expansion and synthesis theory, measuredresponses are represented in the time-frequency domain and modal components are reconstructed bytime-frequency filtering. The Hilbert transform is applied to obtain time histories of the amplitudeand phase angle of each modal component, from which time-varying frequencies and damping ratios areidentified. The proposed method has been demonstrated with a numerical example in which a lineartime-varying system of two degrees of freedom is used to validate the identification scheme based ontime-frequency representation. Simulation results have indicated that time-frequency representationpresents an effective tool for modal parameter identification of time-varying systems.
基金Supported by the National Natural Science Foundation of China(91216103)the Funding of Jiangsu Innovation Program for Graduate Education(CXLX13_130)+1 种基金the Fundamental Research Funds for the Central Universitiesthe Priority Academic Program Development of Jiangsu Higher Education Institutions
文摘A time-varying modal parameter identification method combined with Bayesian information criterion(BIC)and grey correlation analysis(GCA)is presented for a kind of thermo-elastic structures with sparse natural frequencies and subject to an unsteady temperature field.To demonstrate the method,the thermo-elastic structure to be identified is taken as a simply-supported beam with an axially movable boundary and subject to both random excitation and an unsteady temperature field,and the dynamic outputs of the beam are first simulated as the measured data for the identification.Then,an improved time-varying autoregressive(TVAR)model is generated from the simulated input and output of the system.The time-varying coefficients of the TVAR model are expanded as a finite set of time basis functions that facilitate the time-varying coefficients to be time-invariant.According to the BIC for preliminarily determining the scope of the order number,the grey system theory is introduced to determine the order of TVAR and the dimension of the basis functions simultaneously via the absolute grey correlation degree(AGCD).Finally,the time-varying instantaneous frequencies of the system are estimated by using the recursive least squares method.The identified results are capable of tracking the slow time-varying natural frequencies with high accuracy no matter for noise-free or noisy estimation.
文摘In this paper, a filtering method is presented to estimate time-varying parameters of a missile dual control system with tail fins and reaction jets as control variables. In this method, the long-short-term memory(LSTM) neural network is nested into the extended Kalman filter(EKF) to modify the Kalman gain such that the filtering performance is improved in the presence of large model uncertainties. To avoid the unstable network output caused by the abrupt changes of system states,an adaptive correction factor is introduced to correct the network output online. In the process of training the network, a multi-gradient descent learning mode is proposed to better fit the internal state of the system, and a rolling training is used to implement an online prediction logic. Based on the Lyapunov second method, we discuss the stability of the system, the result shows that when the training error of neural network is sufficiently small, the system is asymptotically stable. With its application to the estimation of time-varying parameters of a missile dual control system, the LSTM-EKF shows better filtering performance than the EKF and adaptive EKF(AEKF) when there exist large uncertainties in the system model.
基金supported by the Innovation Foundation of Provincial Education Department of Gansu(2024B-005)the Gansu Province National Science Foundation(22YF7GA182)the Fundamental Research Funds for the Central Universities(No.lzujbky2022-kb01)。
文摘Modal parameters can accurately characterize the structural dynamic properties and assess the physical state of the structure.Therefore,it is particularly significant to identify the structural modal parameters according to the monitoring data information in the structural health monitoring(SHM)system,so as to provide a scientific basis for structural damage identification and dynamic model modification.In view of this,this paper reviews methods for identifying structural modal parameters under environmental excitation and briefly describes how to identify structural damages based on the derived modal parameters.The paper primarily introduces data-driven modal parameter recognition methods(e.g.,time-domain,frequency-domain,and time-frequency-domain methods,etc.),briefly describes damage identification methods based on the variations of modal parameters(e.g.,natural frequency,modal shapes,and curvature modal shapes,etc.)and modal validation methods(e.g.,Stability Diagram and Modal Assurance Criterion,etc.).The current status of the application of artificial intelligence(AI)methods in the direction of modal parameter recognition and damage identification is further discussed.Based on the pre-vious analysis,the main development trends of structural modal parameter recognition and damage identification methods are given to provide scientific references for the optimized design and functional upgrading of SHM systems.
