Time-varying mesh stiffness(TVMS)is a vital internal excitation source for the spiral bevel gear(SBG)transmission system.Spalling defect often causes decrease in gear mesh stiffness and changes the dynamic characteris...Time-varying mesh stiffness(TVMS)is a vital internal excitation source for the spiral bevel gear(SBG)transmission system.Spalling defect often causes decrease in gear mesh stiffness and changes the dynamic characteristics of the gear system,which further increases noise and vibration.This paper aims to calculate the TVMS and establish dynamic model of SBG with spalling defect.In this study,a novel analytical model based on slice method is proposed to calculate the TVMS of SBG considering spalling defect.Subsequently,the influence of spalling defect on the TVMS is studied through a numerical simulation,and the proposed analytical model is verified by a finite element model.Besides,an 8-degrees-of-freedom dynamic model is established for SBG transmission system.Incorporating the spalling defect into TVMS,the dynamic responses of spalled SBG are analyzed.The numerical results indicate that spalling defect would cause periodic impact in time domain.Finally,an experiment is designed to verify the proposed dynamic model.The experimental results show that the spalling defect makes the response characterized by periodic impact with the rotating frequency of spalled pinion.展开更多
A nonlinear model of anti-backlash gear with time-varying friction and mesh stiffness was proposed for the further study on dynamic characteristics of anti-backlash gear. In order to improve the model precision, appli...A nonlinear model of anti-backlash gear with time-varying friction and mesh stiffness was proposed for the further study on dynamic characteristics of anti-backlash gear. In order to improve the model precision, applied force analysis was completed in detail, and single or double tooth meshing states of two gear pairs at any timing were determined according to the meshing characteristic of anti-backlash gear. The influences of friction and variations of damping ratio on dynamic transmission error were analyzed finally by numerical calculation and the results show that anti-backlash gear can increase the composite mesh stiffness comparing with the mesh stiffness of the normal gear pair. At the pitch points where the frictions change their signs, additional impulsive effects are observed. The width of impulsive in the same value of center frequency is wider than that without friction, and the amplitude is lower. When gear pairs mesh in and out, damping can reduce the vibration and impact.展开更多
Wind power has attracted increasing attention as a renewable and clean energy. Gear fault frequently occurs under extreme environment and complex loads. The time-varying meshing stiffness is one of the main excitation...Wind power has attracted increasing attention as a renewable and clean energy. Gear fault frequently occurs under extreme environment and complex loads. The time-varying meshing stiffness is one of the main excitations. This study proposes a 5 degree-of-freedom torsional vibration model for the planetary gear system. The influence of some parameters(e.g., contact ratio and phase difference) is discussed under different conditions of a single teeth pair and double pairs of teeth. The impact load caused by the teeth face fault, ramped load induced by the complex wind conditions, and the harmonic excitation are investigated. The analysis of the time-varying meshing stiffness and the dynamic meshing force shows that the dynamic design under different loads can be made to avoid resonance, can provide the basis for the gear fault location of a wind turbine, and distinguish the fault characteristics from the vibration signals.展开更多
Internal and external meshes are two of primary excitation sources which induce vibration while double-helical planetary gear sets are in transmission. Based on the analysis of tooth movement principle,three cases of ...Internal and external meshes are two of primary excitation sources which induce vibration while double-helical planetary gear sets are in transmission. Based on the analysis of tooth movement principle,three cases of mesh stiffness are derived via investigating the length of action lines,and catalogued in terms of β < β0,β = β0and β > β_0. The simulation demonstrates mesh stiffness between gear pairs performs as a trapezoid waveform( TW) and changes along with the line of action simultaneously,total mesh stiffness comes from the superposition of each engaged gear. While governing equations of motion contained 16 DOFs( degree of freedom) are constructed and effectively solved through the combination of numerical approaches. Comparing with sinusoidal waveform mesh stiffness( SW),the results show that dynamical factors and perturbation under the excitation of TW( β < β_0) are greater and remarkable than that from SW,with respect to the mean dynamic factors about 1. 51 and 1. 28,respectively. The fluctuation response between ring- planet( R- P) is stronger than sun-planet( S-P) which is also validated by both approach studies,frequency spectra analyses identifies larger distinct rotational resonance and more frequencies under TW excitation.展开更多
Mesh stiffness is one of important base parameters of face gear dynamic studies.However,a calculation solution of mesh stiffness of face gear drives is not to be constructed due to complex geometric flakes of face gea...Mesh stiffness is one of important base parameters of face gear dynamic studies.However,a calculation solution of mesh stiffness of face gear drives is not to be constructed due to complex geometric flakes of face gear teeth.Thus,a calculation solution of mesh stiffness of face gear drives with a spur gear,which is based on the proposed equivalent face gear teeth and Ishikawa model,is constructed,and the influence of contact effects on mesh stiffness of face gear drives is investigated.The results indicate the mesh stiffness of face gear drives is sensitive to contact effects under heavy loaded operating conditions,specially.These contributions will benefit to improve dynamic studies of face gear drives.展开更多
