期刊文献+
共找到863篇文章
< 1 2 44 >
每页显示 20 50 100
Time-variant fragility analysis of the bridge system considering time-varying dependence among typical component seismic demands 被引量:7
1
作者 Song Shuai Qian Yongjiu +2 位作者 Liu Jing Xie Xiaorui Wu Gang 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2019年第2期363-377,共15页
This paper presents a copula technique to develop time-variant seismic fragility curves for corroded bridges at the system level and considers the realistic time-varying dependence among component seismic demands. Bas... This paper presents a copula technique to develop time-variant seismic fragility curves for corroded bridges at the system level and considers the realistic time-varying dependence among component seismic demands. Based on material deterioration mechanisms and incremental dynamic analysis, the time-evolving seismic demands of components were obtained in the form of marginal probability distributions. The time-varying dependences among bridge components were then captured with the best fitting copula function, which was selected from the commonly used copula classes by the empirical distribution based analysis method. The system time-variant fragility curves at different damage states were developed and the effects of time-varying dependences among components on the bridge system fragility were investigated. The results indicate the time-varying dependence among components significantly affects the time-variant fragility of the bridge system. The copula technique captures the nonlinear dependence among component seismic demands accurately and easily by separating the marginal distributions and the dependence among them. 展开更多
关键词 system FRAGILITY CHLORIDE corrosion time-varying DEPENDENCE COPULA function probabilistic seismic demand
下载PDF
Improve Q estimates with spectrum correction based on seismic wavelet estimation 被引量:1
2
作者 屠宁 陆文凯 《Applied Geophysics》 SCIE CSCD 2010年第3期217-228,292,共13页
Characterization of seismic attenuation,quantified by Q,is desirable for seismic processing and interpretation.For seismic reflection data,the coupling between seismic wavelets and the reflectivity sequences hinders t... Characterization of seismic attenuation,quantified by Q,is desirable for seismic processing and interpretation.For seismic reflection data,the coupling between seismic wavelets and the reflectivity sequences hinders their usage for Q estimation.Removing the influence of the reflectivity sequences in reflection data is called spectrum correction. In this paper,we propose a spectrum correction method for Q estimation based on wavelet estimation and then design an inverse Q filter.The method uses higher-order statistics of reflection seismic data for wavelet estimation,the estimated wavelet is then used for spectral correction.Two Q estimation methods are used here,namely the spectral-ratio and centroid frequency shift methods.We test the characteristics of both Q estimation methods under different parameters through a synthetic data experiment.Synthetic and real data examples have shown that reliable Q estimates can be obtained after spectrum correction;moreover, high frequency components are effectively recovered after inverse Q filtering. 展开更多
关键词 seismic attenuation seismic wavelet quality factor inverse Q filter
下载PDF
Influence of inaccurate wavelet phase estimation on seismic inversion 被引量:18
3
作者 Yuan San-Yi Wang Shang-Xu 《Applied Geophysics》 SCIE CSCD 2011年第1期48-59,95,共13页
On the assumption that the seismic wavelet amplitude spectrum is estimated accurately, a group of wavelets with different phase spectra, regarded as estimated wavelets, are used to implement linear least-squares inver... On the assumption that the seismic wavelet amplitude spectrum is estimated accurately, a group of wavelets with different phase spectra, regarded as estimated wavelets, are used to implement linear least-squares inversion. During inversion, except for the wavelet phase, all other factors affecting inversion results are not taken into account. The inversion results of a sparse reflectivity model (or blocky impedance model) show that: (1) although the synthetic data using inversion results matches well with the original seismic data, the inverted reflectivity and acoustic impedance are different from that of the real model. (2) the inversion result reliability is dependent on the estimated wavelet Z transform root distribution. When the estimated wavelet Z transform roots only differ from that of the real wavelet near the unit circle, the inverted reflectivity and impedance are usually consistent with the real model; (3) although the synthetic data matches well with the original data and the Cauchy norm (or modified Cauchy norm) with a constant damping parameter has been optimized, the inverted results are still greatly different from the real model. Finally, we suggest using the L1 norm, Kurtosis, variation, Cauchy norm with adaptive damping parameter or/and modified Cauchy norm with adaptive damping parameter as evaluation criteria to reduce the bad influence of inaccurate wavelet phase estimation and obtain good results in theory. 展开更多
