In this paper, a filtering method is presented to estimate time-varying parameters of a missile dual control system with tail fins and reaction jets as control variables. In this method, the long-short-term memory(LST...In this paper, a filtering method is presented to estimate time-varying parameters of a missile dual control system with tail fins and reaction jets as control variables. In this method, the long-short-term memory(LSTM) neural network is nested into the extended Kalman filter(EKF) to modify the Kalman gain such that the filtering performance is improved in the presence of large model uncertainties. To avoid the unstable network output caused by the abrupt changes of system states,an adaptive correction factor is introduced to correct the network output online. In the process of training the network, a multi-gradient descent learning mode is proposed to better fit the internal state of the system, and a rolling training is used to implement an online prediction logic. Based on the Lyapunov second method, we discuss the stability of the system, the result shows that when the training error of neural network is sufficiently small, the system is asymptotically stable. With its application to the estimation of time-varying parameters of a missile dual control system, the LSTM-EKF shows better filtering performance than the EKF and adaptive EKF(AEKF) when there exist large uncertainties in the system model.展开更多
Natural gas hydrate(NGH)is an important future resource for the 21st century and a strategic resource with potential for commercial development in the third energy transition.It is of great significance to accurately ...Natural gas hydrate(NGH)is an important future resource for the 21st century and a strategic resource with potential for commercial development in the third energy transition.It is of great significance to accurately predict the productivity of hydrate-bearing sediments(HBS).The multi-phase seepage parameters of HBS include permeability,porosity,which is closely related to permeability,and hydrate saturation,which has a direct impact on hydrate content.Existing research has shown that these multi-phase seepage parameters have a great impact on HBS productivity.Permeability directly affects the transmission of pressure-drop and discharge of methane gas,porosity and initial hydrate saturation affect the amount of hydrate decomposition and transmission process of pressure-drop,and also indirectly affect temperature variation of the reservoir.Considering the spatial heterogeneity of multi-phase seepage parameters,a depressurization production model with layered heterogeneity is established based on the clayey silt hydrate reservoir at W11 station in the Shenhu Sea area of the South China Sea.Tough+Hydrate software was used to calculate the production model;the process of gas production and seepage parameter evolution under different multi-phase seepage conditions were obtained.A sensitivity analysis of the parameters affecting the reservoir productivity was conducted so that:(a)a HBS model with layered heterogeneity can better describe the transmission process of pressure and thermal compensation mechanism of hydrate reservoir;(b)considering the multi-phase seepage parameter heterogeneity,the influence degrees of the parameters on HBS productivity were permeability,porosity and initial hydrate saturation,in order from large to small,and the influence of permeability was significantly greater than that of other parameters;(c)the production potential of the clayey silt reservoir should not only be determined by hydrate content or seepage capacity,but also by the comprehensive effect of the two;and(d)time scales need to be considered when studying the effects of changes in multi-phase seepage parameters on HBS productivity.展开更多
Assuming a reservoir with a typical salt-lake background in the Qaidam Basin as a testbed,in this study the var-iation law of the rock electrical parameters has been determined through water displacement experiments w...Assuming a reservoir with a typical salt-lake background in the Qaidam Basin as a testbed,in this study the var-iation law of the rock electrical parameters has been determined through water displacement experiments with different salinities.As made evident by the results,the saturation index increases with the degree of water injec-tion.When the salinity of the injected water is lower than 80000 ppm,the resistivity of the rock samplefirst decreases,then it remains almost constant in an intermediate stage,andfinally it grows,thereby giving rise to a‘U’profile behavior.As the salinity decreases,the water saturation corresponding to the inflection point of the resistivity becomes lower,thereby leading to a wider‘U’type range and a higher terminal resistivity.For dif-ferent samples,higher initial resistivity of the sample in the oil-bearing state,and higher resistivity after low-sali-nity water washing are obtained when a thicker lithology is considered.展开更多
CO_(2) dry fracturing is a promising alternative method to water fracturing in tight gas reservoirs,especially in water-scarce areas such as the Loess Plateau.The CO_(2) flowback efficiency is a critical factor that a...CO_(2) dry fracturing is a promising alternative method to water fracturing in tight gas reservoirs,especially in water-scarce areas such as the Loess Plateau.The CO_(2) flowback efficiency is a critical factor that affects the final gas production effect.However,there have been few studies focusing on the flowback characteristics after CO_(2) dry fracturing.In this study,an extensive core-to-field scale study was conducted to investigate CO_(2) flowback characteristics and CH_(4) production behavior.Firstly,to investigate the impact of core properties and production conditions on CO_(2) flowback,a series of laboratory experiments at the core scale were conducted.Then,the key factors affecting the flowback were analyzed using the grey correlation method based on field data.Finally,taking the construction parameters of Well S60 as an example,a dual-permeability model was used to characterize the different seepage fields in the matrix and fracture for tight gas reservoirs.The production parameters after CO_(2) dry fracturing were then optimized.Experimental results demonstrate that CO_(2) dry fracturing is more effective than slickwater fracturing,with a 9.2%increase in CH_(4) recovery.The increase in core permeability plays a positive role in improving CH_(4) production and CO_(2) flowback.The soaking process is mainly affected by CO_(2) diffusion,and the soaking time should be controlled within 12 h.Increasing the flowback pressure gradient results in a significant increase in both CH_(4) recovery and CO_(2) flowback efficiency.While,an increase in CO_(2) injection is not conducive to CH_(4) production and CO_(2) flowback.Based on the experimental and field data,the important factors affecting flowback and production were comprehensively and effectively discussed.The results show that permeability is the most important factor,followed by porosity and effective thickness.Considering flowback efficiency and the influence of proppant reflux,the injection volume should be the minimum volume that meets the requirements for generating fractures.The soaking time should be short which is 1 day in this study,and the optimal bottom hole flowback pressure should be set at 10 MPa.This study aims to improve the understanding of CO_(2) dry fracturing in tight gas reservoirs and provide valuable insights for optimizing the process parameters.展开更多
