期刊文献+
共找到436,464篇文章
< 1 2 250 >
每页显示 20 50 100
A Comparative Study of Nonlinear Time-Varying Process Modeling Techniques: Application to Chemical Reactor
1
作者 Errachdi Ayachi Saad Ihsen Benrejeb Mohamed 《Journal of Intelligent Learning Systems and Applications》 2012年第1期20-28,共9页
This paper proposes the design and a comparative study of two nonlinear systems modeling techniques. These two approaches are developed to address a class of nonlinear systems with time-varying parameter. The first is... This paper proposes the design and a comparative study of two nonlinear systems modeling techniques. These two approaches are developed to address a class of nonlinear systems with time-varying parameter. The first is a Radial Basis Function (RBF) neural networks and the second is a Multi Layer Perceptron (MLP). The MLP model consists of an input layer, an output layer and usually one or more hidden layers. However, training MLP network based on back propagation learning is computationally expensive. In this paper, an RBF network is called. The parameters of the RBF model are optimized by two methods: the Gradient Descent (GD) method and Genetic Algorithms (GA). However, the MLP model is optimized by the Gradient Descent method. The performance of both models are evaluated first by using a numerical simulation and second by handling a chemical process known as the Continuous Stirred Tank Reactor CSTR. It has been shown that in both validation operations the results were successful. The optimized RBF model by Genetic Algorithms gave the best results. 展开更多
关键词 Nonlinear SYSTEMS time-varying SYSTEMS Multi Layer PERCEPTRON RADIAL Basis Function Gradient DESCENT GENETIC Algorithms Optimization
下载PDF
Dendritic spine degeneration:a primary mechanism in the aging process
2
作者 Gonzalo Flores Leonardo Aguilar-Hernández +3 位作者 Fernado García-Dolores Humberto Nicolini Andrea Judith Vázquez-Hernández Hiram Tendilla-Beltrán 《Neural Regeneration Research》 SCIE CAS 2025年第6期1696-1698,共3页
Recent reports suggest that aging is not solely a physiological process in living beings;instead, it should be considered a pathological process or disease(Amorim et al., 2022). Consequently, this process involves a w... Recent reports suggest that aging is not solely a physiological process in living beings;instead, it should be considered a pathological process or disease(Amorim et al., 2022). Consequently, this process involves a wide range of factors, spanning from genetic to environmental factors, and even includes the gut microbiome(GM)(Mayer et al., 2022). All these processes coincide at some point in the inflammatory process, oxidative stress, and apoptosis, at different degrees in various organs and systems that constitute a living organism(Mayer et al., 2022;AguilarHernández et al., 2023). 展开更多
关键词 AGING process STRESS
下载PDF
An Unprecedented Efficiency with Approaching 21%Enabled by Additive‑Assisted Layer‑by‑Layer Processing in Organic Solar Cells
3
作者 Shuai Xu Youdi Zhang +6 位作者 Yanna Sun Pei Cheng Zhaoyang Yao Ning Li Long Ye Lijian Zuo Ke Gao 《Nano-Micro Letters》 SCIE EI CAS 2025年第2期372-375,共4页
Recently published in Joule,Feng Liu and colleagues from Shanghai Jiaotong University reported a record-breaking 20.8%power conversion efficiency in organic solar cells(OSCs)with an interpenetrating fibril network act... Recently published in Joule,Feng Liu and colleagues from Shanghai Jiaotong University reported a record-breaking 20.8%power conversion efficiency in organic solar cells(OSCs)with an interpenetrating fibril network active layer morphology,featuring a bulk p-in structure and proper vertical segregation achieved through additive-assisted layer-by-layer deposition.This optimized hierarchical gradient fibrillar morphology and optical management synergistically facilitates exciton diffusion,reduces recombination losses,and enhances light capture capability.This approach not only offers a solution to achieving high-efficiency devices but also demonstrates the potential for commercial applications of OSCs. 展开更多
关键词 Organic solar cells Additive-assisted layer-by-layer processing Three-dimensional fibril morphology Bulk p-i-n structure Optical management
下载PDF
基于Arduino与Processing的心率检测计设计研究 被引量:1
4
作者 臧红波 华拓 管志岳 《家电维修》 2024年第3期74-76,共3页
随着社会经济的高速发展,人们的物质生活也有了极大的提高,但同时也伴随着各种疾病的到来,身体健康已经成为人们普遍关注的焦点,因此,心率检测仪、血压计、血糖仪等各种家用医疗监测仪器已经逐渐融入日常生活。心脏病是人们难以预防的... 随着社会经济的高速发展,人们的物质生活也有了极大的提高,但同时也伴随着各种疾病的到来,身体健康已经成为人们普遍关注的焦点,因此,心率检测仪、血压计、血糖仪等各种家用医疗监测仪器已经逐渐融入日常生活。心脏病是人们难以预防的突发致命疾病之一,本文介绍的是一款基于Arduino【是基于易用硬件和软件的原型开源平台,包由可编程的电路板(简称微控制器),以及集成开发环境(称为Arduino IDE)的现成软件组成】Processing(开源编程语言,包括编辑器、编译器、展示器)的简易心率检测计系统,其功能实用、操作简单,可以测量心率,当超出正常心率范围时及时预警,是一款便携的实时心率测试仪。 展开更多
