The recently reported quasi-nonvolatile memory based on semi-floating gate architecture has attracted extensive attention thanks to its potential to bridge the large gap between volatile and nonvolatile memory.However...The recently reported quasi-nonvolatile memory based on semi-floating gate architecture has attracted extensive attention thanks to its potential to bridge the large gap between volatile and nonvolatile memory.However,the further extension of the refresh time in quasi-nonvolatile memory is limited by the charge leakage through the p-n junction.Here,based on the density of states engineered van der Waals heterostructures,the leakage of electrons from the floating gate to the channel is greatly suppressed.As a result,the refresh time is effectively extended to more than 100 s,which is the longest among all previously reported quasi-nonvolatile memories.This work provides a new idea to enhance the refresh time of quasi-nonvolatile memory by the density of states engineering and demonstrates great application potential for high-speed and low-power memory technology.展开更多
The recently reported quasi-nonvolatile memory based on semi-floating gate architecture has attracted extensive attention thanks to its potential to bridge the large gap between volatile and nonvolatile memory.However...The recently reported quasi-nonvolatile memory based on semi-floating gate architecture has attracted extensive attention thanks to its potential to bridge the large gap between volatile and nonvolatile memory.However,the further extension of the refresh time in quasi-nonvolatile memory is limited by the charge leakage through the p-n junction.Here,based on the density of states engineered van der Waals heterostructures,the leakage of electrons from the floating gate to the channel is greatly suppressed.As a result,the refresh time is effectively extended to more than 100 s,which is the longest among all previously reported quasi-nonvolatile memories.This work provides a new idea to enhance the refresh time of quasi-nonvolatile memory by the density of states engineering and demonstrates great application potential for high-speed and low-power memory technology.展开更多
Focused ion beam (FIB) machining can be used to fabricate gallium arsenide-based devices, which have a surface fnish of several nanometers, and the FIB machining speed and surface fnish can be greatly improved using x...Focused ion beam (FIB) machining can be used to fabricate gallium arsenide-based devices, which have a surface fnish of several nanometers, and the FIB machining speed and surface fnish can be greatly improved using xenon difuoride (XeF2) gas-assisted etching. Although the refresh time is one of the most important parameters in the gas-assisted etching process, its efect on the machining quality of the surface fnish has rarely been studied. Therefore, in this work, we investigated the efect of the refresh time on the etching process, including the dissociation process of XeF2, the refresh time dependency of the sputter in yield under diferent incident angles, and the surface fnish under diferent refresh times. The results revealed that a selective etching mechanism occurred at diferent refresh times. At an incidence angle of 0°, the sputtering yield increased with the refresh time and reached its maximum value at 500 ms;at an incidence angle of 30°, the sputtering yield reached its minimum value at a refresh time of 500 ms. For surface roughness, the incident angle played a more important role than the refresh time. The surface fnish was slightly better at an incidence angle of 30° than at 0°. In addition, both F and Xe elements were detected in the processed area: Xe elements were evenly distributed throughout the processing area, while F elements tended to accumulate in the whole processing area. The results suggest that the optimum surface can be obtained when a larger refresh time is employed.展开更多
基金This work was supported by the National Natural Science Foundation of China(61925402,61851402 and 61734003)Science and Technology Commission of Shanghai Municipality(19JC1416600)+2 种基金National Key Research and Development Program(2017YFB0405600)Shanghai Education Development Foundation and Shanghai Municipal Education Commission Shuguang Program(18SG01)China Postdoctoral Science Foundation(2019M661358,2019TQ0065).
文摘The recently reported quasi-nonvolatile memory based on semi-floating gate architecture has attracted extensive attention thanks to its potential to bridge the large gap between volatile and nonvolatile memory.However,the further extension of the refresh time in quasi-nonvolatile memory is limited by the charge leakage through the p-n junction.Here,based on the density of states engineered van der Waals heterostructures,the leakage of electrons from the floating gate to the channel is greatly suppressed.As a result,the refresh time is effectively extended to more than 100 s,which is the longest among all previously reported quasi-nonvolatile memories.This work provides a new idea to enhance the refresh time of quasi-nonvolatile memory by the density of states engineering and demonstrates great application potential for high-speed and low-power memory technology.
文摘The recently reported quasi-nonvolatile memory based on semi-floating gate architecture has attracted extensive attention thanks to its potential to bridge the large gap between volatile and nonvolatile memory.However,the further extension of the refresh time in quasi-nonvolatile memory is limited by the charge leakage through the p-n junction.Here,based on the density of states engineered van der Waals heterostructures,the leakage of electrons from the floating gate to the channel is greatly suppressed.As a result,the refresh time is effectively extended to more than 100 s,which is the longest among all previously reported quasi-nonvolatile memories.This work provides a new idea to enhance the refresh time of quasi-nonvolatile memory by the density of states engineering and demonstrates great application potential for high-speed and low-power memory technology.
基金The authors gratefully acknowledge the startup funding support by the Dalian University of Technology(DUT)(Award No.82232022,82232043,and DUT22LAB404)。
文摘Focused ion beam (FIB) machining can be used to fabricate gallium arsenide-based devices, which have a surface fnish of several nanometers, and the FIB machining speed and surface fnish can be greatly improved using xenon difuoride (XeF2) gas-assisted etching. Although the refresh time is one of the most important parameters in the gas-assisted etching process, its efect on the machining quality of the surface fnish has rarely been studied. Therefore, in this work, we investigated the efect of the refresh time on the etching process, including the dissociation process of XeF2, the refresh time dependency of the sputter in yield under diferent incident angles, and the surface fnish under diferent refresh times. The results revealed that a selective etching mechanism occurred at diferent refresh times. At an incidence angle of 0°, the sputtering yield increased with the refresh time and reached its maximum value at 500 ms;at an incidence angle of 30°, the sputtering yield reached its minimum value at a refresh time of 500 ms. For surface roughness, the incident angle played a more important role than the refresh time. The surface fnish was slightly better at an incidence angle of 30° than at 0°. In addition, both F and Xe elements were detected in the processed area: Xe elements were evenly distributed throughout the processing area, while F elements tended to accumulate in the whole processing area. The results suggest that the optimum surface can be obtained when a larger refresh time is employed.