Studying the relationship between ionic interactions and salt solubility in seawater has implications for seawater desalination and mineral extraction.In this paper,a new method of expressing ion-to-ion interaction is...Studying the relationship between ionic interactions and salt solubility in seawater has implications for seawater desalination and mineral extraction.In this paper,a new method of expressing ion-to-ion interaction is proposed by using molecular dynamics simulation,and the relationship between ion-to-ion interaction and salt solubility in a simulated seawater water-salt system is investigated.By analyzing the variation of distance and contact time between ions in an electrolyte solution,from both spatial and temporal perspectives,new parameters were proposed to describe the interaction between ions:interaction distance(ID),and interaction time ratio(ITR).The best correlation between characteristic time ratio and solubility was found for a molar ratio of salt-to-water of 10:100 with a correlation coefficient of 0.96.For the same salt,a positive correlation was found between CTR and the molar ratio of salt and water.For type 1-1,type 2-1,type 1-2,and type 2-2 salts,the correlation coefficients between CTR and solubility were 0.93,0.96,0.92,and 0.98 for a salt-to-water molar ratio of 10:100,respectively.The solubility of multiple salts was predicted by simulations and compared with experimental values,yielding an average relative deviation of 12.4%.The new ion-interaction parameters offer significant advantages in describing strongly correlated and strongly hydrated electrolyte solutions.展开更多
The presented work examines the mechanism and conditions of self-motion in bodies as systems of interacting elements. It is shown how the oscillation parameters of these elements determine the mode of motion of the sy...The presented work examines the mechanism and conditions of self-motion in bodies as systems of interacting elements. It is shown how the oscillation parameters of these elements determine the mode of motion of the system (body). In this case, the motion is considered as a consequence of symmetry breaking of forces in the systems themselves, and not as a reaction of individual elements to external influences. It is shown that such a violation takes place both in the gravitational field and when the system moves by inertia. Examples of the influence of changes in phase (φ) and frequency (f) parameters of the system elements on the velocity mode of its motion in space are considered. The identity of the causes of self-motion is revealed both in the case of gravitation and inertial motion.展开更多
In this paper, we first show the global existence, uniqueness and regularity of weak solutions for the hyperbolic magnetohydrodynamics(MHD) equations in R^3. Then we establish that the solutions with initial data belo...In this paper, we first show the global existence, uniqueness and regularity of weak solutions for the hyperbolic magnetohydrodynamics(MHD) equations in R^3. Then we establish that the solutions with initial data belonging to H^m(R^3) ∩ L^1(R^3) have the following time decay rate:║▽~mu(x, t) ║~2+║ ▽~mb(x, t)║~ 2+ ║▽^(m+1)u(x, t)║~ 2+ ║▽^(m+1)b(x, t) ║~2≤ c(1 + t)^(-3/2-m)for large t, where m = 0, 1.展开更多
Considering the importance of the prediction of rock burst disasters, and in order to grasp the law of acoustic emission(AE) of coal samples in different dynamic destruction time, the SH-II AE monitoring system was ad...Considering the importance of the prediction of rock burst disasters, and in order to grasp the law of acoustic emission(AE) of coal samples in different dynamic destruction time, the SH-II AE monitoring system was adopted to monitor the failure process of coal samples. The study of the change rule of the AE numbers, energy, ‘b' value and spectrum in the micro crack propagation process of the coal samples shows that as dynamic damage time went by, AE presented high-energy counts and the accumulated counts increased during the compression phase. The AE energy and cumulative counts increased during the elastic stage. The AE blank area increased gradually and the blank lines were more and more obvious in the molding stage. The AE counts and energy showed a trend of decrease in the residual damage phase.AE ‘b' values gradually became sparse, and the large scale cracks percentage compared with micro cracks decreased and the degree of damage decreased. The AE frequency spectrum peak went from the residual damage phase to the molding phase, and finally it was nearly stable, besides the bandwidth of the main frequency is gradually narrowed. Also, the frequency peak changed from single peak frequency to bi-peak frequency and to the single peak frequency. Uniaxial compressive strength is more sensitive than the elastic modulus to dynamic damage time.展开更多