Simulation study on the cylindrical gear meshing with the evolution gear meshing stiffness is being done for better understanding the dynamic characteristics of the kinematics.With consideration of damping,bearing cle...Simulation study on the cylindrical gear meshing with the evolution gear meshing stiffness is being done for better understanding the dynamic characteristics of the kinematics.With consideration of damping,bearing clearance and gear backlash nonlinearity,the dynamic model is set up and computed in MATLAB.The analysis about the relationship between the kinematic responses and the meshing stiffness are carried out.And the results showed that as the gear mesh stiffness is changed from small to large,the performance of the system is changed from the harmonic stable periodic motion to with one times,two times,four times,ending chaos of the stability of the bifurcation.The research results would have theoretical guidance value for the fault diagnosis in engineering.展开更多
The thermal elasto-hydrodynamic lubrication characteristics of the internal meshing gears in a planetary gear train under vibrations were examined considering the influence of the modification coefficient and time-var...The thermal elasto-hydrodynamic lubrication characteristics of the internal meshing gears in a planetary gear train under vibrations were examined considering the influence of the modification coefficient and time-varying meshing stiffness.Based on dynamic theory of the gear system,a dynamic model of the planetary gear train was established.The lubrication performances of modified gear systems under vibrations and static loads were analyzed.Compared with other transmission types,the best lubrication effect could be produced by the positive transmission.A thicker lubricating oil film could be formed,and the friction coefficient and oil film flash temperature are the smallest.Increasing modification coefficient improves the lubrication performance continuously but intensifies the engage-in and tooth-change impact.For the planetary and inner gears,the increase in the modification coefficient also leads a decrease in the oil film stiffness.展开更多
Nonlinear dynamic analysis was performed on a planetary gear transmission system with meshing beyond the pitch point.The parameters of the planetary gear system were optimized,and a two-dimensional nonlinear dynamic m...Nonlinear dynamic analysis was performed on a planetary gear transmission system with meshing beyond the pitch point.The parameters of the planetary gear system were optimized,and a two-dimensional nonlinear dynamic model was established using the lumped-mass method.Time-varying meshing stiffness was calculated by the energy method.The model consumes the backlash,bearing clearance,time-varying meshing stiffness,time-varying bearing stiffness,and time-varying friction coefficient.The time-varying bearing stiffness was calculated according to the Hertz contact theory.The load distribution among the gears was computed,and the time-varying friction coefficient was calculated according to elastohydrodynamic lubrication(EHL)theory.The dynamical equations were solved via numerical integration.The global bifurcation characteristics caused by the input speed,backlash,bearing clearance,and damping were analyzed.The system was in a chaotic state at natural frequencies or frequency multiplication.The system transitioned from a single-period state to a chaotic state with the increase of the backlash.The bearing clearance of the sun gear had little influence on the bifurcation characteristics.The amplitude was restrained in the chaotic state as the damping ratio increased.展开更多
As one of the most typical fault forms of the helical gear,the crack will change the dynamic excitation and further affect the dynamic behaviors of the transmission systems.Due to the complicated structure of the heli...As one of the most typical fault forms of the helical gear,the crack will change the dynamic excitation and further affect the dynamic behaviors of the transmission systems.Due to the complicated structure of the helical gears,the coupling effect between the neighboring loaded teeth is usually ignored in the mesh stiffness calculation,making it considerably overestimated especially in the case of the crack fault.An improved mesh stiffness calculation method of helical gear with spatial crack is proposed to make up this gap.The interactions between the loaded neighboring teeth induced by the gear body flexibility were considered to improve the calculation accuracy and applicability.Besides,the load distribution law for the engaged cracked tooth along the tooth width and profile can be obtained.The results indicated that the mesh stiffness of the multi-tooth engagement calculation using this model could be further improved compared with the traditional methods.Finally,the effects of the helix angle,crack depth,and crack propagation length on the mesh stiffness and load distribution were investigated using the proposed method.展开更多
In the present work, we investigate the nonlinear parametrically excited vibration and active control of a gear pair system involving backlash, time-varying meshing stiffness and static transmission error. Firstly, a ...In the present work, we investigate the nonlinear parametrically excited vibration and active control of a gear pair system involving backlash, time-varying meshing stiffness and static transmission error. Firstly, a gear pair model is established in a strongly nonlinear form, and its nonlinear vibration characteristics are systematically investigated through different approaches. Several complicated phenomena such as period doubling bifurcation, anti period doubling bifurcation and chaos can be observed under the internal parametric excitation. Then, an active compensation controller is designed to suppress the vibration, including the chaos. Finally, the effectiveness of the proposed controller is verified numerically.展开更多
基金supported by the National Natural Science Foundation of China(grant no.52075414).