This is a case study of the application of pre-stack inverted elastic parameters to tight-sand reservoir prediction. With the development of oil and gas exploration, pre-stack data and inversion results are increasing...This is a case study of the application of pre-stack inverted elastic parameters to tight-sand reservoir prediction. With the development of oil and gas exploration, pre-stack data and inversion results are increasingly used for production objectives. The pre-stack seismic property studies include not only amplitude verse offset (AVO) but also the characteristics of other elastic property changes. In this paper, we analyze the elastic property parameters characteristics of gas- and wet-sands using data from four gas-sand core types. We found that some special elastic property parameters or combinations can be used to identify gas sands from water saturated sand. Thus, we can do reservoir interpretation and description using different elastic property data from the pre-stack seismic inversion processing. The pre- stack inversion method is based on the simplified Aki-Richard linear equation. The initial model can be generated from well log data and seismic and geologic interpreted horizons in the study area. The input seismic data is angle gathers generated from the common reflection gathers used in pre-stack time or depth migration. The inversion results are elastic property parameters or their combinations. We use a field data example to examine which elastic property parameters or combinations of parameters can most easily discriminate gas sands from background geology and which are most sensitive to pore-fluid content. Comparing the inversion results to well data, we found that it is useful to predict gas reservoirs using λ, λρ, λ/μ, and K/μ properties, which indicate the gas characteristics in the study reservoir.展开更多
With a more complex pore structure system compared with clastic rocks, carbonate rocks have not yet been well described by existing conventional rock physical models concerning the pore structure vagary as well as the...With a more complex pore structure system compared with clastic rocks, carbonate rocks have not yet been well described by existing conventional rock physical models concerning the pore structure vagary as well as the influence on elastic rock properties. We start with a discussion and an analysis about carbonate rock pore structure utilizing rock slices. Then, given appropriate assumptions, we introduce a new approach to modeling carbonate rocks and construct a pore structure algorithm to identify pore structure mutation with a basis on the Gassmann equation and the Eshelby-Walsh ellipsoid inclusion crack theory. Finally, we compute a single well's porosity using this new approach with full wave log data and make a comparison with the predicted result of traditional method and simultaneously invert for reservoir parameters. The study results reveal that the rock pore structure can significantly influence the rocks' elastic properties and the predicted porosity error of the new modeling approach is merely 0.74%. Therefore, the approach we introduce can effectively decrease the predicted error of reservoir parameters.展开更多
A new method of parameter identification based on linear time-frequencyrepresentation and Hubert transform is proposed to identity modal parameters of linear time-varyingsystems from measured vibration responses. Usin...A new method of parameter identification based on linear time-frequencyrepresentation and Hubert transform is proposed to identity modal parameters of linear time-varyingsystems from measured vibration responses. Using Gabor expansion and synthesis theory, measuredresponses are represented in the time-frequency domain and modal components are reconstructed bytime-frequency filtering. The Hilbert transform is applied to obtain time histories of the amplitudeand phase angle of each modal component, from which time-varying frequencies and damping ratios areidentified. The proposed method has been demonstrated with a numerical example in which a lineartime-varying system of two degrees of freedom is used to validate the identification scheme based ontime-frequency representation. Simulation results have indicated that time-frequency representationpresents an effective tool for modal parameter identification of time-varying systems.展开更多
This paper investigates adaptive containment control for a class of fractional-order multi-agent systems(FOMASs)with time-varying parameters and disturbances.By using the bounded estimation method,the difficulty gener...This paper investigates adaptive containment control for a class of fractional-order multi-agent systems(FOMASs)with time-varying parameters and disturbances.By using the bounded estimation method,the difficulty generated by the timevarying parameters and disturbances is overcome.The command filter is introduced to solve the complexity problem inherent in adaptive backstepping control.Meanwhile,in order to eliminate the effect of filter errors,a novel distributed error compensating scheme is constructed,in which only the local information from the neighbor agents is utilized.Then,a distributed adaptive containment control scheme for FOMASs is developed based on backstepping to guarantee that the outputs of all the followers are steered to the convex hull spanned by the leaders.Based on the extension of Barbalat's lemma to fractional-order integrals,it can be proven that the containment errors and the compensating signals have asymptotic convergence.Finally,three simulation examples are given to show the feasibility and effectiveness of the proposed control method.展开更多
The oil production of the multi-fractured horizontal wells(MFHWs) declines quickly in unconventional oil reservoirs due to the fast depletion of natural energy. Gas injection has been acknowledged as an effective meth...The oil production of the multi-fractured horizontal wells(MFHWs) declines quickly in unconventional oil reservoirs due to the fast depletion of natural energy. Gas injection has been acknowledged as an effective method to improve oil recovery factor from unconventional oil reservoirs. Hydrocarbon gas huff-n-puff becomes preferable when the CO_(2) source is limited. However, the impact of complex fracture networks and well interference on the EOR performance of multiple MFHWs is still unclear. The optimal gas huff-n-puff parameters are significant for enhancing oil recovery. This work aims to optimize the hydrocarbon gas injection and production parameters for multiple MFHWs with complex fracture networks in unconventional oil reservoirs. Firstly, the numerical model based on unstructured grids is developed to characterize the complex fracture networks and capture the dynamic fracture features.Secondly, the PVT phase behavior simulation was carried out to provide the fluid model for numerical simulation. Thirdly, the optimal parameters for hydrocarbon gas huff-n-puff were obtained. Finally, the dominant factors of hydrocarbon gas huff-n-puff under complex fracture networks are obtained by fuzzy mathematical method. Results reveal that the current pressure of hydrocarbon gas injection can achieve miscible displacement. The optimal injection and production parameters are obtained by single-factor analysis to analyze the effect of individual parameter. Gas injection time is the dominant factor of hydrocarbon gas huff-n-puff in unconventional oil reservoirs with complex fracture networks. This work can offer engineers guidance for hydrocarbon gas huff-n-puff of multiple MFHWs considering the complex fracture networks.展开更多
Ultra-low permeability reservoirs are characterized by small pore throats and poor physical properties, which areat the root of well-known problems related to injection and production. In this study, a gas injection f...Ultra-low permeability reservoirs are characterized by small pore throats and poor physical properties, which areat the root of well-known problems related to injection and production. In this study, a gas injection floodingapproach is analyzed in the framework of numerical simulations. In particular, the sequence and timing of fracturechanneling and the related impact on production are considered for horizontal wells with different fracturemorphologies. Useful data and information are provided about the regulation of gas channeling and possible strategiesto delay gas channeling and optimize the gas injection volume and fracture parameters. It is shown that inorder to mitigate gas channeling and ensure high production, fracture length on the sides can be controlled andlonger fractures can be created in the middle by which full gas flooding is obtained at the fracture location in themiddle of the horizontal well. A Differential Evolution (DE) algorithm is provided by which the gas injectionvolume and the fracture parameters of gas injection flooding can be optimized. It is shown that an improvedoil recovery factor as high as 6% can be obtained.展开更多