关键词 PHASE seismic wavelet INVERSION evaluation criterion ROOT
下载PDF
Phase spectrum estimation of the seismic wavelet based on a criterion function 被引量:4
4
作者 Yu Yongcai Wang Shangxu +1 位作者 Yuan Sanyi Qi Pengfei 《Petroleum Science》 SCIE CAS CSCD 2012年第2期170-181,共12页
Phase spectrum estimation of the seismic wavelet is an important issue in high-resolution seismic data processing and interpretation. On the basis of two patterns of constant-phase rotation and root transform for wave... Phase spectrum estimation of the seismic wavelet is an important issue in high-resolution seismic data processing and interpretation. On the basis of two patterns of constant-phase rotation and root transform for wavelet phase spectrum variation, we introduce six sparse criteria, including Lu’s improved kurtosis criterion, the parsimony criterion, exponential transform criterion, Sech criterion, Cauchy criterion, and the modified Cauchy criterion, to phase spectrum estimation of the seismic wavelet, obtaining an equivalent effect to the kurtosis criterion. Through numerical experiments, we find that when the reflectivity is not a sparse sequence, the estimated phase spectrum of the seismic wavelet based on the criterion function will deviate from the true value. In order to eliminate the influence of non-sparse reflectivity series in a single trace, we apply the method to the multi-trace seismogram, improving the accuracy of seismic wavelet phase spectrum estimation. 展开更多
关键词 seismic wavelet phase spectrum criterion function SPARSE
下载PDF
Identification method of seismic phase in three-component seismograms on the basis of wavelet transform 被引量:4
5
作者 刘希强 周惠兰 +3 位作者 沈萍 杨选辉 马延路 李红 《Acta Seismologica Sinica(English Edition)》 CSCD 2000年第2期136-142,共7页
This paper puts forward wavelet transform method to identify P and S phases in three component seismograms using polarization information contained in the wavelet transform coefficients of signal. The P and S wave loc... This paper puts forward wavelet transform method to identify P and S phases in three component seismograms using polarization information contained in the wavelet transform coefficients of signal. The P and S wave locator functions are constructed by using eigenvalue analysis method to wavelet transform coefficient across several scales. Locator functions formed by wavelet transform have stated noise resistance capability, and is proved to be very effective in identifying the P and S arrivals of the test data and actual earthquake data. 展开更多
关键词 wavelet transform eigenvalue analysis seismic phase identification
下载PDF
Modal Identification of Linear Time-varying Systems Using Continuous Wavelet Transform 被引量:1
6
作者 Chang Xu Cong Wang Jingbo Gao 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2015年第1期30-36,共7页
A wavelet based identification method for linear time-varying systems is presented,and the ridge and skeleton of the continuous wavelet transform of free response is used to extract time-varying parameters. The stiffn... A wavelet based identification method for linear time-varying systems is presented,and the ridge and skeleton of the continuous wavelet transform of free response is used to extract time-varying parameters. The stiffness and damping coefficients of single-degree-of—freedom systems,frequencies and damping ratios of multi-degree-of-freedom systems are estimated without any prior information of systems. The proposed method is applied to linear time-varying systems with both abrupt and smooth variation parameters. Gaussian white noise is added to the response to test the anti-noise performance of the algorithm. The simulation results show that the proposed method is capable of accurately tracking the variation of the systems. 展开更多
关键词 time-varying SYSTEMS IDENTIFICATION wavelet transf
下载PDF
Seismic wavelet estimation via a system identification method
7
作者 Shaoshui Wang Yongshou Dai Fang Wang 《Earthquake Science》 CSCD 2009年第5期487-492,共6页
On the assumption that the wavelet is causal and nonminimum phase, an autoregressive moving average (ARMA) model is introduced to fit the seismic trace. Seismic wavelet extraction is converted to parameters estimati... On the assumption that the wavelet is causal and nonminimum phase, an autoregressive moving average (ARMA) model is introduced to fit the seismic trace. Seismic wavelet extraction is converted to parameters estimation of the ARMA model. Singular value decomposition (SVD) of an appropriate matrix formed by autocorrelation is exploited to determine the autoregressive (AR) order, and the cumulant-based SVD-TLS (total least squares) approach is proposed to obtain the AR parameters. The author proposes a new moving average (MA) model order determination method via combining the information theoretic criteria method and higher-order cumulant method. The cumulant approach is used to achieve the MA parameters. Theoretical analysis and numerical simulations demonstrate the feasibility of the wavelet extraction approach. 展开更多
