The approach of Li and Zhou(2014)is adopted to find the Laplace transform of occupation time over interval(0,a)and joint occupation times over semi-infinite intervals(-∞,a)and(b,∞)for a time-homogeneous diffusion pr...The approach of Li and Zhou(2014)is adopted to find the Laplace transform of occupation time over interval(0,a)and joint occupation times over semi-infinite intervals(-∞,a)and(b,∞)for a time-homogeneous diffusion process up to an independent exponential time e_(q)for 0<a<b.The results are expressed in terms of solutions to the differential equations associated with the diffusion generator.Applying these results,we obtain explicit expressions on the Laplace transform of occupation time and joint occupation time for Brownian motion with drift.展开更多
Hydroxyapatite(HA)is a bio ceramic commonly utilized in bone tissue engineering due to its bioactive and osteoconductive properties.Crab shells are usually disregarded as waste material despite their significant CaCO_...Hydroxyapatite(HA)is a bio ceramic commonly utilized in bone tissue engineering due to its bioactive and osteoconductive properties.Crab shells are usually disregarded as waste material despite their significant CaCO_(3) content,and have not been widely utilized in the synthesis of HA.This study aims to synthesize and analyze HA derived from crab shells using the hydrothermal method with different durations of holding time.This study utilized precipitated calcium carbonate(PCC)derived from crab shells.With a hydrothermal reactor set at 160℃ and varying holding times of 14(HA_14),16(HA_16),and 18(HA_18)h,a PCC and(NH4)2HPO4 mixture was used to synthesize HA.The synthesis results were analyzed using scanning electron microscopy(SEM),fourier transform infrared spectroscopy(FTIR),and X-ray diffraction(XRD)tests.This study has accomplished the synthesis of HA from crab shells.Nonetheless,the final product of synthesis still contained CaCO_(3) as an impurity.The prolonged hydrothermal holding time of 14 to 18 h resulted in a reduction of impurities while increasing the percentage of crystal weight and crystallite size of HA.Specimen CH_18 is the best-quality product generated in this study.This specimen produced HA with the highest percentage of crystal weight and crystallite size compared to the other specimens.Furthermore,specimen CH_18 exhibited the lowest concentration of impurities.The Ca/P ratio in this specimen was also the closest to 1.67.The Ca/P ratio,crystallite size,and crystal weight percentage of this specimen are 1.54,19.06 nm,and 99.1%,respectively.展开更多
Time synchronization(TS)is crucial for ensuring the secure and reliable functioning of the distribution power Internet of Things(IoT).Multi-clock source time synchronization(MTS)has significant advantages of high reli...Time synchronization(TS)is crucial for ensuring the secure and reliable functioning of the distribution power Internet of Things(IoT).Multi-clock source time synchronization(MTS)has significant advantages of high reliability and accuracy but still faces challenges such as optimization of the multi-clock source selection and the clock source weight calculation at different timescales,and the coupling of synchronization latency jitter and pulse phase difference.In this paper,the multi-timescale MTS model is conducted,and the reinforcement learning(RL)and analytic hierarchy process(AHP)-based multi-timescale MTS algorithm is designed to improve the weighted summation of synchronization latency jitter standard deviation and average pulse phase difference.Specifically,the multi-clock source selection is optimized based on Softmax in the large timescale,and the clock source weight calculation is optimized based on lower confidence bound-assisted AHP in the small timescale.Simulation shows that the proposed algorithm can effectively reduce time synchronization delay standard deviation and average pulse phase difference.展开更多
The economic operation of integrated energy system(IES)faces new challenges such as multi-timescale characteristics of heterogeneous energy sources,and cooperative operation of hybrid energy storage system(HESS).To th...The economic operation of integrated energy system(IES)faces new challenges such as multi-timescale characteristics of heterogeneous energy sources,and cooperative operation of hybrid energy storage system(HESS).To this end,this paper investigates the multi-timescale rolling opti-mization problem for IES integrated with HESS.Firstly,the architecture of IES with HESS is established,a comparative analysis is conducted to evaluate the advantages of the HESS over a single energy storage system(SESS)in stabilizing power fluctuations.Secondly,the dayahead and real-time scheduling cost functions of IES are established,the day-ahead scheduling mainly depends on operation costs of the components in IES,the real-time optimal scheduling adopts the Lya-punov optimization method to schedule the battery and hydrogen energy storage in each time slot,so as to minimize the real-time average scheduling operation cost,and the problem of day-ahead and real-time scheduling error,which caused by the uncertainty of the energy storage is solved by online optimization.Finally,the proposed model is verified to reduce the scheduling operation cost and the dispatching error by performing an arithmetic example analysis of the IES in Shanghai,which provides a reference for the safe and stable operation of the IES.展开更多
