Nanostructure design holds great potential in fabricating sulfur electrodes that host a high sulfur loading and still attain high electrochemical utilization for the developing of high-energy-density lithium-sulfur(Li...Nanostructure design holds great potential in fabricating sulfur electrodes that host a high sulfur loading and still attain high electrochemical utilization for the developing of high-energy-density lithium-sulfur(Li-S) batteries. In this contribution, we introduce the yolk-shell structure into a freestanding carbon nanofibers film and construct a complete hollow yolk-shell Ti O2/carbon nanofibers@void@TiN@carbon(TiO2-CNFs@void@Ti N@C) composite. With inherent double conductive network and strong adsorption capability for polysulfides, the Ti O2-CNFs@void@Ti N@C composite can not only provide sufficient electrical contact for the insulating sulfur, but also effectively entrap polysulfides for prolonged cycle life. As a result, an excellent capacity retention ratio of 60.9% after 1000 cycles at 1 C as well as a high capacity of688.5 mA h g^(-1) at 5 C rate is accomplished with the cells employing Ti O2-CNFs@void@TiN @C as a cathode substrate for sulfur. Moreover, the TiO2-CNFs@void@Ti N@C composite, with a high S mass loading of9.5 mg cm^(-2), delivers a superb areal capacity of 8.2 mAh cm^(-2).展开更多
Semiconducting nanoparticle tin oxide-based sensors have been prepared with a pressure load of 4, 6, 8, 10 tons and reinforced with carbon nanofibers (CNF) in SnO2 matrix. The SnO2/CNF sensor’s sensitivity for ethyl ...Semiconducting nanoparticle tin oxide-based sensors have been prepared with a pressure load of 4, 6, 8, 10 tons and reinforced with carbon nanofibers (CNF) in SnO2 matrix. The SnO2/CNF sensor’s sensitivity for ethyl alcohol has in-creased by a factor of two, in compared with that of pure SnO2 8-ton pressed sensor with lower response time. These results open the way towards further optimized lower cost CNF nanocomposite sensors as compared with expensive tin oxide/carbon nanotubes sensors.展开更多
基金supported by the National Natural Science Foundation of China (Nos. 51972287, 51502269)Natural Science Foundation of Henan Province (No. 182300410187)Outstanding Young Talent Research Fund of Zhengzhou University (No. 1521320023)。
文摘Nanostructure design holds great potential in fabricating sulfur electrodes that host a high sulfur loading and still attain high electrochemical utilization for the developing of high-energy-density lithium-sulfur(Li-S) batteries. In this contribution, we introduce the yolk-shell structure into a freestanding carbon nanofibers film and construct a complete hollow yolk-shell Ti O2/carbon nanofibers@void@TiN@carbon(TiO2-CNFs@void@Ti N@C) composite. With inherent double conductive network and strong adsorption capability for polysulfides, the Ti O2-CNFs@void@Ti N@C composite can not only provide sufficient electrical contact for the insulating sulfur, but also effectively entrap polysulfides for prolonged cycle life. As a result, an excellent capacity retention ratio of 60.9% after 1000 cycles at 1 C as well as a high capacity of688.5 mA h g^(-1) at 5 C rate is accomplished with the cells employing Ti O2-CNFs@void@TiN @C as a cathode substrate for sulfur. Moreover, the TiO2-CNFs@void@Ti N@C composite, with a high S mass loading of9.5 mg cm^(-2), delivers a superb areal capacity of 8.2 mAh cm^(-2).
基金Financial support from National Natural Science Foundation of China (Nos.21376208 and 91534114),the Zhejiang Provincial Natural Science Foundation for Distinguished Young Scholars of China (No.LR13B030001),the Fundamental Research Funds for the Central Universities,and the Partner Group Program of the Zhejiang University and the Max-Planck Society is appreciated greatly.
文摘Semiconducting nanoparticle tin oxide-based sensors have been prepared with a pressure load of 4, 6, 8, 10 tons and reinforced with carbon nanofibers (CNF) in SnO2 matrix. The SnO2/CNF sensor’s sensitivity for ethyl alcohol has in-creased by a factor of two, in compared with that of pure SnO2 8-ton pressed sensor with lower response time. These results open the way towards further optimized lower cost CNF nanocomposite sensors as compared with expensive tin oxide/carbon nanotubes sensors.