关键词 seismic wavelet ARMA model SVD higher order cumulant information theoretic criteria
下载PDF
Irregularly sampled seismic data interpolation via wavelet-based convolutional block attention deep learning 被引量:2
8
作者 Yihuai Lou Lukun Wu +4 位作者 Lin Liu Kai Yu Naihao Liu Zhiguo Wang Wei Wang 《Artificial Intelligence in Geosciences》 2022年第1期192-202,共11页
Seismic data interpolation,especially irregularly sampled data interpolation,is a critical task for seismic processing and subsequent interpretation.Recently,with the development of machine learning and deep learning,... Seismic data interpolation,especially irregularly sampled data interpolation,is a critical task for seismic processing and subsequent interpretation.Recently,with the development of machine learning and deep learning,convolutional neural networks(CNNs)are applied for interpolating irregularly sampled seismic data.CNN based approaches can address the apparent defects of traditional interpolation methods,such as the low computational efficiency and the difficulty on parameters selection.However,current CNN based methods only consider the temporal and spatial features of irregularly sampled seismic data,which fail to consider the frequency features of seismic data,i.e.,the multi-scale features.To overcome these drawbacks,we propose a wavelet-based convolutional block attention deep learning(W-CBADL)network for irregularly sampled seismic data reconstruction.We firstly introduce the discrete wavelet transform(DWT)and the inverse wavelet transform(IWT)to the commonly used U-Net by considering the multi-scale features of irregularly sampled seismic data.Moreover,we propose to adopt the convolutional block attention module(CBAM)to precisely restore sampled seismic traces,which could apply the attention to both channel and spatial dimensions.Finally,we adopt the proposed W-CBADL model to synthetic and pre-stack field data to evaluate its validity and effectiveness.The results demonstrate that the proposed W-CBADL model could reconstruct irregularly sampled seismic data more effectively and more efficiently than the state-of-the-art contrastive CNN based models. 展开更多
关键词 Irregularly sampled seismic data reconstruction Deep learning U-Net Discrete wavelet transform Convolutional block attention module
下载PDF
Gauss linear frequency modulation wavelet transforms and its application to seismic phases identification
9
作者 刘希强 周惠兰 +3 位作者 曹文海 李红 李永红 季爱东 《Acta Seismologica Sinica(English Edition)》 CSCD 2002年第6期636-645,共10页
Based on the characteristics of gradual change style seismic signal onset which has more high frequency signal components but less magnitude, this paper selects Gauss linear frequency modulation wavelet as base functi... Based on the characteristics of gradual change style seismic signal onset which has more high frequency signal components but less magnitude, this paper selects Gauss linear frequency modulation wavelet as base function to study the change characteristics of Gauss linear frequency modulation wavelet transform with difference wavelet and signal parameters, analyzes the error origin of seismic phases identification on the basis of Gauss linear frequency modulation wavelet transform, puts forward a kind of new method identifying gradual change style seismic phases with background noise which is called fixed scale wavelet transform ratio, and presents application examples about simulation digital signal and actual seismic phases recording onsets identification. 展开更多
关键词 Gauss linear frequency modulation wavelet wavelet transform gradual change style seismic sig-nal onset identification
下载PDF
Singularity detection of the thin bed seismic signals with wavelet transform
10
作者 李庆春 朱光明 《Acta Seismologica Sinica(English Edition)》 CSCD 2000年第1期61-66,共6页
The location of singularities may be detected by local maxima of the wavelet transform modulus. The digital modeling and focusing process to wavelet transform of the reflecting seismic signals have been done. It has b... The location of singularities may be detected by local maxima of the wavelet transform modulus. The digital modeling and focusing process to wavelet transform of the reflecting seismic signals have been done. It has been found that the locations of singularities after wavelet transform are only affected by two factors, their original locations and the seismic wavelet length, which says it does not matter with what shape the wavelet will be. The wavelet length can be determined according to the wavelet transform results and be eliminated thereafter so that we are able to detect thin bed seismic signal with resolution of l/32 wavelength. The singularities have been recovered with improved resolution of the seismic section by real data processing. 展开更多