A man with his face painted to appear like a spirit,participates in the He Neak Ta ritual in Phum Boeung village,northwest of Phnom Penh,Cambodia,on June 11.Cambodian villagers took part in a rare traditional guardian...A man with his face painted to appear like a spirit,participates in the He Neak Ta ritual in Phum Boeung village,northwest of Phnom Penh,Cambodia,on June 11.Cambodian villagers took part in a rare traditional guardian spirit ceremony praying for good fortune,rain,and prosperity as part of efforts to preserve this ancient tradition.展开更多
BUILDING a resilient workforce of the future means understanding your workers.Over the past five years,the Adecco Group has interviewed over 82,000 employees across 25 countries-including China-to capture global work...BUILDING a resilient workforce of the future means understanding your workers.Over the past five years,the Adecco Group has interviewed over 82,000 employees across 25 countries-including China-to capture global workers’perspectives and equip employers with the tools to future-proof their workforce.These are some of the findings about the labor market trends that have transformed the world of work since 2020。展开更多
As long as China and the EU adhere to strategic consensuses,keep in step with the times,and maintain mutual trust,they will be able to ensure the prosperity and stability of both sides.
Girls with flowers on their heads at a celebration for the traditional Ngarot festival in West Java,Indonesia,on December 13,2023.The festival is a traditional ceremony to welcome the rice planting season.
On September 25,locals and tourists pose for photos with a giant decorative flower basket on Tiananmen Square in Beijing to celebrate the forthcoming National Day.The four Chinese characters adorning the basket mean&q...On September 25,locals and tourists pose for photos with a giant decorative flower basket on Tiananmen Square in Beijing to celebrate the forthcoming National Day.The four Chinese characters adorning the basket mean"blessing the motherland."(IC PHOTO)展开更多
Cherry blossoms at Qingchuan Pavilion in Wuhan,capital of central China’s Hubei Province,attract throngs of visitors on March 23.Illuminated by night lights,the cherry blossoms shone brightly,creating fantastic scene...Cherry blossoms at Qingchuan Pavilion in Wuhan,capital of central China’s Hubei Province,attract throngs of visitors on March 23.Illuminated by night lights,the cherry blossoms shone brightly,creating fantastic scenes of light and shadow with neon-clad bridges and landmark buildings along the Yangtze River.展开更多
Tourists sightsee on a boat in a massive lotus pond scenic area in Xinghua,Taizhou,east China’s Jiangsu Province,on August 5.When summer peaks,lotus flowers enter their blooming season,attracting throngs of tourists ...Tourists sightsee on a boat in a massive lotus pond scenic area in Xinghua,Taizhou,east China’s Jiangsu Province,on August 5.When summer peaks,lotus flowers enter their blooming season,attracting throngs of tourists to admire their beauty.展开更多
Background: Prenatal exposure to illicit substances is responsible for several long-term negative health consequences. It is critical for healthcare professionals to know the extent and scope of prenatal substance exp...Background: Prenatal exposure to illicit substances is responsible for several long-term negative health consequences. It is critical for healthcare professionals to know the extent and scope of prenatal substance exposure in their cases. Several studies exist with mixed results comparing the effectiveness of umbilical cord tissue (UCT) and meconium (MEC) as toxicology specimen types. The specific aim of this study is to compare the use of UCT and MEC regarding the time interval between the birth of the neonate, receipt of the specimen at the laboratory, and the hospital’s receipt of the final toxicology report. Method: The study queried de-identified results of 5358 consecutive UCT and 706 MEC from our laboratory. Results: The mean time from birth to receipt of the specimen at the laboratory for MEC and UCT was 4.5 days ± 2.9 days and 2.8 days ± 1.9 days, respectively. The mean time from birth to final report for MEC was 6.9 days ± 3.8 days, 5.7 days ± 3.3 days, and 8.4 days ± 3.8 days for all MEC specimens, negative MEC, and positive MEC, respectively. The mean time from birth to final report for UCT was 4.3 days ± 2.4 days, 3.5 days ± 2.2 days, and 5.4 days ± 2.2 days for all UCT, negative UCT and positive UCT, respectively. Discussion/Conclusion: Receipt of drug test results of the neonate prior to release from the hospital is critical. This study shows that UCT offers an advantage when results are needed quickly to make informed decisions about the health and well-being of newborns.展开更多
