In this paper, a filtering method is presented to estimate time-varying parameters of a missile dual control system with tail fins and reaction jets as control variables. In this method, the long-short-term memory(LST...In this paper, a filtering method is presented to estimate time-varying parameters of a missile dual control system with tail fins and reaction jets as control variables. In this method, the long-short-term memory(LSTM) neural network is nested into the extended Kalman filter(EKF) to modify the Kalman gain such that the filtering performance is improved in the presence of large model uncertainties. To avoid the unstable network output caused by the abrupt changes of system states,an adaptive correction factor is introduced to correct the network output online. In the process of training the network, a multi-gradient descent learning mode is proposed to better fit the internal state of the system, and a rolling training is used to implement an online prediction logic. Based on the Lyapunov second method, we discuss the stability of the system, the result shows that when the training error of neural network is sufficiently small, the system is asymptotically stable. With its application to the estimation of time-varying parameters of a missile dual control system, the LSTM-EKF shows better filtering performance than the EKF and adaptive EKF(AEKF) when there exist large uncertainties in the system model.展开更多
A new method of parameter identification based on linear time-frequencyrepresentation and Hubert transform is proposed to identity modal parameters of linear time-varyingsystems from measured vibration responses. Usin...A new method of parameter identification based on linear time-frequencyrepresentation and Hubert transform is proposed to identity modal parameters of linear time-varyingsystems from measured vibration responses. Using Gabor expansion and synthesis theory, measuredresponses are represented in the time-frequency domain and modal components are reconstructed bytime-frequency filtering. The Hilbert transform is applied to obtain time histories of the amplitudeand phase angle of each modal component, from which time-varying frequencies and damping ratios areidentified. The proposed method has been demonstrated with a numerical example in which a lineartime-varying system of two degrees of freedom is used to validate the identification scheme based ontime-frequency representation. Simulation results have indicated that time-frequency representationpresents an effective tool for modal parameter identification of time-varying systems.展开更多
This paper investigates adaptive containment control for a class of fractional-order multi-agent systems(FOMASs)with time-varying parameters and disturbances.By using the bounded estimation method,the difficulty gener...This paper investigates adaptive containment control for a class of fractional-order multi-agent systems(FOMASs)with time-varying parameters and disturbances.By using the bounded estimation method,the difficulty generated by the timevarying parameters and disturbances is overcome.The command filter is introduced to solve the complexity problem inherent in adaptive backstepping control.Meanwhile,in order to eliminate the effect of filter errors,a novel distributed error compensating scheme is constructed,in which only the local information from the neighbor agents is utilized.Then,a distributed adaptive containment control scheme for FOMASs is developed based on backstepping to guarantee that the outputs of all the followers are steered to the convex hull spanned by the leaders.Based on the extension of Barbalat's lemma to fractional-order integrals,it can be proven that the containment errors and the compensating signals have asymptotic convergence.Finally,three simulation examples are given to show the feasibility and effectiveness of the proposed control method.展开更多
A time-varying modal parameter identification method combined with Bayesian information criterion(BIC)and grey correlation analysis(GCA)is presented for a kind of thermo-elastic structures with sparse natural frequenc...A time-varying modal parameter identification method combined with Bayesian information criterion(BIC)and grey correlation analysis(GCA)is presented for a kind of thermo-elastic structures with sparse natural frequencies and subject to an unsteady temperature field.To demonstrate the method,the thermo-elastic structure to be identified is taken as a simply-supported beam with an axially movable boundary and subject to both random excitation and an unsteady temperature field,and the dynamic outputs of the beam are first simulated as the measured data for the identification.Then,an improved time-varying autoregressive(TVAR)model is generated from the simulated input and output of the system.The time-varying coefficients of the TVAR model are expanded as a finite set of time basis functions that facilitate the time-varying coefficients to be time-invariant.According to the BIC for preliminarily determining the scope of the order number,the grey system theory is introduced to determine the order of TVAR and the dimension of the basis functions simultaneously via the absolute grey correlation degree(AGCD).Finally,the time-varying instantaneous frequencies of the system are estimated by using the recursive least squares method.The identified results are capable of tracking the slow time-varying natural frequencies with high accuracy no matter for noise-free or noisy estimation.展开更多