关键词 maxima of wavelet transform modulus singularity detection thin bed seismic signal
下载PDF
Time-varying seismic fragility analysis of durability damage of high-tensile reinforcement ECC bridge pier
11
作者 Liang Yan Zhao Zhenghao +2 位作者 Li Panjie Tao Chenchen Huai Chenzi 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2023年第2期513-525,共13页
The deterioration of the performance of offshore bridges is particularly prominent due to the complex natural environment,including the coupling effects of earthquake and seawater erosion.In particular,bridge piers ar... The deterioration of the performance of offshore bridges is particularly prominent due to the complex natural environment,including the coupling effects of earthquake and seawater erosion.In particular,bridge piers are the main energy-consuming and load-bearing components,so that excellent seismic capacity of bridge piers is the key to avoiding bridge damage.Although earthquake resistant behavior of ordinary reinforced concrete bridge piers(ordinary pier)can be improved by increasing the section size and reinforcement ratio of piers,the improvement of the earthquake resistant behavior is limited.To further improve the earthquake resistant behavior of bridge piers,high-tensile reinforcement engineered cementitious composite(ECC)bridge piers are utilized and time-varying seismic fragility analysis are conducted in this study.The refined model of a bridge pier is built by OpenSees.First,the influence of ECC replacement height on pier curvature is analyzed to determine the reasonable ECC height.Then,the time-varying fragility analysis of high-tensile reinforcement ECC piers(ECC composite piers)with durability damage are evaluated considering the time-varying law of materials.Four damage states,slight damage,moderate damage,extensive damage and complete collapse,are utilized in the study.These fragility curves indicate the durability damage can debase the earthquake resistant behavior of piers continually,the exceedance probability of the same state of destruction increases with the increase of peak ground acceleration(PGA)and service time of pier.The results also indicate that the corrosion level of chloride ion to pier is small during the early service period,and the bridge pier vulnerable curve is similar to that of the new bridge pier.As the level of chlorine ion corrosion deepens,transcendental probability is increased.Compared with the ordinary pier,the exceedance probability in each limit state of ECC composite piers is significantly reduced.The proposed ECC composite pies leads to better realistic time-varying earthquake resistant behavior. 展开更多
关键词 offshore bridge pier ECC high-tensile reinforcement DURABILITY time-varying seismic fragility
下载PDF
Wavelet-Based Response Computation for Base-Isolated Structure under Seismic Excitation
12
作者 Wensheng Ding Zhi Sun 《Journal of Applied Mathematics and Physics》 2014年第5期163-169,共7页
This paper presents a wavelet-based approach for estimating the response of the base-isolated structure under seismic ground motions. The seismic ground motion record is expressed as the multi-scale wavelet coefficien... This paper presents a wavelet-based approach for estimating the response of the base-isolated structure under seismic ground motions. The seismic ground motion record is expressed as the multi-scale wavelet coefficients which presents the time frequency characteristics of the seismic excitation. The wavelet domain governing differential equation between the wavelet coefficients of the excitation and response is derived. Numerical study on a one-storey base isolated structure is performed. The result shows that the wavelet based response computation method is of high precision. 展开更多
关键词 wavelet TRANSFORM seismic EXCITATION TIME-FREQUENCY Characteristic Input-Response Relationship wavelet Basis
下载PDF
Properties of an improved Gabor wavelet transform and its applications to seismic signal processing and interpretation
13
作者 Ji Zhan-Huai Yan Sheng-Gang 《Applied Geophysics》 SCIE CSCD 2017年第4期529-542,621,共15页