A deep-learning-based framework is proposed to predict the impedance response and underlying electrochemical behavior of the reversible protonic ceramic cell(PCC) across a wide variety of different operating condition...A deep-learning-based framework is proposed to predict the impedance response and underlying electrochemical behavior of the reversible protonic ceramic cell(PCC) across a wide variety of different operating conditions.Electrochemical impedance spectra(EIS) of PCCs were first acquired under a variety of opera ting conditions to provide a dataset containing 36 sets of EIS spectra for the model.An artificial neural network(ANN) was then trained to model the relationship between the cell operating condition and EIS response.Finally,ANN model-predicted EIS spectra were analyzed by the distribution of relaxation times(DRT) and compared to DRT spectra obtained from the experimental EIS data,enabling an assessment of the accumulative errors from the predicted EIS data vs the predicted DRT.We show that in certain cases,although the R^(2)of the predicted EIS curve may be> 0.98,the R^(2)of the predicted DRT may be as low as~0.3.This can lead to an inaccurate ANN prediction of the underlying time-resolved electrochemical response,although the apparent accuracy as evaluated from the EIS prediction may seem acceptable.After adjustment of the parameters of the ANN framework,the average R^(2)of the DRTs derived from the predicted EIS can be improved to 0.9667.Thus,we demonstrate that a properly tuned ANN model can be used as an effective tool to predict not only the EIS,but also the DRT of complex electrochemical systems.展开更多
Historically,landslides have been the primary type of geological disaster worldwide.Generally,the stability of reservoir banks is primarily affected by rainfall and reservoir water level fluctuations.Moreover,the stab...Historically,landslides have been the primary type of geological disaster worldwide.Generally,the stability of reservoir banks is primarily affected by rainfall and reservoir water level fluctuations.Moreover,the stability of reservoir banks changes with the long-term dynamics of external disastercausing factors.Thus,assessing the time-varying reliability of reservoir landslides remains a challenge.In this paper,a machine learning(ML)based approach is proposed to analyze the long-term reliability of reservoir bank landslides in spatially variable soils through time series prediction.This study systematically investigated the prediction performances of three ML algorithms,i.e.multilayer perceptron(MLP),convolutional neural network(CNN),and long short-term memory(LSTM).Additionally,the effects of the data quantity and data ratio on the predictive power of deep learning models are considered.The results show that all three ML models can accurately depict the changes in the time-varying failure probability of reservoir landslides.The CNN model outperforms both the MLP and LSTM models in predicting the failure probability.Furthermore,selecting the right data ratio can improve the prediction accuracy of the failure probability obtained by ML models.展开更多
Background:Prolonged sitting and reduced physical activity lead to low energy expenditures.However,little is known about the joint impact of daily sitting time and physical activity on body fat distribution.We investi...Background:Prolonged sitting and reduced physical activity lead to low energy expenditures.However,little is known about the joint impact of daily sitting time and physical activity on body fat distribution.We investigated the independent and joint associations of daily sitting time and physical activity with body fat among adults.Methods:This was a cross-sectional analysis of U.S.nationally representative data from the National Health and Nutrition Examination Survey2011-2018 among adults aged 20 years or older.Daily sitting time and leisure-time physical activity(LTPA)were self-reported using the Global Physical Activity Questionnaire.Body fat(total and trunk fat percentage)was determined via dual X-ray absorptiometry.Results:Among 10,808 adults,about 54.6%spent 6 h/day or more sitting;more than one-half reported no LTPA(inactive)or less than 150 min/week LTPA(insufficiently active)with only 43.3%reported 150 min/week or more LTPA(active)in the past week.After fully adjusting for sociodemographic data,lifestyle behaviors,and chronic conditions,prolonged sitting time and low levels of LTPA were associated with higher total and trunk fat percentages in both sexes.When