Mixing time is de fined as the time required for achieving a certain degree of homogeneity of injected tracer in a unit operation vessel. It has been used as a key parameter for assessing the performance of a mixing s...Mixing time is de fined as the time required for achieving a certain degree of homogeneity of injected tracer in a unit operation vessel. It has been used as a key parameter for assessing the performance of a mixing system. From an experimental standpoint, several techniques have been developed for measuring the mixing time. Based on the disturbances to fl ow, they can be classi fied into two groups: non-intrusive and intrusive. However, depending on the type of data generated, they can be also classi fied into direct measurements and indirect measurements(Eulerian and Lagrangian). Since the techniques available for measuring mixing times in an agitated tank do not provide the same information, its choice depends on several factors, namely: accuracy, reproducibility,suitability, cost, sampling speed, type of data, and processing time. A review of the experimental techniques reported in the literature in the last 50 years for the measurement of mixing time in stirred vessels under single and gas–liquid fl ow conditions with Newtonian and non-Newtonian fl uids in the laminar and turbulent regime is made, and a comparison between these techniques is also presented.展开更多
基金Supported by DGAPA-UNAM through the grant IN-108312
文摘Mixing time is de fined as the time required for achieving a certain degree of homogeneity of injected tracer in a unit operation vessel. It has been used as a key parameter for assessing the performance of a mixing system. From an experimental standpoint, several techniques have been developed for measuring the mixing time. Based on the disturbances to fl ow, they can be classi fied into two groups: non-intrusive and intrusive. However, depending on the type of data generated, they can be also classi fied into direct measurements and indirect measurements(Eulerian and Lagrangian). Since the techniques available for measuring mixing times in an agitated tank do not provide the same information, its choice depends on several factors, namely: accuracy, reproducibility,suitability, cost, sampling speed, type of data, and processing time. A review of the experimental techniques reported in the literature in the last 50 years for the measurement of mixing time in stirred vessels under single and gas–liquid fl ow conditions with Newtonian and non-Newtonian fl uids in the laminar and turbulent regime is made, and a comparison between these techniques is also presented.