关键词 Arduino processing 心率检测计 设计研究
下载PDF
Optimal Iterative Learning Control for Batch Processes Based on Linear Time-varying Perturbation Model 被引量:9
5
作者 熊智华 ZHANG Jie 董进 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2008年第2期235-240,共6页
A batch-to-batch optimal iterative learning control (ILC) strategy for the tracking control of product quality in batch processes is presented. The linear time-varying perturbation (LTVP) model is built for produc... A batch-to-batch optimal iterative learning control (ILC) strategy for the tracking control of product quality in batch processes is presented. The linear time-varying perturbation (LTVP) model is built for product quality around the nominal trajectories. To address problems of model-plant mismatches, model prediction errors in the previous batch run are added to the model predictions for the current batch run. Then tracking error transition models can be built, and the ILC law with direct error feedback is explicitly obtained, A rigorous theorem is proposed, to prove the convergence of tracking error under ILC, The proposed methodology is illustrated on a typical batch reactor and the results show that the performance of trajectory tracking is gradually improved by the ILC. 展开更多
关键词 iterative learning control linear time-varying perturbation model batch process
下载PDF
Time-variant fragility analysis of the bridge system considering time-varying dependence among typical component seismic demands 被引量:7
6
作者 Song Shuai Qian Yongjiu +2 位作者 Liu Jing Xie Xiaorui Wu Gang 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2019年第2期363-377,共15页
This paper presents a copula technique to develop time-variant seismic fragility curves for corroded bridges at the system level and considers the realistic time-varying dependence among component seismic demands. Bas... This paper presents a copula technique to develop time-variant seismic fragility curves for corroded bridges at the system level and considers the realistic time-varying dependence among component seismic demands. Based on material deterioration mechanisms and incremental dynamic analysis, the time-evolving seismic demands of components were obtained in the form of marginal probability distributions. The time-varying dependences among bridge components were then captured with the best fitting copula function, which was selected from the commonly used copula classes by the empirical distribution based analysis method. The system time-variant fragility curves at different damage states were developed and the effects of time-varying dependences among components on the bridge system fragility were investigated. The results indicate the time-varying dependence among components significantly affects the time-variant fragility of the bridge system. The copula technique captures the nonlinear dependence among component seismic demands accurately and easily by separating the marginal distributions and the dependence among them. 展开更多
关键词 system FRAGILITY CHLORIDE corrosion time-varying DEPENDENCE COPULA function probabilistic seismic demand
下载PDF
Finite-time Prescribed Performance Time-Varying Formation Control for Second-Order Multi-Agent Systems With Non-Strict Feedback Based on a Neural Network Observer 被引量:1
7
作者 Chi Ma Dianbiao Dong 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2024年第4期1039-1050,共12页
This paper studies the problem of time-varying formation control with finite-time prescribed performance for nonstrict feedback second-order multi-agent systems with unmeasured states and unknown nonlinearities.To eli... This paper studies the problem of time-varying formation control with finite-time prescribed performance for nonstrict feedback second-order multi-agent systems with unmeasured states and unknown nonlinearities.To eliminate nonlinearities,neural networks are applied to approximate the inherent dynamics of the system.In addition,due to the limitations of the actual working conditions,each follower agent can only obtain the locally measurable partial state information of the leader agent.To address this problem,a neural network state observer based on the leader state information is designed.Then,a finite-time prescribed performance adaptive output feedback control strategy is proposed by restricting the sliding mode surface to a prescribed region,which ensures that the closed-loop system has practical finite-time stability and that formation errors of the multi-agent systems converge to the prescribed performance bound in finite time.Finally,a numerical simulation is provided to demonstrate the practicality and effectiveness of the developed algorithm. 展开更多