This paper presents an analytical study of the complete transform of improved Gabor wavelets (IGWs), and discusses its application to the processing and interpretation of seismic signals. The complete Gabor wavelet ... This paper presents an analytical study of the complete transform of improved Gabor wavelets (IGWs), and discusses its application to the processing and interpretation of seismic signals. The complete Gabor wavelet transform has the following properties. First, unlike the conventional transform, the improved Gabor wavelet transform (IGWT) maps time domain signals to the time-frequency domain instead of the time-scale domain. Second, the IGW's dominant frequency is fixed, so the transform can perform signal frequency division, where the dominant frequency components of the extracted sub-band signal carry essentially the same information as the corresponding components of the original signal, and the sub- band signal bandwidth can be regulated effectively by the transform's resolution factor. Third, a time-frequency filter consisting of an IGWT and its inverse transform can accurately locate target areas in the time-frequency field and perform filtering in a given time-frequency range. The complete IGW transform's properties are investigated using simulation experiments and test cases, showing positive results for seismic signal processing and interpretation, such as enhancing seismic signal resolution, permitting signal frequency division, and allowing small faults to be identified. 展开更多
关键词 seismic signal inverse transform Gabor wavelet transform FAULTS RESOLUTIONS instantaneous phase
下载PDF
Ground roll separation method via threshold fi ltering and constraint of seismic wavelet support in curvelet domain
14
作者 Wang De-ying Chen Li-hua +3 位作者 Dong Lie-qian Zhao Li-hong Ding Ren-wei Ding Cheng-zhen 《Applied Geophysics》 SCIE CSCD 2021年第2期225-237,273,274,共15页
Most traditional ground roll separation methods utilize only the difference in geometric characteristics between the ground roll and the refl ection wave to separate them.When the geometric characteristics of data are... Most traditional ground roll separation methods utilize only the difference in geometric characteristics between the ground roll and the refl ection wave to separate them.When the geometric characteristics of data are complex,these methods often lead to damage of the reflection wave or incompletely suppress the ground roll.To solve this problem,we proposed a novel ground roll separation method via threshold filtering and constraint of seismic wavelet support in the curvelet domain;this method is called the TFWS method.First,curvelet threshold fi ltering(CTF)is performed by using the diff erence of the curvelet coeffi cient of the refl ection wave and the ground roll in the location,scale,and slope of their events to eliminate most of the ground roll.Second,the degree of the local damaged signal or the local residual noise is estimated as the local weighting coeffi cient.Under the constraints of seismic wavelet and local weighting coeffi cient,the L1 norm of the refl ection coeffi cient is minimized in the curvelet domain to recover the damaged refl ection wave and attenuate the residual noise.The local weighting coeffi cient in this paper is obtained by calculating the local correlation coeffi cient between the high-pass fi ltering result and the CFT result.We applied the TFWS method to simulate and fi eld data and compared its performance with that of frequency and wavenumber filtering and the CFT method.Results show that the TFWS method can attenuate not only linear ground roll,aliased ground roll,and nonlinear noise but also strong noise with a slope close to the refl ection events. 展开更多
关键词 ground roll separation threshold fi ltering curvelet domain seismic wavelet
下载PDF
Seismic Wavelet Analysis Based on Finite Element Numerical Simulation
15
作者 Junguo Du Jun Wu +2 位作者 Longjiang Jing Shuqin Li Qiang Zhang 《Journal of Geoscience and Environment Protection》 2023年第6期220-228,共9页
The practice of exploration and production has proved that explosives are excited in different surrounding rocks and the seismic wavelets collected have different characteristics. In this paper, by establishing a nume... The practice of exploration and production has proved that explosives are excited in different surrounding rocks and the seismic wavelets collected have different characteristics. In this paper, by establishing a numerical model of the explosion in the well, using finite element analysis technology for numerical simulation, the simulation calculated the stress structure in the near-source area of the earthquake excitation, and extracted the seismic wavelet. The results show that the simulation seismic wavelet characteristics of different thin interbedded sand and mudstone structures have changed significantly. Through excitation simulation, the amplitude and spectrum information of seismic wavelets can be compared and analyzed, and the excitation parameters can be optimized. . 展开更多
关键词 Finite Element Method seismic wavelet Numerical Simulation Thin Interbed
下载PDF
Three-Dimensional Density Distribution and Seismic Activity along the Guxiang–Tongmai Segment of the Jiali Fault,Tibet
16