High-pressure solenoid valve with high flow rate and high speed is a key component in an underwater driving system.However,traditional single spool pilot operated valve cannot meet the demands of both high flow rate a...High-pressure solenoid valve with high flow rate and high speed is a key component in an underwater driving system.However,traditional single spool pilot operated valve cannot meet the demands of both high flow rate and high speed simultaneously.A new structure for a high pressure solenoid valve is needed to meet the demand of the underwater driving system.A novel parallel-spool pilot operated high-pressure solenoid valve is proposed to overcome the drawback of the current single spool design.Mathematical models of the opening process and flow rate of the valve are established.Opening response time of the valve is subdivided into 4 parts to analyze the properties of the opening response.Corresponding formulas to solve 4 parts of the response time are derived.Key factors that influence the opening response time are analyzed.According to the mathematical model of the valve,a simulation of the opening process is carried out by MATLAB.Parameters are chosen based on theoretical analysis to design the test prototype of the new type of valve.Opening response time of the designed valve is tested by verifying response of the current in the coil and displacement of the main valve spool.The experimental results are in agreement with the simulated results,therefore the validity of the theoretical analysis is verified.Experimental opening response time of the valve is 48.3 ms at working pressure of 10 MPa.The flow capacity test shows that the largest effective area is 126 mm2 and the largest air flow rate is 2320 L/s.According to the result of the load driving test,the valve can meet the demands of the driving system.The proposed valve with parallel spools provides a new method for the design of a high-pressure valve with fast response and large flow rate.展开更多
We investigated the effects of heating rate on the process parameters of superplastic forming for Zr55Cu30Al10Ni5 by differential scanning calorimetry. The continuous heating and isothermal annealing analyses suggeste...We investigated the effects of heating rate on the process parameters of superplastic forming for Zr55Cu30Al10Ni5 by differential scanning calorimetry. The continuous heating and isothermal annealing analyses suggested that the temperatures of glass transition and onset crystallization are heating rate-dependent in the supercooled liquid region. Then, the time-temperature-transformation diagram under different heating rates indicates that increasing the heating rate can lead to an increase of the incubation time at the same anneal temperature in the supercooled liquid region. Based on the Arrhenius relationship, we discovered that the incubation time increases by 1.08-1.11 times with double increase of the heating rate at the same anneal temperature, and then verified it by the data of literatures and the experimental results. The obtained curve of the max available incubation time reveals that the incubation time at a certain anneal temperature in the supercooled liquid region is not infinite, and will increase with increasing heating rate until this temperature shifts out of the supercooled liquid region because of exceeding critical heating rate. It is concluded that heating rate must be an important processing parameter of superplastic forming for Zr55Cu30Al10Ni5.展开更多
A vector autoregressive model was developed for a sample of container carrier time charter rates. Although the series of time charter rates are themselves found non-stationary, thus precluding the use of many modeling...A vector autoregressive model was developed for a sample of container carrier time charter rates. Although the series of time charter rates are themselves found non-stationary, thus precluding the use of many modeling methodologies, evidence provided by co-integration tests points to the existence of stable long-term relationships between the series. An assessment of the forecasts derived from the model suggests that the spec-ification of these long-term relationships does not improve the accuracy of long-term forecasts. These results are interpreted as a corroboration of the efficient market hypothesis.展开更多
The bipolar Navier-Stokes-Poisson system (BNSP) has been used to simulate the transport of charged particles (ions and electrons for instance) under the influence of electrostatic force governed by the self-consis...The bipolar Navier-Stokes-Poisson system (BNSP) has been used to simulate the transport of charged particles (ions and electrons for instance) under the influence of electrostatic force governed by the self-consistent Poisson equation. The optimal L^2 time convergence rate for the global classical solution is obtained for a small initial perturbation of the constant equilibrium state. It is shown that due to the electric field, the difference of the charge densities tend to the equilibrium states at the optimal rate (1 + t)^-3/4 in L^2-norm, while the individual momentum of the charged particles converges at the optimal rate (1 + t)^-1/4 which is slower than the rate (1 + t)^-3/4 for the compressible Navier-Stokes equations (NS). In addition, a new phenomenon on the charge transport is observed regarding the interplay between the two carriers that almost counteracts the influence of the electric field so that the total density and momentum of the two carriers converges at a faster rate (1 + t)^-3/4+ε for any small constant ε 〉 0. The above estimates reveal the essential difference between the unipolar and the bipolar Navier-Stokes-Poisson systems.展开更多