关键词 Finite-time control multi-agent systems neural network prescribed performance control time-varying formation control
下载PDF
Dynamic Portfolio Choice under Time-Varying,Jumps,and Knight Uncertainty of Asset Return Process
8
作者 何朝林 孟卫东 《Journal of Donghua University(English Edition)》 EI CAS 2010年第5期720-726,共7页
By introducing a stochastic element to the double-jump diffusion framework to measure the Knight uncertainty of asset return process,the model of dynamic portfolio choice was built,which maximized the expected utility... By introducing a stochastic element to the double-jump diffusion framework to measure the Knight uncertainty of asset return process,the model of dynamic portfolio choice was built,which maximized the expected utility of terminal portfolio wealth.Through specifying the state function of uncertainty-aversion,it utilized the max-min method to derive the analytical solution of the model to study the effect of time-varying,jumps,and Knight uncertainty of asset return process on dynamic portfolio choice and their interactions.Results of comparative analysis show:the time-varying results in positive or negative intertemporal hedging demand of portfolio,which depends on the coefficient of investor's risk aversion and the correlation coefficient between return shift and volatility shift;the jumps in asset return overall reduce investor's demand for the risky asset,which can be enhanced or weakened by the jumps in volatility;due to the existing of Knight uncertainty,the investor avoids taking large position on risky asset,and improves portfolio's steady and immunity;the effects of the time-varying,jumps,and Knight uncertainty are interactive. 展开更多
关键词 dynamic portfolio time-varying JUMPS Knight uncertainty
下载PDF
Constraints on Characteristics and Distribution of Gas Hydrate and Free Gas Using Broad-Band Processing of Three-Dimensional Seismic Data 被引量:2
9
作者 WANG Xiujuan ZHOU Jilin +7 位作者 LI Sanzhong LI Lixia LI Jie LI Yuanping WANG Linfei SU Pibo JIN Jiapeng GONG Zhi 《Journal of Ocean University of China》 SCIE CAS CSCD 2024年第5期1233-1247,共15页
Gas hydrate drilling expeditions in the Pearl River Mouth Basin,South China Sea,have identified concentrated gas hydrates with variable thickness.Moreover,free gas and the coexistence of gas hydrate and free gas have ... Gas hydrate drilling expeditions in the Pearl River Mouth Basin,South China Sea,have identified concentrated gas hydrates with variable thickness.Moreover,free gas and the coexistence of gas hydrate and free gas have been confirmed by logging,coring,and production tests in the foraminifera-rich silty sediments with complex bottom-simulating reflectors(BSRs).The broad-band processing is conducted on conventional three-dimensional(3D)seismic data to improve the image and detection accuracy of gas hydratebearing layers and delineate the saturation and thickness of gas hydrate-and free gas-bearing sediments.Several geophysical attributes extracted along the base of the gas hydrate stability zone are used to demonstrate the variable distribution and the controlling factors for the differential enrichment of gas hydrate.The inverted gas hydrate saturation at the production zone is over 40% with a thickness of 90 m,showing the interbedded distribution with different boundaries between gas hydrate-and free gas-bearing layers.However,the gas hydrate saturation value at the adjacent canyon is 70%,with 30-m-thick patches and linear features.The lithological and fault controls on gas hydrate and free gas distributions are demonstrated by tracing each gas hydrate-bearing layer.Moreover,the BSR depths based on broad-band reprocessed 3D seismic data not only exhibit variations due to small-scale topographic changes caused by seafloor sedimentation and erosion but also show the upward shift of BSR and the blocky distribution of the coexistence of gas hydrate and free gas in the Pearl River Mouth Basin. 展开更多
关键词 gas hydrate free gas shift of BSR broad-band processing
下载PDF
Design and optimization of a greener sinomenine hydrochloride preparation process considering variations among different batches of the medicinal herb 被引量:1
10
作者 Dandan Ren Jiale Xie +2 位作者 Tianle Chen Haibin Qu Xingchu Gong 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第7期77-90,共14页
