In order to improve the tribological properties of titanium alloys,the in-situ TiN coatings were prepared by electrospark deposition(ESD) on the surface of TC11 titanium alloy.The effects of nitrogen flux on the mic...In order to improve the tribological properties of titanium alloys,the in-situ TiN coatings were prepared by electrospark deposition(ESD) on the surface of TC11 titanium alloy.The effects of nitrogen flux on the microstructure and tribological properties of TiN coatings were investigated.The results show that the coating is relative thin when the nitrogen flux is small and mainly consists of Ti2N,α-Ti,Ti O and TiN phases,and the metastable phase of Ti2N is developed due to the rapid solidification of ESD.While in excessive nitrogen flux condition,many micro-cracks and holes might be generated in the coating.In moderate nitrogen flux,the coating is mainly composed of TiN phase,and is dense and uniform(50-55 μm).The average hardness is HV0.2 1165.2,which is 3.4 times that of the TC11 substrate.The TiN coatings prepared in moderate nitrogen flux perform the best wear resistance.The wear loss of the coating is 0.4 mg,which is 2/9 that of the TC11 substrate.The main wear mechanisms of the coatings are micro-cutting wear accompanied by multi-plastic deformation wear.展开更多
In order to investigate the microstructure of TiN and TiAlN coatings and their effect on the wear resistance of Mg alloy, TiN and TiAlN coatings were deposited on AZ91 magnesium alloy by multi-arc ion plating technolo...In order to investigate the microstructure of TiN and TiAlN coatings and their effect on the wear resistance of Mg alloy, TiN and TiAlN coatings were deposited on AZ91 magnesium alloy by multi-arc ion plating technology.TiN and Ti70Al30N coatings were prepared on the substrate,respectively,which exhibited dark golden color and compact microstructure.The microstructures of TiN and Ti70Al30N coatings were investigated by X-ray diffractometry(XRD)and scanning electron microscopy(SEM).The micro-hardness and wear resistance of TiN and Ti70Al30N coatings were investigated in comparison with the uncoated AZ91 alloy. The XRD peaks assigned to TiN and TiAlN phases are found.The hardness of TiN coatings is two times as high as that of AZ91 alloy, and Ti70Al30N coating exhibits the highest hardness.The wear resistance of the hard coatings increases obviously as result of their high hardness.展开更多
Duplex NiP/TiN coatings consisting of the electroless intermediate layers and the physical vapor deposition(PVD) top layers were fabricated on the AA6061 aluminum alloy in order to enhance the load bearing capacity. T...Duplex NiP/TiN coatings consisting of the electroless intermediate layers and the physical vapor deposition(PVD) top layers were fabricated on the AA6061 aluminum alloy in order to enhance the load bearing capacity. The main objective of this study was to model the load bearing based on the thickness, adhesion and elastic modulus of the coatings. For this purpose, partial least square(PLS) and support vector regression(SVR) approaches were employed.The results showed that both models had an acceptable performance;however, the PLS model outperformed SVR. The correlation coefficients between thickness, adhesion and elastic modulus with load bearing were 0.841, 0.8092 and 0.7657, respectively;so, thickness had the greatest effect on the load bearing capacity. The composition and structure of the samples were evaluated using XRD and SEM. The load capacity of the coated samples was also discussed based on the wear and adhesion evaluations. Dry sliding wear tests, under a load of 2 N and a sliding distance of 100 m,demonstrated the complete destruction of the coated specimens with low load capacity. The samples with high load capacity showed not only a superior tribological performance, but also a remarkable adhesion according to the Rockwell superficial hardness test.展开更多
To improve the oxidation resistance and corrosion resistance of Zr-4 alloy, titanium nitride (TIN) coatings were prepared on the Zr-4 alloy with a TiN ceramic target with different ratios of N2. Microstructure and h...To improve the oxidation resistance and corrosion resistance of Zr-4 alloy, titanium nitride (TIN) coatings were prepared on the Zr-4 alloy with a TiN ceramic target with different ratios of N2. Microstructure and high-temperature properties of the TiN coated samples were studied by scanning electron microscopy (SEM), energy dispersive spectrometer (EDS), X-ray diffraction meter (XRD), X-ray photoelectron spectroscopy (XPS), heat treatment furnace and autoclaves, respectively. The x value of the TiN coatings (TiN) ranges from 0.96 to 1.33. After the introduction of N2, TiN coating exhibits a weak (200) plane and a preferred (111) orientation. The coating prepared with an N2 flow ratio of 15% shows an optimal oxidation resistance in the atmospheric environment at 800 ℃. In either 1 200 ℃ steam environment for one hour, or deionized water at 360 ℃ and a pressure of 18.6 Mpa for 16 d, the opitimized TiN coated samples have no delamination or spallation; and the gains in the masses of samples are much smaller than Zr-4 alloy. These results demonstrate the effectiveness of the optimized TiN coating as the protective coating on the Zr-4 alloy under extreme conditons.展开更多