The isentropic bipolar compressible Navier-Stokes-Poisson (BNSP) system is investigated in R3 in the present paper. The optimal time decay rate of global strong solution is established. When the regular initial data...The isentropic bipolar compressible Navier-Stokes-Poisson (BNSP) system is investigated in R3 in the present paper. The optimal time decay rate of global strong solution is established. When the regular initial data belong to the Sobolev space H l(R3) ∩ B˙ s 1,1 (R3) with l ≥ 4 and s ∈ (0, 1], it is shown that the momenta of the charged particles decay at the optimal rate (1+t) 1 4 s 2 in L2 -norm, which is slower than the rate (1+t) 3 4 s 2 for the compressible Navier-Stokes (NS) equations [14]. In particular, a new phenomenon on the charge transport is observed. The time decay rate of total density and momentum was both (1 + t) 3 4 due to the cancellation effect from the interplay interaction of the charged particles.展开更多
This is a survey paper on the study of compressible Navier-Stokes-Poisson equations. The emphasis is on the long time behavior of global solutions to multi-dimensional compressible Navier-Stokes-Poisson equations, and...This is a survey paper on the study of compressible Navier-Stokes-Poisson equations. The emphasis is on the long time behavior of global solutions to multi-dimensional compressible Navier-Stokes-Poisson equations, and the optimal decay rates for both unipolar and bipolar compressible Navier-Stokes-Poisson equations are discussed.展开更多
The compressible non-isentropic bipolar Navier-Stokes-Poisson (BNSP) sys- tem is investigated in R3 in the present paper, and the optimal time decay rates of global strong solution are shown. For initial data being ...The compressible non-isentropic bipolar Navier-Stokes-Poisson (BNSP) sys- tem is investigated in R3 in the present paper, and the optimal time decay rates of global strong solution are shown. For initial data being a perturbation of equilibrium state in Hl(R3) (R3) for 1 〉 4 and s E (0, 1], it is shown that the density and temperature for each charged particle (like electron or ion) decay at the same optimal rate (1 + t)-3/4, but the momentum for each particle decays at the optimal rate (1 + t)-1/4-3/2 which is slower than the rate (1 + t)-3/4-3/2 for the compressible Navier-Stokes (NS) equations [19] for same initial data. However, the total momentum tends to the constant state at the rate (1 +t)-3/4 as well, due to the interplay interaction of charge particles which counteracts the influence of electric field.展开更多
In the process of image transmission, the famous JPEG and JPEG-2000 compression methods need more transmission time as it is difficult for them to compress the image with a low compression rate. Recently the compresse...In the process of image transmission, the famous JPEG and JPEG-2000 compression methods need more transmission time as it is difficult for them to compress the image with a low compression rate. Recently the compressed sensing(CS) theory was proposed, which has earned great concern as it can compress an image with a low compression rate, meanwhile the original image can be perfectly reconstructed from only a few compressed data. The CS theory is used to transmit the high resolution astronomical image and build the simulation environment where there is communication between the satellite and the Earth. Number experimental results show that the CS theory can effectively reduce the image transmission and reconstruction time. Even with a very low compression rate, it still can recover a higher quality astronomical image than JPEG and JPEG-2000 compression methods.展开更多
In this paper, we consider the Vlasov-Maxwell-Fokker-Planck system with relativistic transport in the whole space. The global solutions to this system near the relativistic Maxwellian are constructed and the optimal t...In this paper, we consider the Vlasov-Maxwell-Fokker-Planck system with relativistic transport in the whole space. The global solutions to this system near the relativistic Maxwellian are constructed and the optimal time decay rate of global solutions are also obtained by an approach by combining the compensating function and energy method.展开更多
Based on the three-order Lagrangian equations, Hamilton's function of acceleration H^* and generalized acceleration momentum P^*α are defined, and pseudo-Hamilton canonical equations corresponding to three-order L...Based on the three-order Lagrangian equations, Hamilton's function of acceleration H^* and generalized acceleration momentum P^*α are defined, and pseudo-Hamilton canonical equations corresponding to three-order Lagrangian equations are obtained. The equations are similar to Hamilton's canonical equations of analytical mechanics in form.展开更多