stratifying by LTPA,the association between daily sitting time and body fat appeared to be stronger in those who were inactive/insuufficiently active.In the joint analyses,inactive/insuufficiently active adults who reported sitting more than 8 h/day had the highest total(female:3.99%(95%confidence interval(95%CI):3.09%-4.88%);male:3.79%(95%CI:2.75%-4.82%))and trunk body fat percentages(female:4.21%(95%CI:3.09%-5.32%);male:4.07%(95%CI:2.95%-5.19%))when compared with those who were active and sitting less than 4 h/day.Conclusion:Prolonged daily sitting time was associated with increased body fat among U.S.adults.The higher body fat associated with 6 h/day sitting may not be offset by achieving recommended levels of physical activity.展开更多
The problem of prescribed performance tracking control for unknown time-delay nonlinear systems subject to output constraints is dealt with in this paper. In contrast with related works, only the most fundamental requ...The problem of prescribed performance tracking control for unknown time-delay nonlinear systems subject to output constraints is dealt with in this paper. In contrast with related works, only the most fundamental requirements, i.e., boundedness and the local Lipschitz condition, are assumed for the allowable time delays. Moreover, we focus on the case where the reference is unknown beforehand, which renders the standard prescribed performance control designs under output constraints infeasible. To conquer these challenges, a novel robust prescribed performance control approach is put forward in this paper.Herein, a reverse tuning function is skillfully constructed and automatically generates a performance envelop for the tracking error. In addition, a unified performance analysis framework based on proof by contradiction and the barrier function is established to reveal the inherent robustness of the control system against the time delays. It turns out that the system output tracks the reference with a preassigned settling time and good accuracy,without constraint violations. A comparative simulation on a two-stage chemical reactor is carried out to illustrate the above theoretical findings.展开更多
Time-series data provide important information in many fields,and their processing and analysis have been the focus of much research.However,detecting anomalies is very difficult due to data imbalance,temporal depende...Time-series data provide important information in many fields,and their processing and analysis have been the focus of much research.However,detecting anomalies is very difficult due to data imbalance,temporal dependence,and noise.Therefore,methodologies for data augmentation and conversion of time series data into images for analysis have been studied.This paper proposes a fault detection model that uses time series data augmentation and transformation to address the problems of data imbalance,temporal dependence,and robustness to noise.The method of data augmentation is set as the addition of noise.It involves adding Gaussian noise,with the noise level set to 0.002,to maximize the generalization performance of the model.In addition,we use the Markov Transition Field(MTF)method to effectively visualize the dynamic transitions of the data while converting the time series data into images.It enables the identification of patterns in time series data and assists in capturing the sequential dependencies of the data.For anomaly detection,the PatchCore model is applied to show excellent performance,and the detected anomaly areas are represented as heat maps.It allows for the detection of anomalies,and by applying an anomaly map to the original image,it is possible to capture the areas where anomalies occur.The performance evaluation shows that both F1-score and Accuracy are high when time series data is converted to images.Additionally,when processed as images rather than as time series data,there was a significant reduction in both the size of the data and the training time.The proposed method can provide an important springboard for research in the field of anomaly detection using time series data.Besides,it helps solve problems such as analyzing complex patterns in data lightweight.展开更多
基金Supported by the National Natural Science Foundation of China(12271062,11731012)by the Hunan Provincial National Natural Science Foundation of China(2019JJ50405)。
文摘The approach of Li and Zhou(2014)is adopted to find the Laplace transform of occupation time over interval(0,a)and joint occupation times over semi-infinite intervals(-∞,a)and(b,∞)for a time-homogeneous diffusion process up to an independent exponential time e_(q)for 0<a<b.The results are expressed in terms of solutions to the differential equations associated with the diffusion generator.Applying these results,we obtain explicit expressions on the Laplace transform of occupation time and joint occupation time for Brownian motion with drift.
