Oil-soluble In2O3 nanoparticles and In2O3-SnO2 nanocomposites were prepared in oleylamine via decomposition of metal acety- lacetonate precursors. Thin films of In2O3 and In2O3-SnO2 were obtained by spin-coating solut...Oil-soluble In2O3 nanoparticles and In2O3-SnO2 nanocomposites were prepared in oleylamine via decomposition of metal acety- lacetonate precursors. Thin films of In2O3 and In2O3-SnO2 were obtained by spin-coating solutions of the oil-soluble In2O3 nanoparticles and In2O3-SnO2 nanocomposites onto substrates and then calcining them. Transmission electron microspectroscopy, scanning electron mi- crospectroscopy, atomic force microspectroscopy, X-ray diffraction, ultraviolet-visible absorption, and photoluminescence spectroscopy were used to investigate the properties of the nanoparticles and thin films. The In2O3 nanoparticles were cubic-phased spheres with a diame- ter of-8 nm; their spectra exhibited a broad emission peak centered at 348 nm. The In2O3-SnO2 nanocomposites were co-particles composed of smaller In2O3 particles and larger SnO2 particles; their spectra exhibited a broad emission peak at 355 nm. After the In2O3-SnO2 nano- composites were calcined at 400℃, the obtained thin films were highly transparent and conductive, with a thickness of 30-40 nm; the sur- faces of the thin films were smooth and crack-free.展开更多
This review article summarizes the new research in solid-state physical chemistry understanding of the microstructure characteristics of semiconductor tin oxide thin films made in the last years in our group. The work...This review article summarizes the new research in solid-state physical chemistry understanding of the microstructure characteristics of semiconductor tin oxide thin films made in the last years in our group. The work mainly focuses on the fabrication technology of semiconductor tin oxides thin films by using pulsed laser deposition (PLD) as well as the application of this technology on new micro- and nanostructured materials. It is an interdisciplinary work that integrates the areas of physics, chemistry and materials science.展开更多
基金financial support from the National Natural Science Foundation of China (No. 21073012)
文摘Oil-soluble In2O3 nanoparticles and In2O3-SnO2 nanocomposites were prepared in oleylamine via decomposition of metal acety- lacetonate precursors. Thin films of In2O3 and In2O3-SnO2 were obtained by spin-coating solutions of the oil-soluble In2O3 nanoparticles and In2O3-SnO2 nanocomposites onto substrates and then calcining them. Transmission electron microspectroscopy, scanning electron mi- crospectroscopy, atomic force microspectroscopy, X-ray diffraction, ultraviolet-visible absorption, and photoluminescence spectroscopy were used to investigate the properties of the nanoparticles and thin films. The In2O3 nanoparticles were cubic-phased spheres with a diame- ter of-8 nm; their spectra exhibited a broad emission peak centered at 348 nm. The In2O3-SnO2 nanocomposites were co-particles composed of smaller In2O3 particles and larger SnO2 particles; their spectra exhibited a broad emission peak at 355 nm. After the In2O3-SnO2 nano- composites were calcined at 400℃, the obtained thin films were highly transparent and conductive, with a thickness of 30-40 nm; the sur- faces of the thin films were smooth and crack-free.
文摘This review article summarizes the new research in solid-state physical chemistry understanding of the microstructure characteristics of semiconductor tin oxide thin films made in the last years in our group. The work mainly focuses on the fabrication technology of semiconductor tin oxides thin films by using pulsed laser deposition (PLD) as well as the application of this technology on new micro- and nanostructured materials. It is an interdisciplinary work that integrates the areas of physics, chemistry and materials science.