This paper first applies the sequential cluster method to set up the classification standard of infectious disease incidence state based on the fact that there are many uncertainty characteristics in the incidence cou...This paper first applies the sequential cluster method to set up the classification standard of infectious disease incidence state based on the fact that there are many uncertainty characteristics in the incidence course.Then the paper presents a weighted Markov chain,a method which is used to predict the future incidence state.This method assumes the standardized self-coefficients as weights based on the special characteristics of infectious disease incidence being a dependent stochastic variable.It also analyzes the characteristics of infectious diseases incidence via the Markov chain Monte Carlo method to make the long-term benefit of decision optimal.Our method is successfully validated using existing incidents data of infectious diseases in Jiangsu Province.In summation,this paper proposes ways to improve the accuracy of the weighted Markov chain,specifically in the field of infection epidemiology.展开更多
The mean-square exponential stability problem is investigated for a class of stochastic time-varying delay systems with Markovian jumping parameters. By decomposing the delay interval into multiple equidistant subinte...The mean-square exponential stability problem is investigated for a class of stochastic time-varying delay systems with Markovian jumping parameters. By decomposing the delay interval into multiple equidistant subintervals, a new delay-dependent and decay-rate-dependent criterion is presented based on constructing a novel Lyapunov functional and employing stochastic analysis technique. Besides, the decay rate has no conventional constraint and can be selected according to different practical conditions. Finally, two numerical examples are provided to show that the obtained result has less conservatism than some existing ones in the literature.展开更多
To solve a real problem:how to calculate the reliability of a system with time-varying failure rates in industry systems,this paper studies a model for the load-sharing parallel system with time-varying failure rates,...To solve a real problem:how to calculate the reliability of a system with time-varying failure rates in industry systems,this paper studies a model for the load-sharing parallel system with time-varying failure rates,and obtains calculating formulas of reliability and availability of the system by solving differential equations.In this paper,the failure rates are expressed in polynomial configuration.The constant,linear and Weibull failure rate are in their special form.The polynomial failure rates provide flexibility in modeling the practical time-varying failure rates.展开更多
基金supported in part by"National S&T Major Project Foundation of China"(2009ZX10004-904)Universities Natural Science Foundation of Jiangsu Province(09KJB330004),National Science Foundation Grant DMS-9971405National Institutes of Health Contract N01-HV-28183
文摘This paper first applies the sequential cluster method to set up the classification standard of infectious disease incidence state based on the fact that there are many uncertainty characteristics in the incidence course.Then the paper presents a weighted Markov chain,a method which is used to predict the future incidence state.This method assumes the standardized self-coefficients as weights based on the special characteristics of infectious disease incidence being a dependent stochastic variable.It also analyzes the characteristics of infectious diseases incidence via the Markov chain Monte Carlo method to make the long-term benefit of decision optimal.Our method is successfully validated using existing incidents data of infectious diseases in Jiangsu Province.In summation,this paper proposes ways to improve the accuracy of the weighted Markov chain,specifically in the field of infection epidemiology.
基金supported by the Program for New Century Excellent Talents in University, the Graduate Innovation Program of Jiangsu Province (CX06B-051Z)the Scientific Research Foundation of Graduate School of Southeast University (YBJJ0929)
文摘The mean-square exponential stability problem is investigated for a class of stochastic time-varying delay systems with Markovian jumping parameters. By decomposing the delay interval into multiple equidistant subintervals, a new delay-dependent and decay-rate-dependent criterion is presented based on constructing a novel Lyapunov functional and employing stochastic analysis technique. Besides, the decay rate has no conventional constraint and can be selected according to different practical conditions. Finally, two numerical examples are provided to show that the obtained result has less conservatism than some existing ones in the literature.
文摘To solve a real problem:how to calculate the reliability of a system with time-varying failure rates in industry systems,this paper studies a model for the load-sharing parallel system with time-varying failure rates,and obtains calculating formulas of reliability and availability of the system by solving differential equations.In this paper,the failure rates are expressed in polynomial configuration.The constant,linear and Weibull failure rate are in their special form.The polynomial failure rates provide flexibility in modeling the practical time-varying failure rates.