基金funded the World Class Research(WCR)Grant of Universitas Diponegoro with Contract Number 357-36/UN7.D2/PP/IV/2024.
文摘Hydroxyapatite(HA)is a bio ceramic commonly utilized in bone tissue engineering due to its bioactive and osteoconductive properties.Crab shells are usually disregarded as waste material despite their significant CaCO_(3) content,and have not been widely utilized in the synthesis of HA.This study aims to synthesize and analyze HA derived from crab shells using the hydrothermal method with different durations of holding time.This study utilized precipitated calcium carbonate(PCC)derived from crab shells.With a hydrothermal reactor set at 160℃ and varying holding times of 14(HA_14),16(HA_16),and 18(HA_18)h,a PCC and(NH4)2HPO4 mixture was used to synthesize HA.The synthesis results were analyzed using scanning electron microscopy(SEM),fourier transform infrared spectroscopy(FTIR),and X-ray diffraction(XRD)tests.This study has accomplished the synthesis of HA from crab shells.Nonetheless,the final product of synthesis still contained CaCO_(3) as an impurity.The prolonged hydrothermal holding time of 14 to 18 h resulted in a reduction of impurities while increasing the percentage of crystal weight and crystallite size of HA.Specimen CH_18 is the best-quality product generated in this study.This specimen produced HA with the highest percentage of crystal weight and crystallite size compared to the other specimens.Furthermore,specimen CH_18 exhibited the lowest concentration of impurities.The Ca/P ratio in this specimen was also the closest to 1.67.The Ca/P ratio,crystallite size,and crystal weight percentage of this specimen are 1.54,19.06 nm,and 99.1%,respectively.
基金supported by Science and Technology Project of China Southern Power Grid Company Limited under Grant Number 036000KK52200058(GDKJXM20202001).
文摘Time synchronization(TS)is crucial for ensuring the secure and reliable functioning of the distribution power Internet of Things(IoT).Multi-clock source time synchronization(MTS)has significant advantages of high reliability and accuracy but still faces challenges such as optimization of the multi-clock source selection and the clock source weight calculation at different timescales,and the coupling of synchronization latency jitter and pulse phase difference.In this paper,the multi-timescale MTS model is conducted,and the reinforcement learning(RL)and analytic hierarchy process(AHP)-based multi-timescale MTS algorithm is designed to improve the weighted summation of synchronization latency jitter standard deviation and average pulse phase difference.Specifically,the multi-clock source selection is optimized based on Softmax in the large timescale,and the clock source weight calculation is optimized based on lower confidence bound-assisted AHP in the small timescale.Simulation shows that the proposed algorithm can effectively reduce time synchronization delay standard deviation and average pulse phase difference.