基金financially supported by the Natural Science Foundation of Heilongjiang Province of China (Grant No. LH2020E016)the National Natural Science Foundation of China (Grant No.11472076)。
文摘Offshore platforms are susceptible to structural damage due to prolonged exposure to random loads,such as wind,waves,and currents.This is particularly true for platforms that have been in service for an extended period.Identifying the modal parameters of offshore platforms is crucial for damage diagno sis,as it serves as a prerequisite and foundation for the process.Therefore,it holds great significance to prioritize the identification of these parameters.Aiming at the shortcomings of the traditional Fast Bayesian Fast Fourier Transform(FBFFT) method,this paper proposes a modal parameter identification method based on Automatic Frequency Domain Decomposition(AFDD) and optimized FBFFT.By introducing the AFDD method and Powell optimization algorithm,this method can automatically identify the initial value of natural frequency and solve the objective function efficiently and simply.In order to verify the feasibility and effectiveness of the proposed method,it is used to identify the modal parameters of the IASC-ASCE benchmark model and the j acket platform structure model,and the Most Probable Value(MPV) of the modal parameters and their respective posterior uncertainties are successfully identified.The identification results of the IASC-ASCE benc hmark model are compared with the identification re sults of the MODE-ID method,which verifies the effectivene ss and accuracy of the proposed method for identifying modal parameters.It provides a simple and feasible method for quantifying the influence of uncertain factors such as environmental parameters on the identification results,and also provide s a reference for modal parameter identification of other large structures.
基金National Natural Science Foundation of China(60134010)
文摘In view of the feature of flight flutter test data with atmospheric turbulence excitation, a method which combines wavelet transformation with random decrement technique for identifying flight flutter modal parameters is presented. This approach firstly uses random decrement technique to gain free decays corresponding to the acceleration response of the structure to some non-zero initial conditions. Then the continuous Morlet wavelet transformation of the free decays is performed; and the Parseval formula and residue theorem are used to simplify the transformation. The maximal wavelet transformation coefficients in different scales are searched out by means of band-filtering characteristic of Morlet wavelet, and then the modal parameters are identified according to the relationships with maximal modulus and angle of the wavelet transform. In addition, the condition of modal uncoupling is discussed according to variation trend of flight flutter modal parameters in the flight flutter state. The analysis results of simulation and flight flutter test data show that this approach is not only simple, effective and feasible, but also having good noise immunity.
基金Supported by the Fundamental Research Project of COSTI ND(K1203020507)
文摘Modals of the machine/tool and machine/part system are the principal factors affecting the stability of a milling process. Based on the modeling of chatter stability of milling process,the influence of modal parameters on chatter stability lobes independently or jointly has been analyzed by simulation. Peak-to-valley specific value,lobe coefficient and the corresponding calculation formula have been put forward. General laws and steps of modal simplification for multimodality system have been summarized.
基金financially supported by the National Natural Science Foundation of China (No. U1334206)the National Basic Research Program of China (No. 2011CB711106)
文摘As a critical component of the railway vehicle, underframe equipment has a great influence on the ride comfort of railway vehicles due to their big mass and active vibration. Therefore, study on the relationship between suspension parameters of underframe equipment and the modal frequency of carbody is extremely crucial for con trolling the ride quality of railway vehicles. In this paper, a finite element model of the carbody was developed to investigate the effects of the suspension location, the mass of the suspension equipment, and the suspension frequency on the mode of the carbody. Then, the matching relationship between the suspension parameters and the modal frequency of the carbody was studied through the transfer function. In addition, roller rig tests were performed to verify the numerical simulation model of the carbody. The results show that the suspension parameters of the underframe equipment have a great influence on the mode of the carbody, especially for the frequency of the first bending mode. To improve the frequency of carbody highfrequency bending and reduce energy transfer, equipment with a large mass should be suspended toward the middle of the carbody. The weight of the equipment strongly affects the first bending frequency and energy transfer of the carbody. The frequency of heavy suspended equipment should be sufficiently low to increase the transmissibility of high frequencies and improve the vibration characteristics of the carbody. Although the bending frequency of the carbody can be improved effec tively by increasing the suspension stiffness of thesuspension equipment, in order to reduce carbody vibration effectively, the suspension frequency of the equipment should be slightly lower than the carbody bending frequency.