This paper is mainly about the calculation of reservoir parameters and theinterpretation method for identifying oil/water beds in Ke82 well areas of Junggar basin. It isdifficult to determine the reservoir parameters ...This paper is mainly about the calculation of reservoir parameters and theinterpretation method for identifying oil/water beds in Ke82 well areas of Junggar basin. It isdifficult to determine the reservoir parameters with common logging methods such as core calibrationlog because of the diversity of minerals and rocks and the complexity of pore structures in theconglomerate reservoir of Junggar basin. Optimization logging exploration is a good method todetermine the porosity by establishing the multi-mineral model with logging curves based on theintegration of geological, core and well testing data. Permeability is identified by BP algorithm ofneural network. Hydrocarbon saturation is determined by correlating Archie's and Simandouxformulas. Comparing the exploratory result and core data, we can see that these methods areeffective for conglomerate logging exploration. We processed and explained six wells in the Ke82well areas. And actual interpretation has had very good results, 85 % of which conform to welltesting data. Therefore, this technique will be effective for identifying conglomerate parameters.展开更多
CO_(2) pre-injection during hydraulic fracturing is an important method for the development of medium to deep heavy oil reservoirs.It reduces the interfacial tension and viscosity of crude oil,enhances its flowability...CO_(2) pre-injection during hydraulic fracturing is an important method for the development of medium to deep heavy oil reservoirs.It reduces the interfacial tension and viscosity of crude oil,enhances its flowability,maintains reservoir pressure,and increases reservoir drainage capacity.Taking the Badaowan Formation as an example,in this study a detailed three-dimensional geomechanical model based on static data from well logging interpretations is elaborated,which can take into account both vertical and horizontal geological variations and mechanical characteristics.A comprehensive analysis of the impact of key construction parameters on Pre-CO_(2) based fracturing(such as cluster spacing and injection volume),is therefore conducted.Thereafter,using optimized construction parameters,a non-structured grid for dynamic development prediction is introduced,and the capacity variations of different production scenarios are assessed.On the basis of the simulation results,reasonable fracturing parameters are finally determined,including cluster spacing,fracturing fluid volume,proppant concentration,and well spacing.展开更多
A time-varying modal parameter identification method combined with Bayesian information criterion(BIC)and grey correlation analysis(GCA)is presented for a kind of thermo-elastic structures with sparse natural frequenc...A time-varying modal parameter identification method combined with Bayesian information criterion(BIC)and grey correlation analysis(GCA)is presented for a kind of thermo-elastic structures with sparse natural frequencies and subject to an unsteady temperature field.To demonstrate the method,the thermo-elastic structure to be identified is taken as a simply-supported beam with an axially movable boundary and subject to both random excitation and an unsteady temperature field,and the dynamic outputs of the beam are first simulated as the measured data for the identification.Then,an improved time-varying autoregressive(TVAR)model is generated from the simulated input and output of the system.The time-varying coefficients of the TVAR model are expanded as a finite set of time basis functions that facilitate the time-varying coefficients to be time-invariant.According to the BIC for preliminarily determining the scope of the order number,the grey system theory is introduced to determine the order of TVAR and the dimension of the basis functions simultaneously via the absolute grey correlation degree(AGCD).Finally,the time-varying instantaneous frequencies of the system are estimated by using the recursive least squares method.The identified results are capable of tracking the slow time-varying natural frequencies with high accuracy no matter for noise-free or noisy estimation.展开更多
Technical stability:allowing quantitative estimation of trajectory behavior of a dynamical system over a given time interval was considered. Based on a differential comparison principle and a basic monotonicity condit...Technical stability:allowing quantitative estimation of trajectory behavior of a dynamical system over a given time interval was considered. Based on a differential comparison principle and a basic monotonicity condition, technical stability relative to certain prescribed state constraint sets of a class of nonlinear time-varying systems with small parameters was analyzed by means of vector Liapunov function method. Explicit criteria of technical stability are established in terms of coefficients of the system under consideration. Conditions under which the technical stability of the system can be derived from its reduced linear time-varying (LTV) system were further examined, as well as a condition for linearization approach to technical stability of general nonlinear systems. Also, a simple algebraic condition of exponential asymptotic stability of LTV systems is presented. Two illustrative examples are given to demonstrate the availability of the presently proposed method.展开更多
Compared with conventional well, herringbone-like laterals wells can increase the area of oil release, and can reduce the number of wellhead slots of platforms,?and?also can greatly improve the development efficiency....Compared with conventional well, herringbone-like laterals wells can increase the area of oil release, and can reduce the number of wellhead slots of platforms,?and?also can greatly improve the development efficiency. Based on threshold pressure gradient in heavy oil reservoir,?and?the applied principle of mirror reflection and superposition, the pressure distribution equation of herringbone-like laterals wells is obtained in heavy oil reservoir. Productivity model of herringbone-like laterals wells is proposed by reservoir-wellbore steady seepage. The example shows that the productivity model is great accuracy?to?predict the productivity of herringbone-like laterals wells. The model is used to analyze the branching length, branching angle, branching symmetry, branching position and spacing and their effects on productivity of herringbone-like laterals wells. The principle of optimizing the well shape of herringbone-like laterals wells is proposed.展开更多
After long-term waterflooding in unconsolidated sandstone reservoir, the high-permeability channels are easy to evolve, which leads to a significant reduction in water flooding efficiency and a poor oilfield developme...After long-term waterflooding in unconsolidated sandstone reservoir, the high-permeability channels are easy to evolve, which leads to a significant reduction in water flooding efficiency and a poor oilfield development effect. The current researches on the formation parameters variation are mainly based on the experiment analysis or field statistics, while lacking quantitative research of combining microcosmic and macroscopic mechanism. A network model was built after taking the detachment and entrapment mechanisms of particles in unconsolidated sandstone reservoir into consideration. Then a coupled mathematical model for the formation parameters variation was established based on the network modeling and the model of fluids flowing in porous media. The model was solved by a finite-difference method and the Gauss-Seidel iterative technique. A novel field-scale reservoir numerical simulator was written in Fortran 90 and it can be used to predict 1) the evolvement of high-permeability channels caused by particles release and migration in the long-term water flooding process, and 2) well production performances and remaining oil distribution. In addition, a series of oil field examples with inverted nine-spot pattern was made on the new numerical simulator. The results show that the high-permeability channels are more likely to develop along the main streamlines between the injection and production wells, and the formation parameters variation has an obvious influence on the remaining oil distribution.展开更多