The current methods used to industrially produce sinomenine hydrochloride involve several issues,including high solvent toxicity,long process flow,and low atomic utilization efficiency,and the greenness scores of the ... The current methods used to industrially produce sinomenine hydrochloride involve several issues,including high solvent toxicity,long process flow,and low atomic utilization efficiency,and the greenness scores of the processes are below 65 points.To solve these problems,a new process using anisole as the extractant was proposed.Anisole exhibits high selectivity for sinomenine and can be connected to the subsequent water-washing steps.After alkalization of the medicinal material,heating extraction,water washing,and acidification crystallization were carried out.The process was modeled and optimized.The design space was constructed.The recommended operating ranges for the critical process parameters were 3.0–4.0 h for alkalization time,60.0–80.0℃ for extraction temperature,2.0–3.0(volume ratio)for washing solution amount,and 2.0–2.4 mol·L^(-1) for hydrochloric acid concentration.The new process shows good robustness because different batches of medicinal materials did not greatly impact crystal purity or sinomenine transfer rate.The sinomenine transfer rate was about 20%higher than that of industrial processes.The greenness score increased to 90 points since the novel process proposed in this research solves the problems of long process flow,high solvent toxicity,and poor atomic economy,better aligning with the concept of green chemistry. 展开更多
关键词 Sinomenine hydrochloride process optimization ANISOLE
下载PDF
Investigation on taste characteristics and sensory perception of soft-boiled chicken during oral processing based on electronic tongue and electronic nose 被引量:1
11
作者 Na Xu Xianming Zeng +3 位作者 Peng Wang Xing Chen Xinglian Xu Minyi Han 《Food Science and Human Wellness》 SCIE CSCD 2024年第1期313-326,共14页
The sensory perception of food is a dynamic process,which is closely related to the release of flavor substances during oral processing.It’s not only affected by the food material,but also subjected to the individual... The sensory perception of food is a dynamic process,which is closely related to the release of flavor substances during oral processing.It’s not only affected by the food material,but also subjected to the individual oral environment.To explore the oral processing characteristics of soft-boiled chicken,the sensory properties,texture,particle size,viscosity,characteristic values of electronic nose and tongue of different chicken samples were investigated.The correlation analysis showed that the physical characteristics especially the cohesiveness,springiness,resilience of the sample determined oral processing behavior.The addition of chicken skin played a role in lubrication during oral processing.The particle size of the bolus was heightened at the early stage,and the fluidity was enhanced in the end,which reduced the chewing time to the swallowing point and raised the aromatic compounds signal of electronic nose.But the effect of chicken skin on chicken thigh with relatively high fat content,was opposite in electronic nose,which had a certain masking effect on the perception of umami and sweet taste.In conclusion,fat played a critical role in chicken oral processing and chicken thigh had obvious advantages in comprehensive evaluation of soft-boiled chicken,which was more popular among people. 展开更多
关键词 Oral processing CHICKEN Electronic tongue Electronic nose
下载PDF
Toluene Processed All-Polymer Solar Cells with 18%Efficiency and Enhanced Stability Enabled by Solid Additive:Comparison Between Sequential-Processing and Blend-Casting 被引量:1
12
作者 Guoping Zhang Chaoyue Zhao +13 位作者 Liangxiang Zhu Lihong Wang Wenzhao Xiong Huawei Hu Qing Bai Yaping Wang Chen Xie Peng You He Yan Dan Wu Tao Yang Mingxia Qiu Shunpu Li Guangye Zhang 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2024年第4期247-254,共8页