Transmission line is a vital part of the power system that connects two major points,the generation,and the distribution.For an efficient design,stable control,and steady operation of the power system,adequate knowled...Transmission line is a vital part of the power system that connects two major points,the generation,and the distribution.For an efficient design,stable control,and steady operation of the power system,adequate knowledge of the transmission line parameters resistance,inductance,capacitance,and conductance is of great importance.These parameters are essential for transmission network expansion planning in which a new parallel line is needed to be installed due to increased load demand or the overhead line is replaced with an underground cable.This paper presents a method to optimally estimate the parameters using the input-output quantities i.e.,voltages,currents,and power factor of the transmission line.The equivalentπ-network model is used and the terminal data i.e.,sending-end and receiving-end quantities are assumed as available measured data.The parameter estimation problem is converted to an optimization problem by formulating an error-minimizing objective function.An improved particle swarm optimization(PSO)in terms of time-varying control parameters and chaos-based initialization is used to optimally estimate the line parameters.Two cases are considered for parameter estimation,the first case is when the line conductance is neglected and in the second case,the conductance is considered into account.The results obtained by the improved algorithm are compared with the standard version of the algorithm,firefly algorithm and artificial bee colony algorithm for 30 number of trials.It is concluded that the improved algorithm is tremendously sufficient in estimating the line parameters in both cases validated by low error values and statistical analysis,comparatively.展开更多
Technical stability:allowing quantitative estimation of trajectory behavior of a dynamical system over a given time interval was considered. Based on a differential comparison principle and a basic monotonicity condit...Technical stability:allowing quantitative estimation of trajectory behavior of a dynamical system over a given time interval was considered. Based on a differential comparison principle and a basic monotonicity condition, technical stability relative to certain prescribed state constraint sets of a class of nonlinear time-varying systems with small parameters was analyzed by means of vector Liapunov function method. Explicit criteria of technical stability are established in terms of coefficients of the system under consideration. Conditions under which the technical stability of the system can be derived from its reduced linear time-varying (LTV) system were further examined, as well as a condition for linearization approach to technical stability of general nonlinear systems. Also, a simple algebraic condition of exponential asymptotic stability of LTV systems is presented. Two illustrative examples are given to demonstrate the availability of the presently proposed method.展开更多
To identify the model structure parameters in shaking table tests from seismic response, especially from time- varying response records, this paper presents a new methodology by combining the online recursive Adaptive...To identify the model structure parameters in shaking table tests from seismic response, especially from time- varying response records, this paper presents a new methodology by combining the online recursive Adaptive Forgetting through Multiple Models (AFMM) and offtine Auto-Regression with eXogenous variables (ARX) model. First, the AFMM is employed to detect whether the response of model structure is time-invariant or time-varying when subjected to strong motions. Second, if the response is time-invariant, the modal parameters are identified from the entire response record, such as the acceleration time-history using the ARX model. If the response is time-varying, the acceleration record is divided into three segments according to the accurate time-varying points detected by AFMM, and parameters are identified by only using the tail segment data, which is time-invariant and suited for analysis by the ARX model. Finally, the changes in dynamic properties due to various strong motions are obtained using the presented methodology. The feasibility and advantages of the method are demonstrated by identifying the modal parameters of a 12-story reinforced concrete (RC) frame structure in a shaking table test.展开更多
This paper introduces an adaptive procedure for the problem of synchronization and parameter identification for chaotic networks with time-varying delay by combining adaptive control and linear feedback. In particular...This paper introduces an adaptive procedure for the problem of synchronization and parameter identification for chaotic networks with time-varying delay by combining adaptive control and linear feedback. In particular, we consider that the equations xi(t) (for i = r+ 1, r+2,... ,n) can be expressed by the former xi(t) (for i=1,2,...,r), which is not the same as the previous equation. This approach is also able to track changes in the operating parameters of chaotic networks rapidly and the speed of synchronization and parameter estimation can be adjusted. In addition, this method is quite robust against the effect of slight noise and the estimated value of a parameter fluctuates around the correct value.展开更多