The data of modified isochronal testing of gas well is just used to calculate gas well deliverability. Fully utilizing well test data make it possible to obtain formation parameters, such as gas well deliverability, e...The data of modified isochronal testing of gas well is just used to calculate gas well deliverability. Fully utilizing well test data make it possible to obtain formation parameters, such as gas well deliverability, effective permeability and skin factor at the same time. Based on transient flow theory, the pressure drawdown equation of gas unsteady seepage can be deducted. One simulated case is used to illustrate the applicability of the proposed method. The result of analyzed case shows that the proposed method can provide accurate estimate of formation permeability and skin factor compared with the method of Homer curves.展开更多
Variation of reservoir physical properties can cause changes in its elastic parameters. However, this is not a simple linear relation. Furthermore, the lack of observations, data overlap, noise interference, and ideal...Variation of reservoir physical properties can cause changes in its elastic parameters. However, this is not a simple linear relation. Furthermore, the lack of observations, data overlap, noise interference, and idealized models increases the uncertainties of the inversion result. Thus, we propose an inversion method that is different from traditional statistical rock physics modeling. First, we use deterministic and stochastic rock physics models considering the uncertainties of elastic parameters obtained by prestack seismic inversion and introduce weighting coefficients to establish a weighted statistical relation between reservoir and elastic parameters. Second, based on the weighted statistical relation, we use Markov chain Monte Carlo simulations to generate the random joint distribution space of reservoir and elastic parameters that serves as a sample solution space of an objective function. Finally, we propose a fast solution criterion to maximize the posterior probability density and obtain reservoir parameters. The method has high efficiency and application potential.展开更多
We consider state and parameter estimation for compartmental models having both timevarying and time-invariant parameters.In this manuscript,we first detail a general Bayesian computational framework as a continuation...We consider state and parameter estimation for compartmental models having both timevarying and time-invariant parameters.In this manuscript,we first detail a general Bayesian computational framework as a continuation of our previous work.Subsequently,this framework is specifically tailored to the susceptible-infectious-removed(SIR)model which describes a basic mechanism for the spread of infectious diseases through a system of coupled nonlinear differential equations.The SIR model consists of three states,namely,the susceptible,infectious,and removed compartments.The coupling among these states is controlled by two parameters,the infection rate and the recovery rate.The simplicity of the SIR model and similar compartmental models make them applicable to many classes of infectious diseases.However,the combined assumption of a deterministic model and time-invariance among the model parameters are two significant impediments which critically limit their use for long-term predictions.The tendency of certain model parameters to vary in time due to seasonal trends,non-pharmaceutical interventions,and other random effects necessitates a model that structurally permits the incorporation of such time-varying effects.Complementary to this,is the need for a robust mechanism for the estimation of the parameters of the resulting model from data.To this end,we consider an augmented state vector,which appends the time-varying parameters to the original system states whereby the time evolution of the time-varying parameters are driven by an artificial noise process in a standard manner.Distinguishing between time-varying and time-invariant parameters in this fashion limits the introduction of artificial dynamics into the system,and provides a robust,fully Bayesian approach for estimating the timeinvariant system parameters as well as the elements of the process noise covariance matrix.This computational framework is implemented by leveraging the robustness of the Markov chain Monte Carlo algorithm permits the estimation of time-invariant parameters while nested nonlinear filters concurrently perform the joint estimation of the system states and time-varying parameters.We demonstrate performance of the framework by first considering a series of examples using synthetic data,followed by an exposition on public health data collected in the province of Ontario.展开更多
This article focuses on asymptotic precision motion control for electro-hydraulic axis systems under unknown time-variant parameters,mismatched and matched disturbances.Different from the traditional adaptive results ...This article focuses on asymptotic precision motion control for electro-hydraulic axis systems under unknown time-variant parameters,mismatched and matched disturbances.Different from the traditional adaptive results that are applied to dispose of unknown constant parameters only,the unique feature is that an adaptive-gain nonlinear term is introduced into the control design to handle unknown time-variant parameters.Concurrently both mismatched and matched disturbances existing in electro-hydraulic axis systems can also be addressed in this way.With skillful integration of the backstepping technique and the adaptive control,a synthesized controller framework is successfully developed for electro-hydraulic axis systems,in which the coupled interaction between parameter estimation and disturbance estimation is avoided.Accordingly,this designed controller has the capacity of low-computation costs and simpler parameter tuning when compared to the other ones that integrate the adaptive control and observer/estimator-based technique to dividually handle parameter uncertainties and disturbances.Also,a nonlinear filter is designed to eliminate the“explosion of complexity”issue existing in the classical back-stepping technique.The stability analysis uncovers that all the closed-loop signals are bounded and the asymptotic tracking performance is also assured.Finally,contrastive experiment results validate the superiority of the developed method as well.展开更多
文摘In this paper, a filtering method is presented to estimate time-varying parameters of a missile dual control system with tail fins and reaction jets as control variables. In this method, the long-short-term memory(LSTM) neural network is nested into the extended Kalman filter(EKF) to modify the Kalman gain such that the filtering performance is improved in the presence of large model uncertainties. To avoid the unstable network output caused by the abrupt changes of system states,an adaptive correction factor is introduced to correct the network output online. In the process of training the network, a multi-gradient descent learning mode is proposed to better fit the internal state of the system, and a rolling training is used to implement an online prediction logic. Based on the Lyapunov second method, we discuss the stability of the system, the result shows that when the training error of neural network is sufficiently small, the system is asymptotically stable. With its application to the estimation of time-varying parameters of a missile dual control system, the LSTM-EKF shows better filtering performance than the EKF and adaptive EKF(AEKF) when there exist large uncertainties in the system model.