The emergence of polymerized small molecule acceptors(PSMAs)has significantly improved the performance of all-polymer solar cells(all-PSCs).However,the pace of device engineering lacks behind that of materials develop... The emergence of polymerized small molecule acceptors(PSMAs)has significantly improved the performance of all-polymer solar cells(all-PSCs).However,the pace of device engineering lacks behind that of materials development,so that a majority of the PSMAs have not fulfilled their potentials.Furthermore,most high-performance all-PSCs rely on the use of chloroform as the processing solvent.For instance,the recent highperformance PSMA,named PJ1-γ,with high LUMO,and HOMO levels,could only achieve a PCE of 16.1%with a high-energy-level donor(JD40)using chloroform.Herein,we present a methodology combining sequential processing(SqP)with the addition of 0.5%wt PC_(71)BM as a solid additive(SA)to achieve an impressive efficiency of 18.0%for all-PSCs processed from toluene,an aromatic hydrocarbon solvent.Compared to the conventional blend-casting(BC)method whose best efficiency(16.7%)could only be achieved using chloroform,the SqP method significantly boosted the device efficiency using toluene as the processing solvent.In addition,the donor we employ is the classic PM6 that has deeper energy levels than JD40,which provides low energy loss for the device.We compare the results with another PSMA(PYF-T-o)with the same method.Finally,an improved photostability of the SqP devices with the incorporation of SA is demonstrated. 展开更多
关键词 all-polymers solar cells sequential processing solid additive
下载PDF
Study on the coupling calculation method for the launch dynamics of a self-propelled artillery multibody system considering engraving process 被引量:1
13
作者 Shujun Zhang Xiaoting Rui +1 位作者 Hailong Yu Xiaoli Dong 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第9期67-85,共19页
The launch dynamics theory for multibody systems emerges as an innovative and efficacious approach for the study of launch dynamics,capable of addressing the challenges of complex modeling,diminished computational eff... The launch dynamics theory for multibody systems emerges as an innovative and efficacious approach for the study of launch dynamics,capable of addressing the challenges of complex modeling,diminished computational efficiency,and imprecise analyses of system dynamic responses found in the dynamics research of intricate multi-rigid-flexible body systems,such as self-propelled artillery.This advancement aims to enhance the firing accuracy and launch safety of self-propelled artillery.Recognizing the shortfall of overlooking the band engraving process in existing theories,this study introduces a novel coupling calculation methodology for the launch dynamics of a self-propelled artillery multibody system.This method leverages the ABAQUS subroutine interface VUAMP to compute the dynamic response of the projectile and barrel during the launch process of large-caliber self-propelled artillery.Additionally,it examines the changes in projectile resistance and band deformation in relation to projectile motion throughout the band engraving process.Comparative analysis of the computational outcomes with experimental data evidences that the proposed method offers a more precise depiction of the launch process of self-propelled artillery,thereby enhancing the accuracy of launch dynamics calculations for self-propelled artillery. 展开更多
关键词 Self-propelled artillery Engraving process Multibody system dynamics Launch dynamics
下载PDF
Effects of friction stir processing and nano-hydroxyapatite on the microstructure,hardness,degradation rate and in-vitro bioactivity of WE43 alloy for biomedical applications 被引量:1
14
作者 Bo Wu Farazila Yusof +5 位作者 Fuguo Li Huan Miao A.R.Bushroa Mohd Ridha Bin Muhamad Irfan Anjum Badruddin Mahmoud Z.Ibrahim 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第1期209-224,共16页
Nowadays,magnesium alloys are emerging in biomedical implants for their similar properties to natural bones.However,the rapid degradation of magnesium alloys in biological media hinders successful implantation.Refinem... Nowadays,magnesium alloys are emerging in biomedical implants for their similar properties to natural bones.However,the rapid degradation of magnesium alloys in biological media hinders successful implantation.Refinement of microstructure,as well as reinforcement particles can significantly improve the degradation rate.In this work,multi-pass friction stir processing(FSP)was proposed to synthesize WE43/nano-hydroxyapatite(n HA)surface composite,the microstructure,reinforced particle distribution,micro-hardness,corrosion behavior and in-vitro bioactivity were studied.The subsequent FSP passes of WE43 alloy and WE43/n HA composite refined the grain size which was reduced by 94.29%and 95.92%(2.63 and 1.88μm,respectively)compared to base metal after three passes.This resulted in increasing the microhardness by 120%(90.86 HV0.1)and 135%(105.59 HV0.1)for the WE43 and WE43-n HA,respectively.It is found that increasing FSP passes improved the uniform distribution of n HA particles within the composite matrix which led to improved