In this paper, we have improved delay-dependent stability criteria for recurrent neural networks with a delay varying over a range and Markovian jumping parameters. The criteria improve over some previous ones in that...In this paper, we have improved delay-dependent stability criteria for recurrent neural networks with a delay varying over a range and Markovian jumping parameters. The criteria improve over some previous ones in that they have fewer matrix variables yet less conservatism. In addition, a numerical example is provided to illustrate the applicability of the result using the linear matrix inequality toolbox in MATLAB.展开更多
Typically,a computer has infectivity as soon as it is infected.It is a reality that no antivirus programming can identify and eliminate all kinds of viruses,suggesting that infections would persevere on the Internet.T...Typically,a computer has infectivity as soon as it is infected.It is a reality that no antivirus programming can identify and eliminate all kinds of viruses,suggesting that infections would persevere on the Internet.To understand the dynamics of the virus propagation in a better way,a computer virus spread model with fuzzy parameters is presented in this work.It is assumed that all infected computers do not have the same contribution to the virus transmission process and each computer has a different degree of infectivity,which depends on the quantity of virus.Considering this,the parametersβandγbeing functions of the computer virus load,are considered fuzzy numbers.Using fuzzy theory helps us understand the spread of computer viruses more realistically as these parameters have fixed values in classical models.The essential features of the model,like reproduction number and equilibrium analysis,are discussed in fuzzy senses.Moreover,with fuzziness,two numerical methods,the forward Euler technique,and a nonstandard finite difference(NSFD)scheme,respectively,are developed and analyzed.In the evidence of the numerical simulations,the proposed NSFD method preserves the main features of the dynamic system.It can be considered a reliable tool to predict such types of solutions.展开更多
Fuzziness or uncertainties arise due to insufficient knowledge,experimental errors,operating conditions and parameters that provide inaccurate information.The concepts of susceptible,infectious and recovered are uncer...Fuzziness or uncertainties arise due to insufficient knowledge,experimental errors,operating conditions and parameters that provide inaccurate information.The concepts of susceptible,infectious and recovered are uncertain due to the different degrees in susceptibility,infectivity and recovery among the individuals of the population.The differences can arise,when the population groups under the consideration having distinct habits,customs and different age groups have different degrees of resistance,etc.More realistic models are needed which consider these different degrees of susceptibility infectivity and recovery of the individuals.In this paper,a Susceptible,Infected and Recovered(SIR)epidemic model with fuzzy parameters is discussed.The infection,recovery and death rates due to the disease are considered as fuzzy numbers.Fuzzy basic reproduction number and fuzzy equilibrium points have been derived for the studied model.Themodel is then solved numerically with three different techniques,forward Euler,Runge-Kutta fourth order method(RK-4)and the nonstandard finite difference(NSFD)methods respectively.The NSFD technique becomes more efficient and reliable among the others and preserves all the essential features of a continuous dynamical system.展开更多
This article focuses on asymptotic precision motion control for electro-hydraulic axis systems under unknown time-variant parameters,mismatched and matched disturbances.Different from the traditional adaptive results ...This article focuses on asymptotic precision motion control for electro-hydraulic axis systems under unknown time-variant parameters,mismatched and matched disturbances.Different from the traditional adaptive results that are applied to dispose of unknown constant parameters only,the unique feature is that an adaptive-gain nonlinear term is introduced into the control design to handle unknown time-variant parameters.Concurrently both mismatched and matched disturbances existing in electro-hydraulic axis systems can also be addressed in this way.With skillful integration of the backstepping technique and the adaptive control,a synthesized controller framework is successfully developed for electro-hydraulic axis systems,in which the coupled interaction between parameter estimation and disturbance estimation is avoided.Accordingly,this designed controller has the capacity of low-computation costs and simpler parameter tuning when compared to the other ones that integrate the adaptive control and observer/estimator-based technique to dividually handle parameter uncertainties and disturbances.Also,a nonlinear filter is designed to eliminate the“explosion of complexity”issue existing in the classical back-stepping technique.The stability analysis uncovers that all the closed-loop signals are bounded and the asymptotic tracking performance is also assured.Finally,contrastive experiment results validate the superiority of the developed method as well.展开更多