基金supported by the National Natural Science Foundation of China(No.12171145)。
文摘The economic operation of integrated energy system(IES)faces new challenges such as multi-timescale characteristics of heterogeneous energy sources,and cooperative operation of hybrid energy storage system(HESS).To this end,this paper investigates the multi-timescale rolling opti-mization problem for IES integrated with HESS.Firstly,the architecture of IES with HESS is established,a comparative analysis is conducted to evaluate the advantages of the HESS over a single energy storage system(SESS)in stabilizing power fluctuations.Secondly,the dayahead and real-time scheduling cost functions of IES are established,the day-ahead scheduling mainly depends on operation costs of the components in IES,the real-time optimal scheduling adopts the Lya-punov optimization method to schedule the battery and hydrogen energy storage in each time slot,so as to minimize the real-time average scheduling operation cost,and the problem of day-ahead and real-time scheduling error,which caused by the uncertainty of the energy storage is solved by online optimization.Finally,the proposed model is verified to reduce the scheduling operation cost and the dispatching error by performing an arithmetic example analysis of the IES in Shanghai,which provides a reference for the safe and stable operation of the IES.
文摘A man with his face painted to appear like a spirit,participates in the He Neak Ta ritual in Phum Boeung village,northwest of Phnom Penh,Cambodia,on June 11.Cambodian villagers took part in a rare traditional guardian spirit ceremony praying for good fortune,rain,and prosperity as part of efforts to preserve this ancient tradition.
文摘BUILDING a resilient workforce of the future means understanding your workers.Over the past five years,the Adecco Group has interviewed over 82,000 employees across 25 countries-including China-to capture global workers’perspectives and equip employers with the tools to future-proof their workforce.These are some of the findings about the labor market trends that have transformed the world of work since 2020。
文摘As long as China and the EU adhere to strategic consensuses,keep in step with the times,and maintain mutual trust,they will be able to ensure the prosperity and stability of both sides.
文摘Girls with flowers on their heads at a celebration for the traditional Ngarot festival in West Java,Indonesia,on December 13,2023.The festival is a traditional ceremony to welcome the rice planting season.
文摘On September 25,locals and tourists pose for photos with a giant decorative flower basket on Tiananmen Square in Beijing to celebrate the forthcoming National Day.The four Chinese characters adorning the basket mean"blessing the motherland."(IC PHOTO)
文摘Cherry blossoms at Qingchuan Pavilion in Wuhan,capital of central China’s Hubei Province,attract throngs of visitors on March 23.Illuminated by night lights,the cherry blossoms shone brightly,creating fantastic scenes of light and shadow with neon-clad bridges and landmark buildings along the Yangtze River.
文摘Tourists sightsee on a boat in a massive lotus pond scenic area in Xinghua,Taizhou,east China’s Jiangsu Province,on August 5.When summer peaks,lotus flowers enter their blooming season,attracting throngs of tourists to admire their beauty.
文摘Background: Prenatal exposure to illicit substances is responsible for several long-term negative health consequences. It is critical for healthcare professionals to know the extent and scope of prenatal substance exposure in their cases. Several studies exist with mixed results comparing the effectiveness of umbilical cord tissue (UCT) and meconium (MEC) as toxicology specimen types. The specific aim of this study is to compare the use of UCT and MEC regarding the time interval between the birth of the neonate, receipt of the specimen at the laboratory, and the hospital’s receipt of the final toxicology report. Method: The study queried de-identified results of 5358 consecutive UCT and 706 MEC from our laboratory. Results: The mean time from birth to receipt of the specimen at the laboratory for MEC and UCT was 4.5 days ± 2.9 days and 2.8 days ± 1.9 days, respectively. The mean time from birth to final report for MEC was 6.9 days ± 3.8 days, 5.7 days ± 3.3 days, and 8.4 days ± 3.8 days for all MEC specimens, negative MEC, and positive MEC, respectively. The mean time from birth to final report for UCT was 4.3 days ± 2.4 days, 3.5 days ± 2.2 days, and 5.4 days ± 2.2 days for all UCT, negative UCT and positive UCT, respectively. Discussion/Conclusion: Receipt of drug test results of the neonate prior to release from the hospital is critical. This study shows that UCT offers an advantage when results are needed quickly to make informed decisions about the health and well-being of newborns.