corrosion resistance and less degradation rate.The corrosion rate of the FSPed WE43/n HA composite after three passes was reduced by 38.2%(4.13 mm/year)and the degradation rate was reduced by 69.7%(2.87 mm/y).This is attributed to secondary phase(Mg24Y5and Mg41Nd5)particle fragmentation and redistribution,as well as a homogeneous distribution of n HA.Additionally,the growing Ca-P and Mg(OH)2layer formed on the surface represented a protective layer that reduced the degradation rate.The wettability test revealed a relatively hydrophilic surface with water contact angle of 49.1±2.2°compared to 71.2±2.1°for base metal.Also,biomineralization test showed that apatite layer grew after immersion 7d in simulated body fluid with atomic ratio of Ca/P 1.60 approaching the stoichiometric ratio(1.67)indicating superior bioactivity of FSPed WE43/n HA composite after three passes.These results raise that the grain refinement by FSP and introduction of n HA particles significantly improved the degradation rate and in-vitro bioactivity of WE43 alloy for biomedical applications. 展开更多
关键词 Friction stir processing Magnesium-based composite NANO-HYDROXYAPATITE Corrosion behavior In-vitro bioactivity
下载PDF
Pressure stimulated current in progressive failure process of combined coal-rock under uniaxial compression:Response and mechanism 被引量:1
15
作者 Tiancheng Shan Zhonghui Li +7 位作者 Xin Zhang Haishan Jia Xiaoran Wang Enyuan Wang Yue Niu Dong Chen Weichen Sun Dongming Wang 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2024年第2期227-243,共17页
Effective monitoring of the structural health of combined coal-rock under complex geological conditions by pressure stimulated currents(PSCs)has great potential for the understanding of dynamic disasters in undergroun... Effective monitoring of the structural health of combined coal-rock under complex geological conditions by pressure stimulated currents(PSCs)has great potential for the understanding of dynamic disasters in underground engineering.To reveal the effect of this way,the uniaxial compression experiments with PSC monitoring were conducted on three types of coal-rock combination samples with different strength combinations.The mechanism explanation of PSCs are investigated by resistivity test,atomic force microscopy(AFM)and computed tomography(CT)methods,and a PSC flow model based on progressive failure process is proposed.The influence of strength combinations on PSCs in the progressive failure process are emphasized.The results show the PSC responses between rock part,coal part and the two components are different,which are affected by multi-scale fracture characteristics and electrical properties.As the rock strength decreases,the progressive failure process changes obviously with the influence range of interface constraint effect decreasing,resulting in the different responses of PSC strength and direction in different parts to fracture behaviors.The PSC flow model is initially validated by the relationship between the accumulated charges of different parts.The results are expected to provide a new reference and method for mining design and roadway quality assessment. 展开更多
关键词 Combined coal-rock Pressure stimulated current Progressive failure process MECHANISM Flow model
下载PDF
A new insight into LPSO phase transformation and mechanical properties uniformity of large-scale Mg-Gd-Y-Zn-Zr alloy prepared by multi-pass friction stir processing 被引量:1
16
作者 Xiaohu Guan Wen Wang +7 位作者 Ting Zhang Pai Peng Qiang Liu Peng Han Ke Qiao Jun Cai Liqiang Wang Kuaishe Wang 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第5期2041-2056,共16页
A large-scale fine-grained Mg-Gd-Y-Zn-Zr alloy plate with high strength and ductility was successfully prepared by multi-pass friction stir processing(MFSP)technology in this work.The structure of grains and long peri... A large-scale fine-grained Mg-Gd-Y-Zn-Zr alloy plate with high strength and ductility was successfully prepared by multi-pass friction stir processing(MFSP)technology in this work.The structure of grains and long period stacking ordered(LPSO)phase were characterized,and the mechanical properties uniformity was investigated.Moreover,a quantitative relationship between the microstructure and tensile yield strength was established.The results showed that the grains in the processed zone(PZ)and interfacial zone(IZ)were refined from 50μm to 3μm and 4μm,respectively,and numerous original LPSO phases were broken.In IZ,some block-shaped 18R LPSO phases were transformed into needle-like 14H LPSO phases due to stacking faults