基金Gansu Science and Technology Key Project under Grant No.2GS057-A52-008
文摘Traditional modal parameter identifi cation methods have many disadvantages,especially when used for processing nonlinear and non-stationary signals.In addition,they are usually not able to accurately identify the damping ratio and damage.In this study,methods based on the Hilbert-Huang transform(HHT) are investigated for structural modal parameter identifi cation and damage diagnosis.First,mirror extension and prediction via a radial basis function(RBF) neural network are used to restrain the troublesome end-effect issue in empirical mode decomposition(EMD),which is a crucial part of HHT.Then,the approaches based on HHT combined with other techniques,such as the random decrement technique(RDT),natural excitation technique(NExT) and stochastic subspace identifi cation(SSI),are proposed to identify modal parameters of structures.Furthermore,a damage diagnosis method based on the HHT is also proposed.Time-varying instantaneous frequency and instantaneous energy are used to identify the damage evolution of the structure.The relative amplitude of the Hilbert marginal spectrum is used to identify the damage location of the structure.Finally,acceleration records at gauge points from shaking table testing of a 12-story reinforced concrete frame model are taken to validate the proposed approaches.The results show that the proposed approaches based on HHT for modal parameter identifi cation and damage diagnosis are reliable and practical.
基金National Natural Science Foundation of China under Grant No.51338001Natural Science Foundation of China under Grant Nos.51178028 and 51422801+2 种基金the Fundamental Research Funds for the Central Universities under Grant No.2014YJS087Program for New Century Excellent Talents in University under Grant No.NCET-11-0571111 Project of China under Grant No.B13002
文摘Tibetan heritage buildings have a high historical and cultural value. They have endured adverse environmental loadings over hundreds of years without significant damage. However, there are few reports on their structural characteristics under normal environmental loadings and their behavior under dynamic loadings. In this research, a typical Tibetan wooden wall-frame building is selected to study its dynamic characteristics. Field measurements of the structure were conducted under environmental excitation to collect acceleration responses. The stochastic subspace identification (SSI) method was adopted to calculate the structural modal parameters and obtain the out-of-plane vibration characteristics of the slab and frames. The results indicated that the wall-frame structure had a lower out-of-plane stiffness and greater in-plane stiffness due to the presence of stone walls. Due to poor identified damping ratio estimates from the SSI method, a method based on the variance upper bound was proposed to complement the existing variance lower bound method for estimating the modal damping ratio to address the significant damping variability obtained from different points and measurements. The feasibility of the proposed method was illustrated with the measured data from the floor slab of the structure. The variance lower and upper bound methods both provided consistent results compared to those from the traditional SSI method.
基金National Natural Science Foundation of China under Grant Nos. 51725901 and 51639006。
文摘Modal parameters, including fundamental frequencies, damping ratios, and mode shapes, could be used to evaluate the health condition of structures. Automatic modal parameter identification, which plays an essential role in realtime structural health monitoring, has become a popular topic in recent years. In this study, an automatic modal parameter identification procedure for high arch dams is proposed. The proposed procedure is implemented by combining the densitybased spatial clustering of applications with noise(DBSCAN) algorithm and the stochastic subspace identification(SSI). The 210-m-high Dagangshan Dam is investigated as an example to verify the feasibility of the procedure. The results show that the DBSCAN algorithm is robust enough to interpret the stabilization diagram from SSI and may avoid outline modes. This leads to the proposed procedure obtaining a better performance than the partitioned clustering and hierarchical clustering algorithms. In addition, the errors of the identified frequencies of the arch dam are within 4%, and the identified mode shapes are in agreement with those obtained from the finite element model, which implies that the proposed procedure is accurate enough to use in modal parameter identification. The procedure is feasible for online modal parameter identification and modal tracking of arch dams.