文摘Time-varying mesh stiffness(TVMS)is a vital internal excitation source for the spiral bevel gear(SBG)transmission system.Spalling defect often causes decrease in gear mesh stiffness and changes the dynamic characteristics of the gear system,which further increases noise and vibration.This paper aims to calculate the TVMS and establish dynamic model of SBG with spalling defect.In this study,a novel analytical model based on slice method is proposed to calculate the TVMS of SBG considering spalling defect.Subsequently,the influence of spalling defect on the TVMS is studied through a numerical simulation,and the proposed analytical model is verified by a finite element model.Besides,an 8-degrees-of-freedom dynamic model is established for SBG transmission system.Incorporating the spalling defect into TVMS,the dynamic responses of spalled SBG are analyzed.The numerical results indicate that spalling defect would cause periodic impact in time domain.Finally,an experiment is designed to verify the proposed dynamic model.The experimental results show that the spalling defect makes the response characterized by periodic impact with the rotating frequency of spalled pinion.
基金Project(51175505)supported by the National Natural Science Foundation of China
文摘A nonlinear model of anti-backlash gear with time-varying friction and mesh stiffness was proposed for the further study on dynamic characteristics of anti-backlash gear. In order to improve the model precision, applied force analysis was completed in detail, and single or double tooth meshing states of two gear pairs at any timing were determined according to the meshing characteristic of anti-backlash gear. The influences of friction and variations of damping ratio on dynamic transmission error were analyzed finally by numerical calculation and the results show that anti-backlash gear can increase the composite mesh stiffness comparing with the mesh stiffness of the normal gear pair. At the pitch points where the frictions change their signs, additional impulsive effects are observed. The width of impulsive in the same value of center frequency is wider than that without friction, and the amplitude is lower. When gear pairs mesh in and out, damping can reduce the vibration and impact.
基金financially supported by the project‘Research on Key Technologies of Condition Monitoring and Intelligent Early Detection of Wind Turbine Based on Big Data’from State Grid Corporation of China(No.NYB17201600300)
文摘Wind power has attracted increasing attention as a renewable and clean energy. Gear fault frequently occurs under extreme environment and complex loads. The time-varying meshing stiffness is one of the main excitations. This study proposes a 5 degree-of-freedom torsional vibration model for the planetary gear system. The influence of some parameters(e.g., contact ratio and phase difference) is discussed under different conditions of a single teeth pair and double pairs of teeth. The impact load caused by the teeth face fault, ramped load induced by the complex wind conditions, and the harmonic excitation are investigated. The analysis of the time-varying meshing stiffness and the dynamic meshing force shows that the dynamic design under different loads can be made to avoid resonance, can provide the basis for the gear fault location of a wind turbine, and distinguish the fault characteristics from the vibration signals.
基金Sponsored by the National High-tech R&D Program of China(Grant No.2009AA04Z404)
文摘Internal and external meshes are two of primary excitation sources which induce vibration while double-helical planetary gear sets are in transmission. Based on the analysis of tooth movement principle,three cases of mesh stiffness are derived via investigating the length of action lines,and catalogued in terms of β < β0,β = β0and β > β_0. The simulation demonstrates mesh stiffness between gear pairs performs as a trapezoid waveform( TW) and changes along with the line of action simultaneously,total mesh stiffness comes from the superposition of each engaged gear. While governing equations of motion contained 16 DOFs( degree of freedom) are constructed and effectively solved through the combination of numerical approaches. Comparing with sinusoidal waveform mesh stiffness( SW),the results show that dynamical factors and perturbation under the excitation of TW( β < β_0) are greater and remarkable than that from SW,with respect to the mean dynamic factors about 1. 51 and 1. 28,respectively. The fluctuation response between ring- planet( R- P) is stronger than sun-planet( S-P) which is also validated by both approach studies,frequency spectra analyses identifies larger distinct rotational resonance and more frequencies under TW excitation.
基金supported by the National Natural Science Foundations of China(Nos.51105194,51375226)the Fundamental Research Funds for the Central Universities(No.NS2015049)
文摘Mesh stiffness is one of important base parameters of face gear dynamic studies.However,a calculation solution of mesh stiffness of face gear drives is not to be constructed due to complex geometric flakes of face gear teeth.Thus,a calculation solution of mesh stiffness of face gear drives with a spur gear,which is based on the proposed equivalent face gear teeth and Ishikawa model,is constructed,and the influence of contact effects on mesh stiffness of face gear drives is investigated.The results indicate the mesh stiffness of face gear drives is sensitive to contact effects under heavy loaded operating conditions,specially.These contributions will benefit to improve dynamic studies of face gear drives.