In this paper, we study the non-isentropic compressible magnetohydrodynamic system with a time periodic external force in R^n. Under the condition that the optimal time decay rates are obtained by spectral analysis, w...In this paper, we study the non-isentropic compressible magnetohydrodynamic system with a time periodic external force in R^n. Under the condition that the optimal time decay rates are obtained by spectral analysis, we show that the existence, uniqueness and time-asymptotic stability of time periodic solutions when the space dimension n 〉 5. Our proof is based on a combination of the energy method and the contraction mapping theorem.展开更多
In this paper,we study the global existence and decay rates of strong solutions to the three dimensional compressible Phan-Thein-Tanner model.By a refined energy method,we prove the global existence under the assumpti...In this paper,we study the global existence and decay rates of strong solutions to the three dimensional compressible Phan-Thein-Tanner model.By a refined energy method,we prove the global existence under the assumption that the H^(3) norm of the initial data is small,but that the higher order derivatives can be large.If the initial data belong to homogeneous Sobolev spaces or homogeneous Besov spaces,we obtain the time decay rates of the solution and its higher order spatial derivatives.Moreover,we also obtain the usual L^(p)-L^(2)(1≤p≤2)type of the decay rate without requiring that the Lpnorm of initial data is small.展开更多
In this paper we study the higher-order differential variational principle and differential equations of motion for mechanical systems in event space. Based on the higher-order d'Alembert principle of the system, the...In this paper we study the higher-order differential variational principle and differential equations of motion for mechanical systems in event space. Based on the higher-order d'Alembert principle of the system, the higher-order velocity energy and the higher-order acceleration energy of the system in event space are defined, the higher-order d'Alembert- Lagrange principle of the system in event space is established, and the parametric forms of Euler-Lagrange, Nielsen and Appell for this principle are given. Finally, the higher-order differential equations of motion for holonomic systems in event space are obtained.展开更多
We consider the global existence and decay of integral solutions to the parabolic-parabolic Keller-Segel system in d-dimension.On the one hand,by Banach fixed point theorem and some properties of heat kernel,we prove ...We consider the global existence and decay of integral solutions to the parabolic-parabolic Keller-Segel system in d-dimension.On the one hand,by Banach fixed point theorem and some properties of heat kernel,we prove the local existence and the global existence of integral solutions for the different initial data under some conditions that involve the size of the initial data.On the other hand,in the case of global solutions,we obtain their optimal time decay by Gronwall’s lemma.展开更多
Radar slope monitoring is now widely used across the world, for example, the slope stability radar(SSR)and the movement and surveying radar(MSR) are currently in use in many mines around the world.However, to fully re...Radar slope monitoring is now widely used across the world, for example, the slope stability radar(SSR)and the movement and surveying radar(MSR) are currently in use in many mines around the world.However, to fully realize the effectiveness of this radar in notifying mine personnel of an impending slope failure, a method that can confidently predict the time of failure is necessary. The model developed in this study is based on the inverse velocity method pioneered by Fukuzono in 1985. The model named the slope failure prediction model(SFPM) was validated with the displacement data from two slope failures monitored with the MSR. The model was found to be very effective in predicting the time to failure while providing adequate evacuation time once the progressive displacement stage is reached.展开更多
In this paper we first deduce the estimates on the linearized Landau operator with Coulomb potential and then analyze its spectrum structure by using semigroup theory and linear operator perturbation theory.Based on t...In this paper we first deduce the estimates on the linearized Landau operator with Coulomb potential and then analyze its spectrum structure by using semigroup theory and linear operator perturbation theory.Based on these estimates,we give the precise time decay rate estimates on the semigroup generated by the linearized Landau operator so that the optimal time decay rates of the nonlinear Landau equation follow.In addition,we present a similar result for the non-angular cutoff Boltzmann equation with soft potentials.展开更多
基金supported by the National Natural Science Foundation of China(No.21776264).