基金Supported by National Natural Science Foundation of China(Grant Nos.51175157,U124208)
文摘Physical parameters are very important for vehicle dynamic modeling and analysis.However,most of physical parameter identification methods are assuming some physical parameters of vehicle are known,and the other unknown parameters can be identified.In order to identify physical parameters of vehicle in the case that all physical parameters are unknown,a methodology based on the State Variable Method(SVM) for physical parameter identification of two-axis on-road vehicle is presented.The modal parameters of the vehicle are identified by the SVM,furthermore,the physical parameters of the vehicle are estimated by least squares method.In numerical simulations,physical parameters of Ford Granada are chosen as parameters of vehicle model,and half-sine bump function is chosen to simulate tire stimulated by impulse excitation.The first numerical simulation shows that the present method can identify all of the physical parameters and the largest absolute value of percentage error of the identified physical parameter is 0.205%;and the effect of the errors of additional mass,structural parameter and measurement noise are discussed in the following simulations,the results shows that when signal contains 30 d B noise,the largest absolute value of percentage error of the identification is 3.78%.These simulations verify that the presented method is effective and accurate for physical parameter identification of two-axis on-road vehicles.The proposed methodology can identify all physical parameters of 7-DOF vehicle model by using free-decay responses of vehicle without need to assume some physical parameters are known.
文摘Crack detection procedures by different modal parameters are analyzed for identifying a crack and its location and magnitude in a jacket platform. The first ten natural frequencies and modal shapes of the jacket models are obtained by numerical experiments based on NASTRAN Code. A crack at different locations and of different magnitudes is imposed in the model at the underwater beams. Then, the modal evaluation parameters are calculated numerically, to illustrate the evaluation of modal parameter criteria used in jacket crack detection. The sensitivities of different modal parameters to different cracks are analyzed. A new technique is presented for predicting the approximate location of a breakage in the absence of the data of an intact model. This method can be used to detect a crack in underwater members by use of incomplete mode shapes of the top members of the jacket.
基金Item of the 9-th F ive Plan of the Aeronautical Industrial Corporation
文摘In most of real operational conditions only response data are measurable while the actual excitations are unknown, so modal parameter must be extracted only from responses. This paper gives a theoretical formulation for the cross-correlation functions and cross-power spectra between the outputs under the assumption of white-noise excitation. It widens the field of modal analysis under ambient excitation because many classical methods by impulse response functions or frequency response functions can be used easily for modal analysis under unknown excitation. The Polyreference Complex Exponential method and Eigensystem Realization Algorithm using cross-correlation functions in time domain and Orthogonal Polynomial method using cross-power spectra in frequency domain are applied to a steel frame to extract modal parameters under operational conditions. The modal properties of the steel frame from these three methods are compared with those from frequency response functions analysis. The results show that the modal analysis method using cross-correlation functions or cross-power spectra presented in this paper can extract modal parameters efficiently under unknown excitation.
基金National Key R&D Program of China(2018YFA0702200)National Natural Science Foundation of China(61627809,62173080)Liaoning Revitalization Talents Program(XLYC1801005)。
文摘This paper investigates adaptive containment control for a class of fractional-order multi-agent systems(FOMASs)with time-varying parameters and disturbances.By using the bounded estimation method,the difficulty generated by the timevarying parameters and disturbances is overcome.The command filter is introduced to solve the complexity problem inherent in adaptive backstepping control.Meanwhile,in order to eliminate the effect of filter errors,a novel distributed error compensating scheme is constructed,in which only the local information from the neighbor agents is utilized.Then,a distributed adaptive containment control scheme for FOMASs is developed based on backstepping to guarantee that the outputs of all the followers are steered to the convex hull spanned by the leaders.Based on the extension of Barbalat's lemma to fractional-order integrals,it can be proven that the containment errors and the compensating signals have asymptotic convergence.Finally,three simulation examples are given to show the feasibility and effectiveness of the proposed control method.