基金supported by the National Natural Science Foundation of China(Grant Nos.42276224,and 42206230)the Jilin Scientific and Technological Development Program(Grant No.20190303083SF)+2 种基金the International Cooperation Key Laboratory of Underground Energy Development and Geological Restoration(Grant No.YDZJ202102CXJD014)the Interdisciplinary Integration and Innovation Project of JLU(Grant No.JLUXKJC2021ZZ18)the Graduate Innovation Fund of Jilin University(Grant No.2023CX100)。
文摘Natural gas hydrate(NGH)is an important future resource for the 21st century and a strategic resource with potential for commercial development in the third energy transition.It is of great significance to accurately predict the productivity of hydrate-bearing sediments(HBS).The multi-phase seepage parameters of HBS include permeability,porosity,which is closely related to permeability,and hydrate saturation,which has a direct impact on hydrate content.Existing research has shown that these multi-phase seepage parameters have a great impact on HBS productivity.Permeability directly affects the transmission of pressure-drop and discharge of methane gas,porosity and initial hydrate saturation affect the amount of hydrate decomposition and transmission process of pressure-drop,and also indirectly affect temperature variation of the reservoir.Considering the spatial heterogeneity of multi-phase seepage parameters,a depressurization production model with layered heterogeneity is established based on the clayey silt hydrate reservoir at W11 station in the Shenhu Sea area of the South China Sea.Tough+Hydrate software was used to calculate the production model;the process of gas production and seepage parameter evolution under different multi-phase seepage conditions were obtained.A sensitivity analysis of the parameters affecting the reservoir productivity was conducted so that:(a)a HBS model with layered heterogeneity can better describe the transmission process of pressure and thermal compensation mechanism of hydrate reservoir;(b)considering the multi-phase seepage parameter heterogeneity,the influence degrees of the parameters on HBS productivity were permeability,porosity and initial hydrate saturation,in order from large to small,and the influence of permeability was significantly greater than that of other parameters;(c)the production potential of the clayey silt reservoir should not only be determined by hydrate content or seepage capacity,but also by the comprehensive effect of the two;and(d)time scales need to be considered when studying the effects of changes in multi-phase seepage parameters on HBS productivity.
基金The authors would like to acknowledge the financial support from the Jiangsu Key Laboratory of Oil-Gas Storage and Transportation Technology(Grant No.CDYQCY202201)funded by the Key Laboratory of Shallow Geothermal Energy,Ministry of Natural Resources of the People’s Republic of China.The authors thank the anonymous reviewers for their constructive and valuable opinions gratefully.
文摘Assuming a reservoir with a typical salt-lake background in the Qaidam Basin as a testbed,in this study the var-iation law of the rock electrical parameters has been determined through water displacement experiments with different salinities.As made evident by the results,the saturation index increases with the degree of water injec-tion.When the salinity of the injected water is lower than 80000 ppm,the resistivity of the rock samplefirst decreases,then it remains almost constant in an intermediate stage,andfinally it grows,thereby giving rise to a‘U’profile behavior.As the salinity decreases,the water saturation corresponding to the inflection point of the resistivity becomes lower,thereby leading to a wider‘U’type range and a higher terminal resistivity.For dif-ferent samples,higher initial resistivity of the sample in the oil-bearing state,and higher resistivity after low-sali-nity water washing are obtained when a thicker lithology is considered.
基金support from the National Natural Science Foundation of China(No.51904324,No.51974348)the Prospective Basic Major Science and Technology Projects for the 14th Five Year Plan(No.2021DJ2202).
文摘CO_(2) dry fracturing is a promising alternative method to water fracturing in tight gas reservoirs,especially in water-scarce areas such as the Loess Plateau.The CO_(2) flowback efficiency is a critical factor that affects the final gas production effect.However,there have been few studies focusing on the flowback characteristics after CO_(2) dry fracturing.In this study,an extensive core-to-field scale study was conducted to investigate CO_(2) flowback characteristics and CH_(4) production behavior.Firstly,to investigate the impact of core properties and production conditions on CO_(2) flowback,a series of laboratory experiments at the core scale were conducted.Then,the key factors affecting the flowback were analyzed using the grey correlation method based on field data.Finally,taking the construction parameters of Well S60 as an example,a dual-permeability model was used to characterize the different seepage fields in the matrix and fracture for tight gas reservoirs.The production parameters after CO_(2) dry fracturing were then optimized.Experimental results demonstrate that CO_(2) dry fracturing is more effective than slickwater fracturing,with a 9.2%increase in CH_(4) recovery.The increase in core permeability plays a positive role in improving CH_(4) production and CO_(2) flowback.The soaking process is mainly affected by CO_(2) diffusion,and the soaking time should be controlled within 12 h.Increasing the flowback pressure gradient results in a significant increase in both CH_(4) recovery and CO_(2) flowback efficiency.While,an increase in CO_(2) injection is not conducive to CH_(4) production and CO_(2) flowback.Based on the experimental and field data,the important factors affecting flowback and production were comprehensively and effectively discussed.The results show that permeability is the most important factor,followed by porosity and effective thickness.Considering flowback efficiency and the influence of proppant reflux,the injection volume should be the minimum volume that meets the requirements for generating fractures.The soaking time should be short which is 1 day in this study,and the optimal bottom hole flowback pressure should be set at 10 MPa.This study aims to improve the understanding of CO_(2) dry fracturing in tight gas reservoirs and provide valuable insights for optimizing the process parameters.
