Forecasting solar irradiance is a critical task in the renewable energy sector, as it provides essential information regarding the potential energy production from solar panels. This study aims to utilize the Vector A...Forecasting solar irradiance is a critical task in the renewable energy sector, as it provides essential information regarding the potential energy production from solar panels. This study aims to utilize the Vector Autoregression (VAR) model to forecast solar irradiance levels and weather characteristics in the San Francisco Bay Area. The results demonstrate a correlation between predicted and actual solar irradiance, indicating the effectiveness of the VAR model for this task. However, the model may not be sufficient for this region due to the requirement of additional weather features to reduce disparities between predictions and actual observations. Additionally, the current lag order in the model is relatively low, limiting its ability to capture all relevant information from past observations. As a result, the model’s forecasting capability is limited to short-term horizons, with a maximum horizon of four hours.展开更多
The time-varying autoregressive (TVAR) modeling of a non-stationary signal is studied. In the proposed method, time-varying parametric identification of a non-stationary signal can be translated into a linear time-i...The time-varying autoregressive (TVAR) modeling of a non-stationary signal is studied. In the proposed method, time-varying parametric identification of a non-stationary signal can be translated into a linear time-invariant problem by introducing a set of basic functions. Then, the parameters are estimated by using a recursive least square algorithm with a forgetting factor and an adaptive time-frequency distribution is achieved. The simulation results show that the proposed approach is superior to the short-time Fourier transform and Wigner distribution. And finally, the proposed method is applied to the fault diagnosis of a bearing , and the experiment result shows that the proposed method is effective in feature extraction.展开更多
文摘Forecasting solar irradiance is a critical task in the renewable energy sector, as it provides essential information regarding the potential energy production from solar panels. This study aims to utilize the Vector Autoregression (VAR) model to forecast solar irradiance levels and weather characteristics in the San Francisco Bay Area. The results demonstrate a correlation between predicted and actual solar irradiance, indicating the effectiveness of the VAR model for this task. However, the model may not be sufficient for this region due to the requirement of additional weather features to reduce disparities between predictions and actual observations. Additionally, the current lag order in the model is relatively low, limiting its ability to capture all relevant information from past observations. As a result, the model’s forecasting capability is limited to short-term horizons, with a maximum horizon of four hours.
基金This paper is supported by National Natural Science Foundation of China under Grant No.50675209 InnovationFund for Outstanding Scholar of Henan Province under Grant No. 0621000500
文摘The time-varying autoregressive (TVAR) modeling of a non-stationary signal is studied. In the proposed method, time-varying parametric identification of a non-stationary signal can be translated into a linear time-invariant problem by introducing a set of basic functions. Then, the parameters are estimated by using a recursive least square algorithm with a forgetting factor and an adaptive time-frequency distribution is achieved. The simulation results show that the proposed approach is superior to the short-time Fourier transform and Wigner distribution. And finally, the proposed method is applied to the fault diagnosis of a bearing , and the experiment result shows that the proposed method is effective in feature extraction.