基金supported by the National Natural Science Foundation-supported Program(51275052&51575055)
文摘Simulation study on the cylindrical gear meshing with the evolution gear meshing stiffness is being done for better understanding the dynamic characteristics of the kinematics.With consideration of damping,bearing clearance and gear backlash nonlinearity,the dynamic model is set up and computed in MATLAB.The analysis about the relationship between the kinematic responses and the meshing stiffness are carried out.And the results showed that as the gear mesh stiffness is changed from small to large,the performance of the system is changed from the harmonic stable periodic motion to with one times,two times,four times,ending chaos of the stability of the bifurcation.The research results would have theoretical guidance value for the fault diagnosis in engineering.
基金Projects(51575289,51705270)supported by the National Natural Science Foundation of China。
文摘The thermal elasto-hydrodynamic lubrication characteristics of the internal meshing gears in a planetary gear train under vibrations were examined considering the influence of the modification coefficient and time-varying meshing stiffness.Based on dynamic theory of the gear system,a dynamic model of the planetary gear train was established.The lubrication performances of modified gear systems under vibrations and static loads were analyzed.Compared with other transmission types,the best lubrication effect could be produced by the positive transmission.A thicker lubricating oil film could be formed,and the friction coefficient and oil film flash temperature are the smallest.Increasing modification coefficient improves the lubrication performance continuously but intensifies the engage-in and tooth-change impact.For the planetary and inner gears,the increase in the modification coefficient also leads a decrease in the oil film stiffness.
基金supported by the National Natural Science Foundation of China(No. 51975274)National Key Laboratory of Science and Technology on Helicopter Transmission(Nanjing University of Aeronautics and Astronautics)(No. HTL-A-19K03)
文摘Nonlinear dynamic analysis was performed on a planetary gear transmission system with meshing beyond the pitch point.The parameters of the planetary gear system were optimized,and a two-dimensional nonlinear dynamic model was established using the lumped-mass method.Time-varying meshing stiffness was calculated by the energy method.The model consumes the backlash,bearing clearance,time-varying meshing stiffness,time-varying bearing stiffness,and time-varying friction coefficient.The time-varying bearing stiffness was calculated according to the Hertz contact theory.The load distribution among the gears was computed,and the time-varying friction coefficient was calculated according to elastohydrodynamic lubrication(EHL)theory.The dynamical equations were solved via numerical integration.The global bifurcation characteristics caused by the input speed,backlash,bearing clearance,and damping were analyzed.The system was in a chaotic state at natural frequencies or frequency multiplication.The system transitioned from a single-period state to a chaotic state with the increase of the backlash.The bearing clearance of the sun gear had little influence on the bifurcation characteristics.The amplitude was restrained in the chaotic state as the damping ratio increased.
基金supported by the National Natural Science Foundation of China(Grant Nos.52022083,52275132 and 51735012)。
文摘As one of the most typical fault forms of the helical gear,the crack will change the dynamic excitation and further affect the dynamic behaviors of the transmission systems.Due to the complicated structure of the helical gears,the coupling effect between the neighboring loaded teeth is usually ignored in the mesh stiffness calculation,making it considerably overestimated especially in the case of the crack fault.An improved mesh stiffness calculation method of helical gear with spatial crack is proposed to make up this gap.The interactions between the loaded neighboring teeth induced by the gear body flexibility were considered to improve the calculation accuracy and applicability.Besides,the load distribution law for the engaged cracked tooth along the tooth width and profile can be obtained.The results indicated that the mesh stiffness of the multi-tooth engagement calculation using this model could be further improved compared with the traditional methods.Finally,the effects of the helix angle,crack depth,and crack propagation length on the mesh stiffness and load distribution were investigated using the proposed method.
基金Project supported by the National Natural Science Foundation of China(Grant No.61104040)the Natural Science Foundation of Hebei Province,China(Grant No.E2012203090)the University Innovation Team of Hebei Province Leading Talent Cultivation Project,China(Grant No.LJRC013)
文摘In the present work, we investigate the nonlinear parametrically excited vibration and active control of a gear pair system involving backlash, time-varying meshing stiffness and static transmission error. Firstly, a gear pair model is established in a strongly nonlinear form, and its nonlinear vibration characteristics are systematically investigated through different approaches. Several complicated phenomena such as period doubling bifurcation, anti period doubling bifurcation and chaos can be observed under the internal parametric excitation. Then, an active compensation controller is designed to suppress the vibration, including the chaos. Finally, the effectiveness of the proposed controller is verified numerically.