We consider state and parameter estimation for compartmental models having both timevarying and time-invariant parameters.In this manuscript,we first detail a general Bayesian computational framework as a continuation...We consider state and parameter estimation for compartmental models having both timevarying and time-invariant parameters.In this manuscript,we first detail a general Bayesian computational framework as a continuation of our previous work.Subsequently,this framework is specifically tailored to the susceptible-infectious-removed(SIR)model which describes a basic mechanism for the spread of infectious diseases through a system of coupled nonlinear differential equations.The SIR model consists of three states,namely,the susceptible,infectious,and removed compartments.The coupling among these states is controlled by two parameters,the infection rate and the recovery rate.The simplicity of the SIR model and similar compartmental models make them applicable to many classes of infectious diseases.However,the combined assumption of a deterministic model and time-invariance among the model parameters are two significant impediments which critically limit their use for long-term predictions.The tendency of certain model parameters to vary in time due to seasonal trends,non-pharmaceutical interventions,and other random effects necessitates a model that structurally permits the incorporation of such time-varying effects.Complementary to this,is the need for a robust mechanism for the estimation of the parameters of the resulting model from data.To this end,we consider an augmented state vector,which appends the time-varying parameters to the original system states whereby the time evolution of the time-varying parameters are driven by an artificial noise process in a standard manner.Distinguishing between time-varying and time-invariant parameters in this fashion limits the introduction of artificial dynamics into the system,and provides a robust,fully Bayesian approach for estimating the timeinvariant system parameters as well as the elements of the process noise covariance matrix.This computational framework is implemented by leveraging the robustness of the Markov chain Monte Carlo algorithm permits the estimation of time-invariant parameters while nested nonlinear filters concurrently perform the joint estimation of the system states and time-varying parameters.We demonstrate performance of the framework by first considering a series of examples using synthetic data,followed by an exposition on public health data collected in the province of Ontario.展开更多
This paper deals with the fixed-time adaptive time-varying matrix projective synchronization(ATVMPS)of different dimensional chaotic systems(DDCSs)with time delays and unknown parameters.Firstly,to estimate the unknow...This paper deals with the fixed-time adaptive time-varying matrix projective synchronization(ATVMPS)of different dimensional chaotic systems(DDCSs)with time delays and unknown parameters.Firstly,to estimate the unknown parameters,adaptive parameter updated laws are designed.Secondly,to realize the fixed-time ATVMPS of the time-delayed DDCSs,an adaptive delay-unrelated controller is designed,where time delays of chaotic systems are known or unknown.Thirdly,some simple fixed-time ATVMPS criteria are deduced,and the rigorous proof is provided by employing the inequality technique and Lyapunov theory.Furthermore,the settling time of fixed-time synchronization(Fix-TS)is obtained,which depends only on controller parameters and system parameters and is independent of the system’s initial states.Finally,simulation examples are presented to validate the theoretical analysis.展开更多
The time-varying autoregressive (TVAR) modeling of a non-stationary signal is studied. In the proposed method, time-varying parametric identification of a non-stationary signal can be translated into a linear time-i...The time-varying autoregressive (TVAR) modeling of a non-stationary signal is studied. In the proposed method, time-varying parametric identification of a non-stationary signal can be translated into a linear time-invariant problem by introducing a set of basic functions. Then, the parameters are estimated by using a recursive least square algorithm with a forgetting factor and an adaptive time-frequency distribution is achieved. The simulation results show that the proposed approach is superior to the short-time Fourier transform and Wigner distribution. And finally, the proposed method is applied to the fault diagnosis of a bearing , and the experiment result shows that the proposed method is effective in feature extraction.展开更多
文摘In this paper, a filtering method is presented to estimate time-varying parameters of a missile dual control system with tail fins and reaction jets as control variables. In this method, the long-short-term memory(LSTM) neural network is nested into the extended Kalman filter(EKF) to modify the Kalman gain such that the filtering performance is improved in the presence of large model uncertainties. To avoid the unstable network output caused by the abrupt changes of system states,an adaptive correction factor is introduced to correct the network output online. In the process of training the network, a multi-gradient descent learning mode is proposed to better fit the internal state of the system, and a rolling training is used to implement an online prediction logic. Based on the Lyapunov second method, we discuss the stability of the system, the result shows that when the training error of neural network is sufficiently small, the system is asymptotically stable. With its application to the estimation of time-varying parameters of a missile dual control system, the LSTM-EKF shows better filtering performance than the EKF and adaptive EKF(AEKF) when there exist large uncertainties in the system model.