基金funding from the National Natural Science Foundation of China,China(12172104,52102226)the Shenzhen Science and Technology Innovation Commission,China(JCYJ20200109113439837)the Stable Supporting Fund of Shenzhen,China(GXWD2020123015542700320200728114835006)。
文摘A deep-learning-based framework is proposed to predict the impedance response and underlying electrochemical behavior of the reversible protonic ceramic cell(PCC) across a wide variety of different operating conditions.Electrochemical impedance spectra(EIS) of PCCs were first acquired under a variety of opera ting conditions to provide a dataset containing 36 sets of EIS spectra for the model.An artificial neural network(ANN) was then trained to model the relationship between the cell operating condition and EIS response.Finally,ANN model-predicted EIS spectra were analyzed by the distribution of relaxation times(DRT) and compared to DRT spectra obtained from the experimental EIS data,enabling an assessment of the accumulative errors from the predicted EIS data vs the predicted DRT.We show that in certain cases,although the R^(2)of the predicted EIS curve may be> 0.98,the R^(2)of the predicted DRT may be as low as~0.3.This can lead to an inaccurate ANN prediction of the underlying time-resolved electrochemical response,although the apparent accuracy as evaluated from the EIS prediction may seem acceptable.After adjustment of the parameters of the ANN framework,the average R^(2)of the DRTs derived from the predicted EIS can be improved to 0.9667.Thus,we demonstrate that a properly tuned ANN model can be used as an effective tool to predict not only the EIS,but also the DRT of complex electrochemical systems.
基金supported by the National Natural Science Foundation of China(Grant No.52308340)the Innovative Projects of Universities in Guangdong(Grant No.2022KTSCX208)Sichuan Transportation Science and Technology Project(Grant No.2018-ZL-01).
文摘Historically,landslides have been the primary type of geological disaster worldwide.Generally,the stability of reservoir banks is primarily affected by rainfall and reservoir water level fluctuations.Moreover,the stability of reservoir banks changes with the long-term dynamics of external disastercausing factors.Thus,assessing the time-varying reliability of reservoir landslides remains a challenge.In this paper,a machine learning(ML)based approach is proposed to analyze the long-term reliability of reservoir bank landslides in spatially variable soils through time series prediction.This study systematically investigated the prediction performances of three ML algorithms,i.e.multilayer perceptron(MLP),convolutional neural network(CNN),and long short-term memory(LSTM).Additionally,the effects of the data quantity and data ratio on the predictive power of deep learning models are considered.The results show that all three ML models can accurately depict the changes in the time-varying failure probability of reservoir landslides.The CNN model outperforms both the MLP and LSTM models in predicting the failure probability.Furthermore,selecting the right data ratio can improve the prediction accuracy of the failure probability obtained by ML models.
文摘Background:Prolonged sitting and reduced physical activity lead to low energy expenditures.However,little is known about the joint impact of daily sitting time and physical activity on body fat distribution.We investigated the independent and joint associations of daily sitting time and physical activity with body fat among adults.Methods:This was a cross-sectional analysis of U.S.nationally representative data from the National Health and Nutrition Examination Survey2011-2018 among adults aged 20 years or older.Daily sitting time and leisure-time physical activity(LTPA)were self-reported using the Global Physical Activity Questionnaire.Body fat(total and trunk fat percentage)was determined via dual X-ray absorptiometry.Results:Among 10,808 adults,about 54.6%spent 6 h/day or more sitting;more than one-half reported no LTPA(inactive)or less than 150 min/week LTPA(insufficiently active)with only 43.3%reported 150 min/week or more LTPA(active)in the past week.After fully adjusting for sociodemographic data,lifestyle behaviors,and chronic conditions,prolonged sitting time and low levels of LTPA were associated with higher total and trunk fat percentages in both sexes.When stratifying by LTPA,the association between daily sitting time and body fat appeared to be stronger in those who were inactive/insuufficiently active.In the joint analyses,inactive/insuufficiently active adults who reported sitting more than 8 h/day had the highest total(female:3.99%(95%confidence interval(95%CI):3.09%-4.88%);male:3.79%(95%CI:2.75%-4.82%))and trunk body fat percentages(female:4.21%(95%CI:3.09%-5.32%);male:4.07%(95%CI:2.95%-5.19%))when compared with those who were active and sitting less than 4 h/day.Conclusion:Prolonged daily sitting time was associated with increased body fat among U.S.adults.The higher body fat associated with 6 h/day sitting may not be offset by achieving recommended levels of physical activity.