基金supported by the National Basic Priorities Program "973" Project (Grant No.2007CB209600)China Postdoctoral Science Foundation Funded Project
文摘This is a case study of the application of pre-stack inverted elastic parameters to tight-sand reservoir prediction. With the development of oil and gas exploration, pre-stack data and inversion results are increasingly used for production objectives. The pre-stack seismic property studies include not only amplitude verse offset (AVO) but also the characteristics of other elastic property changes. In this paper, we analyze the elastic property parameters characteristics of gas- and wet-sands using data from four gas-sand core types. We found that some special elastic property parameters or combinations can be used to identify gas sands from water saturated sand. Thus, we can do reservoir interpretation and description using different elastic property data from the pre-stack seismic inversion processing. The pre- stack inversion method is based on the simplified Aki-Richard linear equation. The initial model can be generated from well log data and seismic and geologic interpreted horizons in the study area. The input seismic data is angle gathers generated from the common reflection gathers used in pre-stack time or depth migration. The inversion results are elastic property parameters or their combinations. We use a field data example to examine which elastic property parameters or combinations of parameters can most easily discriminate gas sands from background geology and which are most sensitive to pore-fluid content. Comparing the inversion results to well data, we found that it is useful to predict gas reservoirs using λ, λρ, λ/μ, and K/μ properties, which indicate the gas characteristics in the study reservoir.
基金sponsored by the National Nature Science Foundation of China (Grant No.40904034 and 40839905)
文摘With a more complex pore structure system compared with clastic rocks, carbonate rocks have not yet been well described by existing conventional rock physical models concerning the pore structure vagary as well as the influence on elastic rock properties. We start with a discussion and an analysis about carbonate rock pore structure utilizing rock slices. Then, given appropriate assumptions, we introduce a new approach to modeling carbonate rocks and construct a pore structure algorithm to identify pore structure mutation with a basis on the Gassmann equation and the Eshelby-Walsh ellipsoid inclusion crack theory. Finally, we compute a single well's porosity using this new approach with full wave log data and make a comparison with the predicted result of traditional method and simultaneously invert for reservoir parameters. The study results reveal that the rock pore structure can significantly influence the rocks' elastic properties and the predicted porosity error of the new modeling approach is merely 0.74%. Therefore, the approach we introduce can effectively decrease the predicted error of reservoir parameters.
基金Automobile Industrial Science Foundation of Shanghai (No.2000187)
文摘A new method of parameter identification based on linear time-frequencyrepresentation and Hubert transform is proposed to identity modal parameters of linear time-varyingsystems from measured vibration responses. Using Gabor expansion and synthesis theory, measuredresponses are represented in the time-frequency domain and modal components are reconstructed bytime-frequency filtering. The Hilbert transform is applied to obtain time histories of the amplitudeand phase angle of each modal component, from which time-varying frequencies and damping ratios areidentified. The proposed method has been demonstrated with a numerical example in which a lineartime-varying system of two degrees of freedom is used to validate the identification scheme based ontime-frequency representation. Simulation results have indicated that time-frequency representationpresents an effective tool for modal parameter identification of time-varying systems.
基金National Key R&D Program of China(2018YFA0702200)National Natural Science Foundation of China(61627809,62173080)Liaoning Revitalization Talents Program(XLYC1801005)。
文摘This paper investigates adaptive containment control for a class of fractional-order multi-agent systems(FOMASs)with time-varying parameters and disturbances.By using the bounded estimation method,the difficulty generated by the timevarying parameters and disturbances is overcome.The command filter is introduced to solve the complexity problem inherent in adaptive backstepping control.Meanwhile,in order to eliminate the effect of filter errors,a novel distributed error compensating scheme is constructed,in which only the local information from the neighbor agents is utilized.Then,a distributed adaptive containment control scheme for FOMASs is developed based on backstepping to guarantee that the outputs of all the followers are steered to the convex hull spanned by the leaders.Based on the extension of Barbalat's lemma to fractional-order integrals,it can be proven that the containment errors and the compensating signals have asymptotic convergence.Finally,three simulation examples are given to show the feasibility and effectiveness of the proposed control method.
基金funded by the National Natural Science Foundation of China(No.51974268)Open Fund of Key Laboratory of Ministry of Education for Improving Oil and Gas Recovery(NEPUEOR-2022-03)Research and Innovation Fund for Graduate Students of Southwest Petroleum University(No.2022KYCX005)。
文摘The oil production of the multi-fractured horizontal wells(MFHWs) declines quickly in unconventional oil reservoirs due to the fast depletion of natural energy. Gas injection has been acknowledged as an effective method to improve oil recovery factor from unconventional oil reservoirs. Hydrocarbon gas huff-n-puff becomes preferable when the CO_(2) source is limited. However, the impact of complex fracture networks and well interference on the EOR performance of multiple MFHWs is still unclear. The optimal gas huff-n-puff parameters are significant for enhancing oil recovery. This work aims to optimize the hydrocarbon gas injection and production parameters for multiple MFHWs with complex fracture networks in unconventional oil reservoirs. Firstly, the numerical model based on unstructured grids is developed to characterize the complex fracture networks and capture the dynamic fracture features.Secondly, the PVT phase behavior simulation was carried out to provide the fluid model for numerical simulation. Thirdly, the optimal parameters for hydrocarbon gas huff-n-puff were obtained. Finally, the dominant factors of hydrocarbon gas huff-n-puff under complex fracture networks are obtained by fuzzy mathematical method. Results reveal that the current pressure of hydrocarbon gas injection can achieve miscible displacement. The optimal injection and production parameters are obtained by single-factor analysis to analyze the effect of individual parameter. Gas injection time is the dominant factor of hydrocarbon gas huff-n-puff in unconventional oil reservoirs with complex fracture networks. This work can offer engineers guidance for hydrocarbon gas huff-n-puff of multiple MFHWs considering the complex fracture networks.