基金Automobile Industrial Science Foundation of Shanghai (No.2000187)
文摘A new method of parameter identification based on linear time-frequencyrepresentation and Hubert transform is proposed to identity modal parameters of linear time-varyingsystems from measured vibration responses. Using Gabor expansion and synthesis theory, measuredresponses are represented in the time-frequency domain and modal components are reconstructed bytime-frequency filtering. The Hilbert transform is applied to obtain time histories of the amplitudeand phase angle of each modal component, from which time-varying frequencies and damping ratios areidentified. The proposed method has been demonstrated with a numerical example in which a lineartime-varying system of two degrees of freedom is used to validate the identification scheme based ontime-frequency representation. Simulation results have indicated that time-frequency representationpresents an effective tool for modal parameter identification of time-varying systems.
基金National Key R&D Program of China(2018YFA0702200)National Natural Science Foundation of China(61627809,62173080)Liaoning Revitalization Talents Program(XLYC1801005)。
文摘This paper investigates adaptive containment control for a class of fractional-order multi-agent systems(FOMASs)with time-varying parameters and disturbances.By using the bounded estimation method,the difficulty generated by the timevarying parameters and disturbances is overcome.The command filter is introduced to solve the complexity problem inherent in adaptive backstepping control.Meanwhile,in order to eliminate the effect of filter errors,a novel distributed error compensating scheme is constructed,in which only the local information from the neighbor agents is utilized.Then,a distributed adaptive containment control scheme for FOMASs is developed based on backstepping to guarantee that the outputs of all the followers are steered to the convex hull spanned by the leaders.Based on the extension of Barbalat's lemma to fractional-order integrals,it can be proven that the containment errors and the compensating signals have asymptotic convergence.Finally,three simulation examples are given to show the feasibility and effectiveness of the proposed control method.
基金Supported by the National Natural Science Foundation of China(91216103)the Funding of Jiangsu Innovation Program for Graduate Education(CXLX13_130)+1 种基金the Fundamental Research Funds for the Central Universitiesthe Priority Academic Program Development of Jiangsu Higher Education Institutions
文摘A time-varying modal parameter identification method combined with Bayesian information criterion(BIC)and grey correlation analysis(GCA)is presented for a kind of thermo-elastic structures with sparse natural frequencies and subject to an unsteady temperature field.To demonstrate the method,the thermo-elastic structure to be identified is taken as a simply-supported beam with an axially movable boundary and subject to both random excitation and an unsteady temperature field,and the dynamic outputs of the beam are first simulated as the measured data for the identification.Then,an improved time-varying autoregressive(TVAR)model is generated from the simulated input and output of the system.The time-varying coefficients of the TVAR model are expanded as a finite set of time basis functions that facilitate the time-varying coefficients to be time-invariant.According to the BIC for preliminarily determining the scope of the order number,the grey system theory is introduced to determine the order of TVAR and the dimension of the basis functions simultaneously via the absolute grey correlation degree(AGCD).Finally,the time-varying instantaneous frequencies of the system are estimated by using the recursive least squares method.The identified results are capable of tracking the slow time-varying natural frequencies with high accuracy no matter for noise-free or noisy estimation.