and the short-range diffusion of solute atoms.The severe shear deformation in the form of kinetic energy caused profuse stacking fault to be generated and move rapidly,greatly increasing the transformation rate of LPSO phase.After MFSP,the ultimate tensile strength,yield strength and elongation to failure of the large-scale plate were 367 MPa,305 MPa and 18.0% respectively.Grain refinement and LPSO phase strengthening were the major strengthening mechanisms for the MFSP sample.In particularly,the strength of IZ was comparable to that of PZ because the strength contribution of the 14H LPSO phase offsets the lack of grain refinement strengthening in IZ.This result opposes the widely accepted notion that IZ is a weak region in MFSP-prepared large-scale fine-grained plate. 展开更多
关键词 Friction stir processing MULTI-PASS Mg-Gd-Y-Zn-Zr alloy LPSO phase transformation Mechanical properties
下载PDF
Recent developments in selective laser processes for wearable devices 被引量:1
17
作者 Youngchan Kim Eunseung Hwang +3 位作者 Chang Kai Kaichen Xu Heng Pan Sukjoon Hong 《Bio-Design and Manufacturing》 SCIE EI CAS CSCD 2024年第4期517-547,共31页
Recently,the increasing interest in wearable technology for personal healthcare and smart virtual/augmented reality applications has led to the development of facile fabrication methods.Lasers have long been used to d... Recently,the increasing interest in wearable technology for personal healthcare and smart virtual/augmented reality applications has led to the development of facile fabrication methods.Lasers have long been used to develop original solutions to such challenging technological problems due to their remote,sterile,rapid,and site-selective processing of materials.In this review,recent developments in relevant laser processes are summarized under two separate categories.First,transformative approaches,such as for laser-induced graphene,are introduced.In addition to design optimization and the alteration of a native substrate,the latest advances under a transformative approach now enable more complex material compositions and multilayer device configurations through the simultaneous transformation of heterogeneous precursors,or the sequential addition of functional layers coupled with other electronic elements.In addition,the more conventional laser techniques,such as ablation,sintering,and synthesis,can still be used to enhance the functionality of an entire system through the expansion of applicable materials and the adoption of new mechanisms.Later,various wearable device components developed through the corresponding laser processes are discussed,with an emphasis on chemical/physical sensors and energy devices.In addition,special attention is given to applications that use multiple laser sources or processes,which lay the foundation for the all-laser fabrication of wearable devices. 展开更多
关键词 Selective laser process Wearable device Transformative approach Laser-induced graphene Ablation SINTERING Synthesis
下载PDF
Microstructural evolution and its influence on mechanical and corrosion behaviors in a high-Al/Zn containing duplex Mg-Li alloy after friction stir processing 被引量:1
18
作者 Yixing Zhu Mengran Zhou +7 位作者 Yingxin Geng Shun Zhang Tongzheng Xin Gaoqiang Chen Yifan Zhou Xiaoyu Zhou Ruizhi Wu Qingyu Shi 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2024年第17期245-255,共11页
Ultralight Mg-Li alloys offer promising applications across various fields.Mg-Li alloys enriched with Al and Zn hold theoretical potential for achieving excellent mechanical strength and corrosion resistance.However,t... Ultralight Mg-Li alloys offer promising applications across various fields.Mg-Li alloys enriched with Al and Zn hold theoretical potential for achieving excellent mechanical strength and corrosion resistance.However,the structural and performance characteristics of such Mg-Li alloys,particularly after thermo-mechanical processing,remain inadequately explored and understood.This study investigated the mi-crostructural evolution of a Mg-9Li-5Al-4Zn alloy after friction stir processing and its consequent effects on the mechanical and corrosion performance.The grain size of the alloy was effectively refined and sta-bilized during friction stir processing at various heat inputs.The yield strength of the alloy increased by 86.4%after friction stir processing under the highest heat input condition,which was attributed to fine grain strengthening,solid solution strengthening and dispersion strengthening.Concurrently,the alloy ex-perienced a slight decrease in elongation after the friction stir processing.The alloy subjected to friction stir processing with the highest heat input exhibited a minimal corrosion current density of 6.10×10^(−6) A/cm^(2),which was only 25%of the base metal.The enhanced anti-corrosion properties can be attributed to the dispersion and distribution of precipitated particles induced by friction stir processing,which hin-dered the micro-galvanic corrosion and promoted the generation of a compact surface film,leading to minimal and uniform corrosion.This investigation can be significant for understanding the metallurgical mechanisms and performance evolution of Mg-Li alloys during thermomechanical processes. 展开更多