文摘Studying the relationship between ionic interactions and salt solubility in seawater has implications for seawater desalination and mineral extraction.In this paper,a new method of expressing ion-to-ion interaction is proposed by using molecular dynamics simulation,and the relationship between ion-to-ion interaction and salt solubility in a simulated seawater water-salt system is investigated.By analyzing the variation of distance and contact time between ions in an electrolyte solution,from both spatial and temporal perspectives,new parameters were proposed to describe the interaction between ions:interaction distance(ID),and interaction time ratio(ITR).The best correlation between characteristic time ratio and solubility was found for a molar ratio of salt-to-water of 10:100 with a correlation coefficient of 0.96.For the same salt,a positive correlation was found between CTR and the molar ratio of salt and water.For type 1-1,type 2-1,type 1-2,and type 2-2 salts,the correlation coefficients between CTR and solubility were 0.93,0.96,0.92,and 0.98 for a salt-to-water molar ratio of 10:100,respectively.The solubility of multiple salts was predicted by simulations and compared with experimental values,yielding an average relative deviation of 12.4%.The new ion-interaction parameters offer significant advantages in describing strongly correlated and strongly hydrated electrolyte solutions.
文摘The presented work examines the mechanism and conditions of self-motion in bodies as systems of interacting elements. It is shown how the oscillation parameters of these elements determine the mode of motion of the system (body). In this case, the motion is considered as a consequence of symmetry breaking of forces in the systems themselves, and not as a reaction of individual elements to external influences. It is shown that such a violation takes place both in the gravitational field and when the system moves by inertia. Examples of the influence of changes in phase (φ) and frequency (f) parameters of the system elements on the velocity mode of its motion in space are considered. The identity of the causes of self-motion is revealed both in the case of gravitation and inertial motion.
基金Supported by NSFC(11271290)GSPT of Zhejiang Province(2014R424062)
文摘In this paper, we first show the global existence, uniqueness and regularity of weak solutions for the hyperbolic magnetohydrodynamics(MHD) equations in R^3. Then we establish that the solutions with initial data belonging to H^m(R^3) ∩ L^1(R^3) have the following time decay rate:║▽~mu(x, t) ║~2+║ ▽~mb(x, t)║~ 2+ ║▽^(m+1)u(x, t)║~ 2+ ║▽^(m+1)b(x, t) ║~2≤ c(1 + t)^(-3/2-m)for large t, where m = 0, 1.
基金provided by the National Natural Science Foundation of China (No.51374097)the Science Foundation General Projects of Chinese Postgraduate (No.2014M561384)Key Project of Science and Technology Research of Department of Education in Heilongjiang Province (No.12541z009)
文摘Considering the importance of the prediction of rock burst disasters, and in order to grasp the law of acoustic emission(AE) of coal samples in different dynamic destruction time, the SH-II AE monitoring system was adopted to monitor the failure process of coal samples. The study of the change rule of the AE numbers, energy, ‘b' value and spectrum in the micro crack propagation process of the coal samples shows that as dynamic damage time went by, AE presented high-energy counts and the accumulated counts increased during the compression phase. The AE energy and cumulative counts increased during the elastic stage. The AE blank area increased gradually and the blank lines were more and more obvious in the molding stage. The AE counts and energy showed a trend of decrease in the residual damage phase.AE ‘b' values gradually became sparse, and the large scale cracks percentage compared with micro cracks decreased and the degree of damage decreased. The AE frequency spectrum peak went from the residual damage phase to the molding phase, and finally it was nearly stable, besides the bandwidth of the main frequency is gradually narrowed. Also, the frequency peak changed from single peak frequency to bi-peak frequency and to the single peak frequency. Uniaxial compressive strength is more sensitive than the elastic modulus to dynamic damage time.