作者 FAN Pengxiao YU Changqing +3 位作者 WANG Ruixue ZENG Xiangzhi QU Chen ZHANG Yue 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2024年第2期454-467,共14页
The Guxiang-Tongmai segment of the Jiali fault is situated northeast of the Namche Barwa Syntaxis in northeastern Tibet.It is one of the most active strike-slip faults near the syntaxis and plays a pivotal role in the... The Guxiang-Tongmai segment of the Jiali fault is situated northeast of the Namche Barwa Syntaxis in northeastern Tibet.It is one of the most active strike-slip faults near the syntaxis and plays a pivotal role in the examination of seismic activity within the eastern Himalayan Syntaxis.New study in the research region has yielded a 1:200000 gravity dataset covering an area 1500 km^(2).Using wavelet transform multiscale decomposition,scratch analysis techniques,and 3D gravity inversion methods,gravity anomalies,fault distributions,and density structures were determined across various scales.Through the integration of our new gravity data with other geophysical and geological information,our findings demonstrate substantial variations in the overall crustal density within the region,with the fault distribution closely linked to these density fluctuations.Disparities in stratigraphic density are important causes of variations in the capacity of geological formations to endure regional tectonic stress.Earthquakes are predominantly concentrated within the density transition zone and are primarily situated in regions of elevated density.The hanging wall stress within the Guxiang-Tongmai segment of the Jiali fault exhibits a notable concentration,marked by pronounced anisotropy,and is positioned within the density differential zone,which is prone to earthquakes. 展开更多
关键词 seismicITY deep-density structure wavelet transform multi-scale decomposition scratch analysis 3D gravity inversion Jiali fault TIBET
下载PDF
Efficient simulation of spatially correlated non-stationary ground motions by wavelet-packet algorithm and spectral representation method
17
作者 Ji Kun Cao Xuyang +1 位作者 Wang Suyang Wen Ruizhi 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2024年第4期799-814,共16页
Although the classical spectral representation method(SRM)has been widely used in the generation of spatially varying ground motions,there are still challenges in efficient simulation of the non-stationary stochastic ... Although the classical spectral representation method(SRM)has been widely used in the generation of spatially varying ground motions,there are still challenges in efficient simulation of the non-stationary stochastic vector process in practice.The first problem is the inherent limitation and inflexibility of the deterministic time/frequency modulation function.Another difficulty is the estimation of evolutionary power spectral density(EPSD)with quite a few samples.To tackle these problems,the wavelet packet transform(WPT)algorithm is utilized to build a time-varying spectrum of seed recording which describes the energy distribution in the time-frequency domain.The time-varying spectrum is proven to preserve the time and frequency marginal property as theoretical EPSD will do for the stationary process.For the simulation of spatially varying ground motions,the auto-EPSD for all locations is directly estimated using the time-varying spectrum of seed recording rather than matching predefined EPSD models.Then the constructed spectral matrix is incorporated in SRM to simulate spatially varying non-stationary ground motions using efficient Cholesky decomposition techniques.In addition to a good match with the target coherency model,two numerical examples indicate that the generated time histories retain the physical properties of the prescribed seed recording,including waveform,temporal/spectral non-stationarity,normalized energy buildup,and significant duration. 展开更多
关键词 non-stationarity time-varying spectrum wavelet packet transform(WPT) spectral representation method(SRM) response spectrum spatially varying recordings
下载PDF
Performance of Continuous Wavelet Transform over Fourier Transform in Features Resolutions
18
作者 Michael K. Appiah Sylvester K. Danuor Alfred K. Bienibuor 《International Journal of Geosciences》 CAS 2024年第2期87-105,共19页