基金supported by the Forward Looking Basic Major Scientific and Technological Projects of CNPC (Grant No.2021DJ2202).
文摘Ultra-low permeability reservoirs are characterized by small pore throats and poor physical properties, which areat the root of well-known problems related to injection and production. In this study, a gas injection floodingapproach is analyzed in the framework of numerical simulations. In particular, the sequence and timing of fracturechanneling and the related impact on production are considered for horizontal wells with different fracturemorphologies. Useful data and information are provided about the regulation of gas channeling and possible strategiesto delay gas channeling and optimize the gas injection volume and fracture parameters. It is shown that inorder to mitigate gas channeling and ensure high production, fracture length on the sides can be controlled andlonger fractures can be created in the middle by which full gas flooding is obtained at the fracture location in themiddle of the horizontal well. A Differential Evolution (DE) algorithm is provided by which the gas injectionvolume and the fracture parameters of gas injection flooding can be optimized. It is shown that an improvedoil recovery factor as high as 6% can be obtained.
文摘This paper is mainly about the calculation of reservoir parameters and theinterpretation method for identifying oil/water beds in Ke82 well areas of Junggar basin. It isdifficult to determine the reservoir parameters with common logging methods such as core calibrationlog because of the diversity of minerals and rocks and the complexity of pore structures in theconglomerate reservoir of Junggar basin. Optimization logging exploration is a good method todetermine the porosity by establishing the multi-mineral model with logging curves based on theintegration of geological, core and well testing data. Permeability is identified by BP algorithm ofneural network. Hydrocarbon saturation is determined by correlating Archie's and Simandouxformulas. Comparing the exploratory result and core data, we can see that these methods areeffective for conglomerate logging exploration. We processed and explained six wells in the Ke82well areas. And actual interpretation has had very good results, 85 % of which conform to welltesting data. Therefore, this technique will be effective for identifying conglomerate parameters.
基金supported by the Cutting-Edge Project Foundation of Petro-China(Cold-Based Method to Enhance Heavy Oil Recovery)(Grant No.2021DJ1406)Open Fund(PLN201802)of National Key Laboratory of Oil and Gas Reservoir Geology and Exploitation(Southwest Petroleum University).
文摘CO_(2) pre-injection during hydraulic fracturing is an important method for the development of medium to deep heavy oil reservoirs.It reduces the interfacial tension and viscosity of crude oil,enhances its flowability,maintains reservoir pressure,and increases reservoir drainage capacity.Taking the Badaowan Formation as an example,in this study a detailed three-dimensional geomechanical model based on static data from well logging interpretations is elaborated,which can take into account both vertical and horizontal geological variations and mechanical characteristics.A comprehensive analysis of the impact of key construction parameters on Pre-CO_(2) based fracturing(such as cluster spacing and injection volume),is therefore conducted.Thereafter,using optimized construction parameters,a non-structured grid for dynamic development prediction is introduced,and the capacity variations of different production scenarios are assessed.On the basis of the simulation results,reasonable fracturing parameters are finally determined,including cluster spacing,fracturing fluid volume,proppant concentration,and well spacing.
基金Supported by the National Natural Science Foundation of China(91216103)the Funding of Jiangsu Innovation Program for Graduate Education(CXLX13_130)+1 种基金the Fundamental Research Funds for the Central Universitiesthe Priority Academic Program Development of Jiangsu Higher Education Institutions
文摘A time-varying modal parameter identification method combined with Bayesian information criterion(BIC)and grey correlation analysis(GCA)is presented for a kind of thermo-elastic structures with sparse natural frequencies and subject to an unsteady temperature field.To demonstrate the method,the thermo-elastic structure to be identified is taken as a simply-supported beam with an axially movable boundary and subject to both random excitation and an unsteady temperature field,and the dynamic outputs of the beam are first simulated as the measured data for the identification.Then,an improved time-varying autoregressive(TVAR)model is generated from the simulated input and output of the system.The time-varying coefficients of the TVAR model are expanded as a finite set of time basis functions that facilitate the time-varying coefficients to be time-invariant.According to the BIC for preliminarily determining the scope of the order number,the grey system theory is introduced to determine the order of TVAR and the dimension of the basis functions simultaneously via the absolute grey correlation degree(AGCD).Finally,the time-varying instantaneous frequencies of the system are estimated by using the recursive least squares method.The identified results are capable of tracking the slow time-varying natural frequencies with high accuracy no matter for noise-free or noisy estimation.
文摘Technical stability:allowing quantitative estimation of trajectory behavior of a dynamical system over a given time interval was considered. Based on a differential comparison principle and a basic monotonicity condition, technical stability relative to certain prescribed state constraint sets of a class of nonlinear time-varying systems with small parameters was analyzed by means of vector Liapunov function method. Explicit criteria of technical stability are established in terms of coefficients of the system under consideration. Conditions under which the technical stability of the system can be derived from its reduced linear time-varying (LTV) system were further examined, as well as a condition for linearization approach to technical stability of general nonlinear systems. Also, a simple algebraic condition of exponential asymptotic stability of LTV systems is presented. Two illustrative examples are given to demonstrate the availability of the presently proposed method.
文摘Compared with conventional well, herringbone-like laterals wells can increase the area of oil release, and can reduce the number of wellhead slots of platforms,?and?also can greatly improve the development efficiency. Based on threshold pressure gradient in heavy oil reservoir,?and?the applied principle of mirror reflection and superposition, the pressure distribution equation of herringbone-like laterals wells is obtained in heavy oil reservoir. Productivity model of herringbone-like laterals wells is proposed by reservoir-wellbore steady seepage. The example shows that the productivity model is great accuracy?to?predict the productivity of herringbone-like laterals wells. The model is used to analyze the branching length, branching angle, branching symmetry, branching position and spacing and their effects on productivity of herringbone-like laterals wells. The principle of optimizing the well shape of herringbone-like laterals wells is proposed.