文摘High-pressure solenoid valve with high flow rate and high speed is a key component in an underwater driving system.However,traditional single spool pilot operated valve cannot meet the demands of both high flow rate and high speed simultaneously.A new structure for a high pressure solenoid valve is needed to meet the demand of the underwater driving system.A novel parallel-spool pilot operated high-pressure solenoid valve is proposed to overcome the drawback of the current single spool design.Mathematical models of the opening process and flow rate of the valve are established.Opening response time of the valve is subdivided into 4 parts to analyze the properties of the opening response.Corresponding formulas to solve 4 parts of the response time are derived.Key factors that influence the opening response time are analyzed.According to the mathematical model of the valve,a simulation of the opening process is carried out by MATLAB.Parameters are chosen based on theoretical analysis to design the test prototype of the new type of valve.Opening response time of the designed valve is tested by verifying response of the current in the coil and displacement of the main valve spool.The experimental results are in agreement with the simulated results,therefore the validity of the theoretical analysis is verified.Experimental opening response time of the valve is 48.3 ms at working pressure of 10 MPa.The flow capacity test shows that the largest effective area is 126 mm2 and the largest air flow rate is 2320 L/s.According to the result of the load driving test,the valve can meet the demands of the driving system.The proposed valve with parallel spools provides a new method for the design of a high-pressure valve with fast response and large flow rate.
基金Funded by the National Natural Science Foundation of China(Nos.51175210 and 51175211)
文摘We investigated the effects of heating rate on the process parameters of superplastic forming for Zr55Cu30Al10Ni5 by differential scanning calorimetry. The continuous heating and isothermal annealing analyses suggested that the temperatures of glass transition and onset crystallization are heating rate-dependent in the supercooled liquid region. Then, the time-temperature-transformation diagram under different heating rates indicates that increasing the heating rate can lead to an increase of the incubation time at the same anneal temperature in the supercooled liquid region. Based on the Arrhenius relationship, we discovered that the incubation time increases by 1.08-1.11 times with double increase of the heating rate at the same anneal temperature, and then verified it by the data of literatures and the experimental results. The obtained curve of the max available incubation time reveals that the incubation time at a certain anneal temperature in the supercooled liquid region is not infinite, and will increase with increasing heating rate until this temperature shifts out of the supercooled liquid region because of exceeding critical heating rate. It is concluded that heating rate must be an important processing parameter of superplastic forming for Zr55Cu30Al10Ni5.
文摘A vector autoregressive model was developed for a sample of container carrier time charter rates. Although the series of time charter rates are themselves found non-stationary, thus precluding the use of many modeling methodologies, evidence provided by co-integration tests points to the existence of stable long-term relationships between the series. An assessment of the forecasts derived from the model suggests that the spec-ification of these long-term relationships does not improve the accuracy of long-term forecasts. These results are interpreted as a corroboration of the efficient market hypothesis.
基金The research of the first author was partially supported by the NNSFC No.10871134the NCET support of the Ministry of Education of China+4 种基金the Huo Ying Dong Fund No.111033the Chuang Xin Ren Cai Project of Beijing Municipal Commission of Education #PHR201006107the Instituteof Mathematics and Interdisciplinary Science at CNUThe research of the second author was supported by the General Research Fund of Hong Kong (CityU 103109)the National Natural Science Foundation of China,10871082
文摘The bipolar Navier-Stokes-Poisson system (BNSP) has been used to simulate the transport of charged particles (ions and electrons for instance) under the influence of electrostatic force governed by the self-consistent Poisson equation. The optimal L^2 time convergence rate for the global classical solution is obtained for a small initial perturbation of the constant equilibrium state. It is shown that due to the electric field, the difference of the charge densities tend to the equilibrium states at the optimal rate (1 + t)^-3/4 in L^2-norm, while the individual momentum of the charged particles converges at the optimal rate (1 + t)^-1/4 which is slower than the rate (1 + t)^-3/4 for the compressible Navier-Stokes equations (NS). In addition, a new phenomenon on the charge transport is observed regarding the interplay between the two carriers that almost counteracts the influence of the electric field so that the total density and momentum of the two carriers converges at a faster rate (1 + t)^-3/4+ε for any small constant ε 〉 0. The above estimates reveal the essential difference between the unipolar and the bipolar Navier-Stokes-Poisson systems.