文摘Transmission line is a vital part of the power system that connects two major points,the generation,and the distribution.For an efficient design,stable control,and steady operation of the power system,adequate knowledge of the transmission line parameters resistance,inductance,capacitance,and conductance is of great importance.These parameters are essential for transmission network expansion planning in which a new parallel line is needed to be installed due to increased load demand or the overhead line is replaced with an underground cable.This paper presents a method to optimally estimate the parameters using the input-output quantities i.e.,voltages,currents,and power factor of the transmission line.The equivalentπ-network model is used and the terminal data i.e.,sending-end and receiving-end quantities are assumed as available measured data.The parameter estimation problem is converted to an optimization problem by formulating an error-minimizing objective function.An improved particle swarm optimization(PSO)in terms of time-varying control parameters and chaos-based initialization is used to optimally estimate the line parameters.Two cases are considered for parameter estimation,the first case is when the line conductance is neglected and in the second case,the conductance is considered into account.The results obtained by the improved algorithm are compared with the standard version of the algorithm,firefly algorithm and artificial bee colony algorithm for 30 number of trials.It is concluded that the improved algorithm is tremendously sufficient in estimating the line parameters in both cases validated by low error values and statistical analysis,comparatively.
文摘Technical stability:allowing quantitative estimation of trajectory behavior of a dynamical system over a given time interval was considered. Based on a differential comparison principle and a basic monotonicity condition, technical stability relative to certain prescribed state constraint sets of a class of nonlinear time-varying systems with small parameters was analyzed by means of vector Liapunov function method. Explicit criteria of technical stability are established in terms of coefficients of the system under consideration. Conditions under which the technical stability of the system can be derived from its reduced linear time-varying (LTV) system were further examined, as well as a condition for linearization approach to technical stability of general nonlinear systems. Also, a simple algebraic condition of exponential asymptotic stability of LTV systems is presented. Two illustrative examples are given to demonstrate the availability of the presently proposed method.
基金Basic Science&Research Foundation of IEM,CEA under Grant No.2013B07International Science&Technology Cooperation Program of China under Grant No.2012DFA70810Natural Science Foundation of China under Grant No.50908216
文摘To identify the model structure parameters in shaking table tests from seismic response, especially from time- varying response records, this paper presents a new methodology by combining the online recursive Adaptive Forgetting through Multiple Models (AFMM) and offtine Auto-Regression with eXogenous variables (ARX) model. First, the AFMM is employed to detect whether the response of model structure is time-invariant or time-varying when subjected to strong motions. Second, if the response is time-invariant, the modal parameters are identified from the entire response record, such as the acceleration time-history using the ARX model. If the response is time-varying, the acceleration record is divided into three segments according to the accurate time-varying points detected by AFMM, and parameters are identified by only using the tail segment data, which is time-invariant and suited for analysis by the ARX model. Finally, the changes in dynamic properties due to various strong motions are obtained using the presented methodology. The feasibility and advantages of the method are demonstrated by identifying the modal parameters of a 12-story reinforced concrete (RC) frame structure in a shaking table test.
基金Project supported by the National Natural Science Foundation of China (Grant Nos.70571030 and 90610031)the Social Science Foundation from Ministry of Education of China (Grant No.08JA790057)the Advanced Talents' Foundation and Student's Foundation of Jiangsu University (Grant Nos.07JDG054 and 07A075)
文摘This paper introduces an adaptive procedure for the problem of synchronization and parameter identification for chaotic networks with time-varying delay by combining adaptive control and linear feedback. In particular, we consider that the equations xi(t) (for i = r+ 1, r+2,... ,n) can be expressed by the former xi(t) (for i=1,2,...,r), which is not the same as the previous equation. This approach is also able to track changes in the operating parameters of chaotic networks rapidly and the speed of synchronization and parameter estimation can be adjusted. In addition, this method is quite robust against the effect of slight noise and the estimated value of a parameter fluctuates around the correct value.