基金National Natural Science Foundation(No.19972016)for partly supporting this work
文摘Empirical mode decomposition (EMD) is proposed to identify linear structure under non-stationary excitation,and non-white noise coefficient is introduced under the assumption of random signals consisting of white noise and non-white noise signals. The cross-correlation function of response signal is decomposed into mode functions and residue by EMD method. The identification technique of the modal parameters of single freedom degree is applied to each mode function to obtain natural frequencies, damping ratios and mode shapes. The results of identification of the five-degree freedom linear system demonstrate that the proposed method is effective in identifying the parameters of linear structures under non-stationary ambient excitation.
基金Sponsored by the National Natural Science Foundation of China (Grant No. 50378041) the Specialized Research Fund for the Doctoral Program ofHigher Education (Grant No. 20030487016).
文摘An adaptive Fourier Transform (FT) with an optimal window has been proposed for the time-frequency analysis of nonstationary time series. The method allows for a good estimation of both frequency and amplitude of the spectrum and can be easily applied to the general case of time-varying signals. The evaluation of the proposed approach has been performed on measured time-varying signals from a suspension bridge model and a steel frame model whose data have the typical non-stationary characteristics. The numerical results show that the proposed approach can overcome some of the difficulties encountered in the classic Fourier transform technique and can achieve higher computation accuracy.
基金the financial support of the Excellent Youth Foundation of Shandong Scientific Committee(Grant no.JQ201512)the National Natural Science Foundation of China(Grant nos.51279188+1 种基金5147918451522906)
文摘For modal parameter estimation of offshore structures, one has to deal with two challenges: 1) identify the interested frequencies, and 2) reduce the number of false modes. In this article, we propose an improved method of modal parameter estimation by reconstructing a new signal only with interested frequencies. The approach consists of three steps: 1) isolation and reconstruction of interested frequencies using FFT filtering, 2) smoothness of reconstructed signals, and 3) extraction of interested modal parameters in time domain. The theoretical improvement is that the frequency response function(FRF) of filtered signals is smoothed based on singular value decomposition technique. The elimination of false modes is realized by reconstructing a block data matrix of the eigensystem realization algorithm(ERA) using the filtered and smoothed signals. The advantage is that the efficiency of the identification process of modal parameters will be improved greatly without introducing any false modes. A five-DOF mass-spring system is chosen to illustrate the procedure and demonstrate the performance of the proposed scheme. Numerical results indicate that interested frequencies can be isolated successfully using FFT filtering, and unexpected peaks in auto spectral density can be removed effectively. In addition, interested modal parameters, such as frequencies and damping ratios, can be identified properly by reconstructing the Hankel matrix with a small dimension of ERA, even the original signal has measurement noises.
基金National Natural Science Foundation of China ( No.19972 0 16 )
文摘On Line Parameter Identification Technique (OLPIT) was presented according to ambient excitation characteristics and the response cross-correlation function that is a sum of decaying sinusoids of the same form as the impulse response function of the original system. OLPIT is a new method of identification modal parameters from response of structures under ambient excitation. OLPIT is different from NExT (natural excitation technique) based on ITD method in four aspects: ① The algorithm is improved by the singular-value decomposition (SVD). ② Multi-value of b r in the Ibrahim Time Domain (ITD) is avoided. ③ OLPIT is used in both SIMO (single input, multi-output) and MIMO (multi input, multi-output). ④ The precision of modal parameter identificatioin is improved. The simulation studies demonstrate that the method is effective in identifying complex modes even with close frequencies and is robust to measurement noise.
文摘Sensitivity analysis is one of the effective methods in the dynamic modification. The sensitivity of the modal parameters such as the natural frequencies and mode shapes in undamped free vibration of mechanical transmission system is analyzed in this paper.In particular,the sensitivities of the modal parameters to physical parameters of shaft system such as the inertia and stiffness are given.A calculation formula for dynamic modification is presented based on the analysis of modal parameter.With a mechanical transmission system as an example, the sensitivities of natural frequencies and modes shape are calculated and analyzed. Furthermore, the dynamic modification is also carried out and a good result is obtained.