文摘After long-term waterflooding in unconsolidated sandstone reservoir, the high-permeability channels are easy to evolve, which leads to a significant reduction in water flooding efficiency and a poor oilfield development effect. The current researches on the formation parameters variation are mainly based on the experiment analysis or field statistics, while lacking quantitative research of combining microcosmic and macroscopic mechanism. A network model was built after taking the detachment and entrapment mechanisms of particles in unconsolidated sandstone reservoir into consideration. Then a coupled mathematical model for the formation parameters variation was established based on the network modeling and the model of fluids flowing in porous media. The model was solved by a finite-difference method and the Gauss-Seidel iterative technique. A novel field-scale reservoir numerical simulator was written in Fortran 90 and it can be used to predict 1) the evolvement of high-permeability channels caused by particles release and migration in the long-term water flooding process, and 2) well production performances and remaining oil distribution. In addition, a series of oil field examples with inverted nine-spot pattern was made on the new numerical simulator. The results show that the high-permeability channels are more likely to develop along the main streamlines between the injection and production wells, and the formation parameters variation has an obvious influence on the remaining oil distribution.
文摘The data of modified isochronal testing of gas well is just used to calculate gas well deliverability. Fully utilizing well test data make it possible to obtain formation parameters, such as gas well deliverability, effective permeability and skin factor at the same time. Based on transient flow theory, the pressure drawdown equation of gas unsteady seepage can be deducted. One simulated case is used to illustrate the applicability of the proposed method. The result of analyzed case shows that the proposed method can provide accurate estimate of formation permeability and skin factor compared with the method of Homer curves.
基金supported by the National Science and Technology Major Project(No.2011 ZX05007-006)the 973 Program of China(No.2013CB228604)the Major Project of Petrochina(No.2014B-0610)
文摘Variation of reservoir physical properties can cause changes in its elastic parameters. However, this is not a simple linear relation. Furthermore, the lack of observations, data overlap, noise interference, and idealized models increases the uncertainties of the inversion result. Thus, we propose an inversion method that is different from traditional statistical rock physics modeling. First, we use deterministic and stochastic rock physics models considering the uncertainties of elastic parameters obtained by prestack seismic inversion and introduce weighting coefficients to establish a weighted statistical relation between reservoir and elastic parameters. Second, based on the weighted statistical relation, we use Markov chain Monte Carlo simulations to generate the random joint distribution space of reservoir and elastic parameters that serves as a sample solution space of an objective function. Finally, we propose a fast solution criterion to maximize the posterior probability density and obtain reservoir parameters. The method has high efficiency and application potential.
基金the funding from the New Frontiers in Research Fund(NFRF)2022 Special Call e Research for Postpandemic Recovery(Grant no:NFRFR-2022-00395).
文摘We consider state and parameter estimation for compartmental models having both timevarying and time-invariant parameters.In this manuscript,we first detail a general Bayesian computational framework as a continuation of our previous work.Subsequently,this framework is specifically tailored to the susceptible-infectious-removed(SIR)model which describes a basic mechanism for the spread of infectious diseases through a system of coupled nonlinear differential equations.The SIR model consists of three states,namely,the susceptible,infectious,and removed compartments.The coupling among these states is controlled by two parameters,the infection rate and the recovery rate.The simplicity of the SIR model and similar compartmental models make them applicable to many classes of infectious diseases.However,the combined assumption of a deterministic model and time-invariance among the model parameters are two significant impediments which critically limit their use for long-term predictions.The tendency of certain model parameters to vary in time due to seasonal trends,non-pharmaceutical interventions,and other random effects necessitates a model that structurally permits the incorporation of such time-varying effects.Complementary to this,is the need for a robust mechanism for the estimation of the parameters of the resulting model from data.To this end,we consider an augmented state vector,which appends the time-varying parameters to the original system states whereby the time evolution of the time-varying parameters are driven by an artificial noise process in a standard manner.Distinguishing between time-varying and time-invariant parameters in this fashion limits the introduction of artificial dynamics into the system,and provides a robust,fully Bayesian approach for estimating the timeinvariant system parameters as well as the elements of the process noise covariance matrix.This computational framework is implemented by leveraging the robustness of the Markov chain Monte Carlo algorithm permits the estimation of time-invariant parameters while nested nonlinear filters concurrently perform the joint estimation of the system states and time-varying parameters.We demonstrate performance of the framework by first considering a series of examples using synthetic data,followed by an exposition on public health data collected in the province of Ontario.
基金supported in part by the National Key R&D Program of China(No.2021YFB2011300)the National Natural Science Foundation of China(No.52075262,51905271,52275062)+1 种基金the Fok Ying-Tong Education Foundation of China(No.171044)the Postgraduate Research&Practice Innovation Program of Jiangsu Province(No.KYCX22_0471)。
文摘This article focuses on asymptotic precision motion control for electro-hydraulic axis systems under unknown time-variant parameters,mismatched and matched disturbances.Different from the traditional adaptive results that are applied to dispose of unknown constant parameters only,the unique feature is that an adaptive-gain nonlinear term is introduced into the control design to handle unknown time-variant parameters.Concurrently both mismatched and matched disturbances existing in electro-hydraulic axis systems can also be addressed in this way.With skillful integration of the backstepping technique and the adaptive control,a synthesized controller framework is successfully developed for electro-hydraulic axis systems,in which the coupled interaction between parameter estimation and disturbance estimation is avoided.Accordingly,this designed controller has the capacity of low-computation costs and simpler parameter tuning when compared to the other ones that integrate the adaptive control and observer/estimator-based technique to dividually handle parameter uncertainties and disturbances.Also,a nonlinear filter is designed to eliminate the“explosion of complexity”issue existing in the classical back-stepping technique.The stability analysis uncovers that all the closed-loop signals are bounded and the asymptotic tracking performance is also assured.Finally,contrastive experiment results validate the superiority of the developed method as well.