This study presents a comparative analysis of two image enhancement techniques, Continuous Wavelet Transform (CWT) and Fast Fourier Transform (FFT), in the context of improving the clarity of high-quality 3D seismic d... This study presents a comparative analysis of two image enhancement techniques, Continuous Wavelet Transform (CWT) and Fast Fourier Transform (FFT), in the context of improving the clarity of high-quality 3D seismic data obtained from the Tano Basin in West Africa, Ghana. The research focuses on a comparative analysis of image clarity in seismic attribute analysis to facilitate the identification of reservoir features within the subsurface structures. The findings of the study indicate that CWT has a significant advantage over FFT in terms of image quality and identifying subsurface structures. The results demonstrate the superior performance of CWT in providing a better representation, making it more effective for seismic attribute analysis. The study highlights the importance of choosing the appropriate image enhancement technique based on the specific application needs and the broader context of the study. While CWT provides high-quality images and superior performance in identifying subsurface structures, the selection between these methods should be made judiciously, taking into account the objectives of the study and the characteristics of the signals being analyzed. The research provides valuable insights into the decision-making process for selecting image enhancement techniques in seismic data analysis, helping researchers and practitioners make informed choices that cater to the unique requirements of their studies. Ultimately, this study contributes to the advancement of the field of subsurface imaging and geological feature identification. 展开更多
关键词 Continuous wavelet Transform (CWT) Fast Fourier Transform (FFT) Reservoir Characterization Tano Basin seismic Data Spectral Decomposition
下载PDF
The improved ICA algorithm and its application in the seismic data denoising 被引量:6
19
作者 QIN Fei-long LIU Jian 《Journal of Chongqing University》 CAS 2018年第4期162-170,共9页
The field seismic data is disturbed by the interferential information, which has low signal to noise ratio (SNR). That is disadvantage for seismic data interpretation. So it is important to remove the noise of seismic... The field seismic data is disturbed by the interferential information, which has low signal to noise ratio (SNR). That is disadvantage for seismic data interpretation. So it is important to remove the noise of seismic data. Independent component analysis (ICA) can remove most of the noise interference. However, ICA has some defects in noise reduction, because it needs some conditions that seismic data is independent reciprocally for denoising. To solve these defects, this paper proposes an improved ICA algorithm to noise reduction. Through simulation experiments, it can be obtained that the best decomposition levels of the new algorithm is 3. At last, the proposed improved ICA is applied to deal with the actual seismic data. The results show that it can effectively eliminate most of seismic noise such as random noise, linear interference, surface waves, and so on. The improved ICA is not only easy to denoising, but also has excellent mathematical theoretical properties. 展开更多
关键词 seismic data IMPROVED ICA wavelet transform DENOISING
下载PDF
Improving the resolution of seismic traces based on the secondary time-frequency spectrum 被引量:11
20
作者 Wang De-Ying Huang Jian.Ping +2 位作者 Kong Xue Li Zhen-Chun Wang Jiao 《Applied Geophysics》 SCIE CSCD 2017年第2期236-246,323,共12页
The resolution of seismic data is critical to seismic data processing and the subsequent interpretation of fine structures. In conventional resolution improvement methods, the seismic data is assumed stationary and th... The resolution of seismic data is critical to seismic data processing and the subsequent interpretation of fine structures. In conventional resolution improvement methods, the seismic data is assumed stationary and the noise level not changes with space, whereas the actual situation does not satisfy this assumption, so that results after resolution improvement processing is not up to the expected effect. To solve these problems, we propose a seismic resolution improvement method based on the secondary time-frequency spectrum. First, we propose the secondary time-frequency spectrum based on S transform (ST) and discuss the reflection coefficient sequence and time-dependent wavelet in the secondary time frequency spectrum. Second, using the secondary time frequency spectrum, we design a two- dimensional filter to extract the amplitude spectrum of the time-dependent wavelet. Then, we discuss the improvement of the resolution operator in noisy environments and propose a novel approach for determining the broad frequency range of the resolution operator in the time- fi'equency-space domain. Finally, we apply the proposed method to synthetic and real data and compare the results of the traditional spectrum-modeling deconvolution and Q compensation method. The results suggest that the proposed method does not need to estimate the Q value and the resolution is not limited by the bandwidth of the source. Thus, the resolution of the seismic data is improved sufficiently based on the signal-to-noise ratio (SNR). 展开更多
关键词 RESOLUTION S transform time-frequency spectrum time-variant wavelet spectrum-modeling deconvolution Q compensation
下载PDF
上一页 1 2 44 下一页 到第
使用帮助 返回顶部