基金supported by NSFC (10872004)National Basic Research Program of China (2010CB731500)the China Ministry of Education (200800010013)
文摘The isentropic bipolar compressible Navier-Stokes-Poisson (BNSP) system is investigated in R3 in the present paper. The optimal time decay rate of global strong solution is established. When the regular initial data belong to the Sobolev space H l(R3) ∩ B˙ s 1,1 (R3) with l ≥ 4 and s ∈ (0, 1], it is shown that the momenta of the charged particles decay at the optimal rate (1+t) 1 4 s 2 in L2 -norm, which is slower than the rate (1+t) 3 4 s 2 for the compressible Navier-Stokes (NS) equations [14]. In particular, a new phenomenon on the charge transport is observed. The time decay rate of total density and momentum was both (1 + t) 3 4 due to the cancellation effect from the interplay interaction of the charged particles.
基金supported by the NSFC (10871134),supported by the NSFC (10871134, 10771008)the NCET support of the Ministry of Education of China+1 种基金the Huo Ying Dong Fund (111033)the funding Project for Academic Human Resources Development in Institutions of Higher Learning Under the Jurisdiction of Beijing Municipality (PHR201006107)
文摘This is a survey paper on the study of compressible Navier-Stokes-Poisson equations. The emphasis is on the long time behavior of global solutions to multi-dimensional compressible Navier-Stokes-Poisson equations, and the optimal decay rates for both unipolar and bipolar compressible Navier-Stokes-Poisson equations are discussed.
基金supported by the NSFC (10871134)supported by the NSFC (10871134,10910401059)+1 种基金the funding Project for Academic Human Resources Development in Institutions of Higher Learning Under the Jurisdiction of Beijing Municipality (PHR201006107)supported by the General Research Fund of Hong Kong,City Univ.103108
文摘The compressible non-isentropic bipolar Navier-Stokes-Poisson (BNSP) sys- tem is investigated in R3 in the present paper, and the optimal time decay rates of global strong solution are shown. For initial data being a perturbation of equilibrium state in Hl(R3) (R3) for 1 〉 4 and s E (0, 1], it is shown that the density and temperature for each charged particle (like electron or ion) decay at the same optimal rate (1 + t)-3/4, but the momentum for each particle decays at the optimal rate (1 + t)-1/4-3/2 which is slower than the rate (1 + t)-3/4-3/2 for the compressible Navier-Stokes (NS) equations [19] for same initial data. However, the total momentum tends to the constant state at the rate (1 +t)-3/4 as well, due to the interplay interaction of charge particles which counteracts the influence of electric field.
文摘In the process of image transmission, the famous JPEG and JPEG-2000 compression methods need more transmission time as it is difficult for them to compress the image with a low compression rate. Recently the compressed sensing(CS) theory was proposed, which has earned great concern as it can compress an image with a low compression rate, meanwhile the original image can be perfectly reconstructed from only a few compressed data. The CS theory is used to transmit the high resolution astronomical image and build the simulation environment where there is communication between the satellite and the Earth. Number experimental results show that the CS theory can effectively reduce the image transmission and reconstruction time. Even with a very low compression rate, it still can recover a higher quality astronomical image than JPEG and JPEG-2000 compression methods.
基金supported partially by the NNSFC Grant(11371151)the Scientific Research Foundation of Graduate School of South China Normal University
文摘In this paper, we consider the Vlasov-Maxwell-Fokker-Planck system with relativistic transport in the whole space. The global solutions to this system near the relativistic Maxwellian are constructed and the optimal time decay rate of global solutions are also obtained by an approach by combining the compensating function and energy method.