基金Project supported by the National Natural Science Foundation of China (Grant No.60674026)the Jiangsu Provincial Natural Science Foundation of China (Grant No.BK2007016)
文摘In this paper, we have improved delay-dependent stability criteria for recurrent neural networks with a delay varying over a range and Markovian jumping parameters. The criteria improve over some previous ones in that they have fewer matrix variables yet less conservatism. In addition, a numerical example is provided to illustrate the applicability of the result using the linear matrix inequality toolbox in MATLAB.
文摘Typically,a computer has infectivity as soon as it is infected.It is a reality that no antivirus programming can identify and eliminate all kinds of viruses,suggesting that infections would persevere on the Internet.To understand the dynamics of the virus propagation in a better way,a computer virus spread model with fuzzy parameters is presented in this work.It is assumed that all infected computers do not have the same contribution to the virus transmission process and each computer has a different degree of infectivity,which depends on the quantity of virus.Considering this,the parametersβandγbeing functions of the computer virus load,are considered fuzzy numbers.Using fuzzy theory helps us understand the spread of computer viruses more realistically as these parameters have fixed values in classical models.The essential features of the model,like reproduction number and equilibrium analysis,are discussed in fuzzy senses.Moreover,with fuzziness,two numerical methods,the forward Euler technique,and a nonstandard finite difference(NSFD)scheme,respectively,are developed and analyzed.In the evidence of the numerical simulations,the proposed NSFD method preserves the main features of the dynamic system.It can be considered a reliable tool to predict such types of solutions.
基金The authors express their gratitude to Princess Nourah bint Abdulrahman University Researchers Supporting Project(Grant No.PNURSP2022R55),Princess Nourah bint Abdulrahman University,Riyadh,Saudi Arabia.
文摘Fuzziness or uncertainties arise due to insufficient knowledge,experimental errors,operating conditions and parameters that provide inaccurate information.The concepts of susceptible,infectious and recovered are uncertain due to the different degrees in susceptibility,infectivity and recovery among the individuals of the population.The differences can arise,when the population groups under the consideration having distinct habits,customs and different age groups have different degrees of resistance,etc.More realistic models are needed which consider these different degrees of susceptibility infectivity and recovery of the individuals.In this paper,a Susceptible,Infected and Recovered(SIR)epidemic model with fuzzy parameters is discussed.The infection,recovery and death rates due to the disease are considered as fuzzy numbers.Fuzzy basic reproduction number and fuzzy equilibrium points have been derived for the studied model.Themodel is then solved numerically with three different techniques,forward Euler,Runge-Kutta fourth order method(RK-4)and the nonstandard finite difference(NSFD)methods respectively.The NSFD technique becomes more efficient and reliable among the others and preserves all the essential features of a continuous dynamical system.
基金supported in part by the National Key R&D Program of China(No.2021YFB2011300)the National Natural Science Foundation of China(No.52075262,51905271,52275062)+1 种基金the Fok Ying-Tong Education Foundation of China(No.171044)the Postgraduate Research&Practice Innovation Program of Jiangsu Province(No.KYCX22_0471)。
文摘This article focuses on asymptotic precision motion control for electro-hydraulic axis systems under unknown time-variant parameters,mismatched and matched disturbances.Different from the traditional adaptive results that are applied to dispose of unknown constant parameters only,the unique feature is that an adaptive-gain nonlinear term is introduced into the control design to handle unknown time-variant parameters.Concurrently both mismatched and matched disturbances existing in electro-hydraulic axis systems can also be addressed in this way.With skillful integration of the backstepping technique and the adaptive control,a synthesized controller framework is successfully developed for electro-hydraulic axis systems,in which the coupled interaction between parameter estimation and disturbance estimation is avoided.Accordingly,this designed controller has the capacity of low-computation costs and simpler parameter tuning when compared to the other ones that integrate the adaptive control and observer/estimator-based technique to dividually handle parameter uncertainties and disturbances.Also,a nonlinear filter is designed to eliminate the“explosion of complexity”issue existing in the classical back-stepping technique.The stability analysis uncovers that all the closed-loop signals are bounded and the asymptotic tracking performance is also assured.Finally,contrastive experiment results validate the superiority of the developed method as well.