Ti-xHf(x=10%,20%,30% and 40%,mass fraction) alloys were prepared by arc melting,and the microstructure was controlled for 24 h at 1 000 ℃ in argon atmosphere.The formation of nanotube was conducted by anodizing on Ti...Ti-xHf(x=10%,20%,30% and 40%,mass fraction) alloys were prepared by arc melting,and the microstructure was controlled for 24 h at 1 000 ℃ in argon atmosphere.The formation of nanotube was conducted by anodizing on Ti-Hf alloys in 1.0 mol/L H3PO4 electrolytes with small amounts of NaF at room temperature.And then TiN coatings were coated by DC-sputtering on the anodized surface.Microstructures and nanotube morphology of the alloys were examined by field emission scanning electron microscopy(FE-SEM) and X-ray diffractometry(XRD).The corrosion properties of the specimens were examined through potentiodynamic test(potential range from -1 500 to 2 000 mV) in 0.9 % NaCl solution by potentiostat.The microstructure shows the acicular phase and α' phase with Hf content.The amorphous oxide surface is transformed to crystalline anatase phase.TiN coated nanotube surface has a good corrosion resistance.展开更多
Ti-X-N (X=Al,Si or Al+Si) coatings were grown onto cemented carbide substrates by cathodic arc evaporation. The hardness of the coatings was obtained by nanoindentation and the microstructure was investigated by XRD,X...Ti-X-N (X=Al,Si or Al+Si) coatings were grown onto cemented carbide substrates by cathodic arc evaporation. The hardness of the coatings was obtained by nanoindentation and the microstructure was investigated by XRD,XPS and SEM. Solid solution hardening results in a hardness increase from 24 GPa for TiN to 31.2 GPa for TiAlN. The higher hardness values of 36.7 GPa for TiSiN and 42.4 GPa for TiAlSiN are obtained by the incorporation of Si into TiN (TiAlN) coatings due to the formation of special three-dimensional net structure consisting of nanocrystalline (nc) TiN (TiAlN) encapsulated in an amorphous (a) Si3N4 matrix phase. Furthermore,the nc-TiAlN/a-Si3N4 coating shows the best machining performance.展开更多
With advantages of high specific strength, low elastic module, good damping property et al., the magnesium alloys exhibit great potential applications in aerospace. But poor wear behavior results in limited use of mag...With advantages of high specific strength, low elastic module, good damping property et al., the magnesium alloys exhibit great potential applications in aerospace. But poor wear behavior results in limited use of magnesium alloy to static components. In this study, a 2 μm thick coating with 12 sub-layers of CrN and TiN is deposited alternately on the surface of magnesium alloy AZ91 by a novel method of arc-glow plasma depositing to improve its wear resistance. The composition and microstructure of the coating layer are analyzed by means of SEM, XRD and GDS. The friction coefficient is measured by ball on disc rubbing test, and the wear rates are also calculated. The results indicate that the friction coefficient is increased, but the wear rate is dropped sharply as compared with bare metal. The surface hardness is about HK0.01 1400.展开更多
文摘In order to improve the tribological properties of titanium alloys,the in-situ TiN coatings were prepared by electrospark deposition(ESD) on the surface of TC11 titanium alloy.The effects of nitrogen flux on the microstructure and tribological properties of TiN coatings were investigated.The results show that the coating is relative thin when the nitrogen flux is small and mainly consists of Ti2N,α-Ti,Ti O and TiN phases,and the metastable phase of Ti2N is developed due to the rapid solidification of ESD.While in excessive nitrogen flux condition,many micro-cracks and holes might be generated in the coating.In moderate nitrogen flux,the coating is mainly composed of TiN phase,and is dense and uniform(50-55 μm).The average hardness is HV0.2 1165.2,which is 3.4 times that of the TC11 substrate.The TiN coatings prepared in moderate nitrogen flux perform the best wear resistance.The wear loss of the coating is 0.4 mg,which is 2/9 that of the TC11 substrate.The main wear mechanisms of the coatings are micro-cutting wear accompanied by multi-plastic deformation wear.