文摘Based on the three-order Lagrangian equations, Hamilton's function of acceleration H^* and generalized acceleration momentum P^*α are defined, and pseudo-Hamilton canonical equations corresponding to three-order Lagrangian equations are obtained. The equations are similar to Hamilton's canonical equations of analytical mechanics in form.
基金Supported by National Natural Science Foundation of China(11271305)
文摘In this paper, we study the non-isentropic compressible magnetohydrodynamic system with a time periodic external force in R^n. Under the condition that the optimal time decay rates are obtained by spectral analysis, we show that the existence, uniqueness and time-asymptotic stability of time periodic solutions when the space dimension n 〉 5. Our proof is based on a combination of the energy method and the contraction mapping theorem.
基金partially supported by the National Natural Science Foundation of China(11926354,11971496)Natural Science Foundation of Guangdong Province(2019A1515011320,2021A1515010292,2214050001249)+2 种基金Innovative team project of ordinary universities of Guangdong Province(2020KCXTD024)Characteristic innovation projects of ordinary colleges and universities in Guangdong Province(2020KTSCX134)the Education Research Platform Project of Guangdong Province(2018179)。
文摘In this paper,we study the global existence and decay rates of strong solutions to the three dimensional compressible Phan-Thein-Tanner model.By a refined energy method,we prove the global existence under the assumption that the H^(3) norm of the initial data is small,but that the higher order derivatives can be large.If the initial data belong to homogeneous Sobolev spaces or homogeneous Besov spaces,we obtain the time decay rates of the solution and its higher order spatial derivatives.Moreover,we also obtain the usual L^(p)-L^(2)(1≤p≤2)type of the decay rate without requiring that the Lpnorm of initial data is small.
基金Project supported by the Science and Technology Program of Xi’an City,China(Grant No.CXY1352WL34)
文摘In this paper we study the higher-order differential variational principle and differential equations of motion for mechanical systems in event space. Based on the higher-order d'Alembert principle of the system, the higher-order velocity energy and the higher-order acceleration energy of the system in event space are defined, the higher-order d'Alembert- Lagrange principle of the system in event space is established, and the parametric forms of Euler-Lagrange, Nielsen and Appell for this principle are given. Finally, the higher-order differential equations of motion for holonomic systems in event space are obtained.
文摘We consider the global existence and decay of integral solutions to the parabolic-parabolic Keller-Segel system in d-dimension.On the one hand,by Banach fixed point theorem and some properties of heat kernel,we prove the local existence and the global existence of integral solutions for the different initial data under some conditions that involve the size of the initial data.On the other hand,in the case of global solutions,we obtain their optimal time decay by Gronwall’s lemma.
基金supported by the Centennial Trust Fund, School of Mining Engineering, University of the Witwatersrand, South Africa
文摘Radar slope monitoring is now widely used across the world, for example, the slope stability radar(SSR)and the movement and surveying radar(MSR) are currently in use in many mines around the world.However, to fully realize the effectiveness of this radar in notifying mine personnel of an impending slope failure, a method that can confidently predict the time of failure is necessary. The model developed in this study is based on the inverse velocity method pioneered by Fukuzono in 1985. The model named the slope failure prediction model(SFPM) was validated with the displacement data from two slope failures monitored with the MSR. The model was found to be very effective in predicting the time to failure while providing adequate evacuation time once the progressive displacement stage is reached.
基金supported by the Research Grants Council of the Hong Kong Special Administrative Region of the People’s Republic of China (Grant No.SRF2021-1S01)National Natural Science Foundation of China (Grant No.11971200)+1 种基金supported by National Natural Science Foundation of China (Grant No.11871229)the Project Supported by Guangdong Province Universities and Colleges Pearl River Scholar Funded Scheme 2017。
文摘In this paper we first deduce the estimates on the linearized Landau operator with Coulomb potential and then analyze its spectrum structure by using semigroup theory and linear operator perturbation theory.Based on these estimates,we give the precise time decay rate estimates on the semigroup generated by the linearized Landau operator so that the optimal time decay rates of the nonlinear Landau equation follow.In addition,we present a similar result for the non-angular cutoff Boltzmann equation with soft potentials.