基金the funding from the New Frontiers in Research Fund(NFRF)2022 Special Call e Research for Postpandemic Recovery(Grant no:NFRFR-2022-00395).
文摘We consider state and parameter estimation for compartmental models having both timevarying and time-invariant parameters.In this manuscript,we first detail a general Bayesian computational framework as a continuation of our previous work.Subsequently,this framework is specifically tailored to the susceptible-infectious-removed(SIR)model which describes a basic mechanism for the spread of infectious diseases through a system of coupled nonlinear differential equations.The SIR model consists of three states,namely,the susceptible,infectious,and removed compartments.The coupling among these states is controlled by two parameters,the infection rate and the recovery rate.The simplicity of the SIR model and similar compartmental models make them applicable to many classes of infectious diseases.However,the combined assumption of a deterministic model and time-invariance among the model parameters are two significant impediments which critically limit their use for long-term predictions.The tendency of certain model parameters to vary in time due to seasonal trends,non-pharmaceutical interventions,and other random effects necessitates a model that structurally permits the incorporation of such time-varying effects.Complementary to this,is the need for a robust mechanism for the estimation of the parameters of the resulting model from data.To this end,we consider an augmented state vector,which appends the time-varying parameters to the original system states whereby the time evolution of the time-varying parameters are driven by an artificial noise process in a standard manner.Distinguishing between time-varying and time-invariant parameters in this fashion limits the introduction of artificial dynamics into the system,and provides a robust,fully Bayesian approach for estimating the timeinvariant system parameters as well as the elements of the process noise covariance matrix.This computational framework is implemented by leveraging the robustness of the Markov chain Monte Carlo algorithm permits the estimation of time-invariant parameters while nested nonlinear filters concurrently perform the joint estimation of the system states and time-varying parameters.We demonstrate performance of the framework by first considering a series of examples using synthetic data,followed by an exposition on public health data collected in the province of Ontario.
基金supported by the National Natural Science Foundation of China under Grant 61977004.This support is gratefully acknowledged.
文摘This paper deals with the fixed-time adaptive time-varying matrix projective synchronization(ATVMPS)of different dimensional chaotic systems(DDCSs)with time delays and unknown parameters.Firstly,to estimate the unknown parameters,adaptive parameter updated laws are designed.Secondly,to realize the fixed-time ATVMPS of the time-delayed DDCSs,an adaptive delay-unrelated controller is designed,where time delays of chaotic systems are known or unknown.Thirdly,some simple fixed-time ATVMPS criteria are deduced,and the rigorous proof is provided by employing the inequality technique and Lyapunov theory.Furthermore,the settling time of fixed-time synchronization(Fix-TS)is obtained,which depends only on controller parameters and system parameters and is independent of the system’s initial states.Finally,simulation examples are presented to validate the theoretical analysis.
基金This paper is supported by National Natural Science Foundation of China under Grant No.50675209 InnovationFund for Outstanding Scholar of Henan Province under Grant No. 0621000500
文摘The time-varying autoregressive (TVAR) modeling of a non-stationary signal is studied. In the proposed method, time-varying parametric identification of a non-stationary signal can be translated into a linear time-invariant problem by introducing a set of basic functions. Then, the parameters are estimated by using a recursive least square algorithm with a forgetting factor and an adaptive time-frequency distribution is achieved. The simulation results show that the proposed approach is superior to the short-time Fourier transform and Wigner distribution. And finally, the proposed method is applied to the fault diagnosis of a bearing , and the experiment result shows that the proposed method is effective in feature extraction.