关键词 Mg-Li-Al-Zn alloy Friction stir processing Microstructure evolution Thermal-mechanical stability Corrosion behavior
原文传递
Effect of bubble morphology and behavior on power consumption in non-Newtonian fluids’aeration process 被引量:1
19
作者 Xiemin Liu Jing Wan +5 位作者 Jinnan Sun Lin Zhang Feng Zhang Zhibing Zhang Xinyao Li Zheng Zhou 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第1期243-254,共12页
Due to a prolonged operation time and low mass transfer efficiency, the primary challenge in the aeration process of non-Newtonian fluids is the high energy consumption, which is closely related to the form and rate o... Due to a prolonged operation time and low mass transfer efficiency, the primary challenge in the aeration process of non-Newtonian fluids is the high energy consumption, which is closely related to the form and rate of impeller, ventilation, rheological properties and bubble morphology in the reactor. In this perspective, through optimal computational fluid dynamics models and experiments, the relationship between power consumption, volumetric mass transfer rate(kLa) and initial bubble size(d0) was constructed to establish an efficient operation mode for the aeration process of non-Newtonian fluids. It was found that reducing the d0could significantly increase the oxygen mass transfer rate, resulting in an obvious decrease in the ventilation volume and impeller speed. When d0was regulated within 2-5 mm,an optimal kLa could be achieved, and 21% of power consumption could be saved, compared to the case of bubbles with a diameter of 10 mm. 展开更多
关键词 Non-Newtonian fluids aeration process Power consumption Volumetric mass transfer rate Bubble size
下载PDF
Multistate transition and coupled solid-liquid modeling of motion process of long-runout landslide 被引量:1
20
作者 Yang Gao Yueping Yin +3 位作者 Bin Li Han Zhang Weile Wu Haoyuan Gao 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第7期2694-2714,共21页
The recognition,repetition and prediction of the post-failure motion process of long-runout landslides are key scientific problems in the prevention and mitigation of geological disasters.In this study,a new numerical... The recognition,repetition and prediction of the post-failure motion process of long-runout landslides are key scientific problems in the prevention and mitigation of geological disasters.In this study,a new numerical method involving LPF3D based on a multialgorithm and multiconstitutive model was proposed to simulate long-runout landslides with high precision and efficiency.The following results were obtained:(a)The motion process of landslides showed a steric effect with mobility,including gradual disintegration and spreading.The sliding mass can be divided into three states(dense,dilute and ultradilute)in the motion process,which can be solved by three dynamic regimes(friction,collision,and inertial);(b)Coupling simulation between the solid grain and liquid phases was achieved,focusing on drag force influences;(c)Different algorithms and constitutive models were employed in phase-state simulations.The volume fraction is an important indicator to distinguish different state types and solid‒liquid ratios.The flume experimental results were favorably validated against long-runout landslide case data;and(d)In this method,matched dynamic numerical modeling was developed to better capture the realistic motion process of long-runout landslides,and the advantages of continuum media and discrete media were combined to improve the computational accuracy and efficiency.This new method can reflect the realistic physical and mechanical processes in long-runout landslide motion and provide a suitable method for risk assessment and pre-failure prediction. 展开更多
关键词 Long-runout landslide Multistate transition Mixed solid‒liquid flow Post-failure process Numerical simulation
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部