基金supported in part by the National Natural Science Foundation of China (62103093)the National Key Research and Development Program of China (2022YFB3305905)+6 种基金the Xingliao Talent Program of Liaoning Province of China (XLYC2203130)the Fundamental Research Funds for the Central Universities of China (N2108003)the Natural Science Foundation of Liaoning Province (2023-MS-087)the BNU Talent Seed Fund,UIC Start-Up Fund (R72021115)the Guangdong Key Laboratory of AI and MM Data Processing (2020KSYS007)the Guangdong Provincial Key Laboratory IRADS for Data Science (2022B1212010006)the Guangdong Higher Education Upgrading Plan 2021–2025 of “Rushing to the Top,Making Up Shortcomings and Strengthening Special Features” with UIC Research,China (R0400001-22,R0400025-21)。
文摘The problem of prescribed performance tracking control for unknown time-delay nonlinear systems subject to output constraints is dealt with in this paper. In contrast with related works, only the most fundamental requirements, i.e., boundedness and the local Lipschitz condition, are assumed for the allowable time delays. Moreover, we focus on the case where the reference is unknown beforehand, which renders the standard prescribed performance control designs under output constraints infeasible. To conquer these challenges, a novel robust prescribed performance control approach is put forward in this paper.Herein, a reverse tuning function is skillfully constructed and automatically generates a performance envelop for the tracking error. In addition, a unified performance analysis framework based on proof by contradiction and the barrier function is established to reveal the inherent robustness of the control system against the time delays. It turns out that the system output tracks the reference with a preassigned settling time and good accuracy,without constraint violations. A comparative simulation on a two-stage chemical reactor is carried out to illustrate the above theoretical findings.
基金This research was financially supported by the Ministry of Trade,Industry,and Energy(MOTIE),Korea,under the“Project for Research and Development with Middle Markets Enterprises and DNA(Data,Network,AI)Universities”(AI-based Safety Assessment and Management System for Concrete Structures)(ReferenceNumber P0024559)supervised by theKorea Institute for Advancement of Technology(KIAT).
文摘Time-series data provide important information in many fields,and their processing and analysis have been the focus of much research.However,detecting anomalies is very difficult due to data imbalance,temporal dependence,and noise.Therefore,methodologies for data augmentation and conversion of time series data into images for analysis have been studied.This paper proposes a fault detection model that uses time series data augmentation and transformation to address the problems of data imbalance,temporal dependence,and robustness to noise.The method of data augmentation is set as the addition of noise.It involves adding Gaussian noise,with the noise level set to 0.002,to maximize the generalization performance of the model.In addition,we use the Markov Transition Field(MTF)method to effectively visualize the dynamic transitions of the data while converting the time series data into images.It enables the identification of patterns in time series data and assists in capturing the sequential dependencies of the data.For anomaly detection,the PatchCore model is applied to show excellent performance,and the detected anomaly areas are represented as heat maps.It allows for the detection of anomalies,and by applying an anomaly map to the original image,it is possible to capture the areas where anomalies occur.The performance evaluation shows that both F1-score and Accuracy are high when time series data is converted to images.Additionally,when processed as images rather than as time series data,there was a significant reduction in both the size of the data and the training time.The proposed method can provide an important springboard for research in the field of anomaly detection using time series data.Besides,it helps solve problems such as analyzing complex patterns in data lightweight.