基金Project(1091249-1-00)supported by the Bureau of Science and Technology of Shenyang City,China
文摘In order to investigate the microstructure of TiN and TiAlN coatings and their effect on the wear resistance of Mg alloy, TiN and TiAlN coatings were deposited on AZ91 magnesium alloy by multi-arc ion plating technology.TiN and Ti70Al30N coatings were prepared on the substrate,respectively,which exhibited dark golden color and compact microstructure.The microstructures of TiN and Ti70Al30N coatings were investigated by X-ray diffractometry(XRD)and scanning electron microscopy(SEM).The micro-hardness and wear resistance of TiN and Ti70Al30N coatings were investigated in comparison with the uncoated AZ91 alloy. The XRD peaks assigned to TiN and TiAlN phases are found.The hardness of TiN coatings is two times as high as that of AZ91 alloy, and Ti70Al30N coating exhibits the highest hardness.The wear resistance of the hard coatings increases obviously as result of their high hardness.
文摘Duplex NiP/TiN coatings consisting of the electroless intermediate layers and the physical vapor deposition(PVD) top layers were fabricated on the AA6061 aluminum alloy in order to enhance the load bearing capacity. The main objective of this study was to model the load bearing based on the thickness, adhesion and elastic modulus of the coatings. For this purpose, partial least square(PLS) and support vector regression(SVR) approaches were employed.The results showed that both models had an acceptable performance;however, the PLS model outperformed SVR. The correlation coefficients between thickness, adhesion and elastic modulus with load bearing were 0.841, 0.8092 and 0.7657, respectively;so, thickness had the greatest effect on the load bearing capacity. The composition and structure of the samples were evaluated using XRD and SEM. The load capacity of the coated samples was also discussed based on the wear and adhesion evaluations. Dry sliding wear tests, under a load of 2 N and a sliding distance of 100 m,demonstrated the complete destruction of the coated specimens with low load capacity. The samples with high load capacity showed not only a superior tribological performance, but also a remarkable adhesion according to the Rockwell superficial hardness test.
基金Funded by the National Science and Technology Major Project of the Ministry of Science and Technology of China(2015ZX06004001-002)the Postgraduate Research and Innovation Project of the University of South China(2017XCX11)
文摘To improve the oxidation resistance and corrosion resistance of Zr-4 alloy, titanium nitride (TIN) coatings were prepared on the Zr-4 alloy with a TiN ceramic target with different ratios of N2. Microstructure and high-temperature properties of the TiN coated samples were studied by scanning electron microscopy (SEM), energy dispersive spectrometer (EDS), X-ray diffraction meter (XRD), X-ray photoelectron spectroscopy (XPS), heat treatment furnace and autoclaves, respectively. The x value of the TiN coatings (TiN) ranges from 0.96 to 1.33. After the introduction of N2, TiN coating exhibits a weak (200) plane and a preferred (111) orientation. The coating prepared with an N2 flow ratio of 15% shows an optimal oxidation resistance in the atmospheric environment at 800 ℃. In either 1 200 ℃ steam environment for one hour, or deionized water at 360 ℃ and a pressure of 18.6 Mpa for 16 d, the opitimized TiN coated samples have no delamination or spallation; and the gains in the masses of samples are much smaller than Zr-4 alloy. These results demonstrate the effectiveness of the optimized TiN coating as the protective coating on the Zr-4 alloy under extreme conditons.
基金supported by National Research Foundation of Korea (2009-0074672)
文摘Ti-xHf(x=10%,20%,30% and 40%,mass fraction) alloys were prepared by arc melting,and the microstructure was controlled for 24 h at 1 000 ℃ in argon atmosphere.The formation of nanotube was conducted by anodizing on Ti-Hf alloys in 1.0 mol/L H3PO4 electrolytes with small amounts of NaF at room temperature.And then TiN coatings were coated by DC-sputtering on the anodized surface.Microstructures and nanotube morphology of the alloys were examined by field emission scanning electron microscopy(FE-SEM) and X-ray diffractometry(XRD).The corrosion properties of the specimens were examined through potentiodynamic test(potential range from -1 500 to 2 000 mV) in 0.9 % NaCl solution by potentiostat.The microstructure shows the acicular phase and α' phase with Hf content.The amorphous oxide surface is transformed to crystalline anatase phase.TiN coated nanotube surface has a good corrosion resistance.
基金Project(50721003) supported by Creative Research Group of National Natural Science Foundation of ChinaProject(2009ZX04012-021) supported by the National Major Special Science and Technology Program of China
文摘Ti-X-N (X=Al,Si or Al+Si) coatings were grown onto cemented carbide substrates by cathodic arc evaporation. The hardness of the coatings was obtained by nanoindentation and the microstructure was investigated by XRD,XPS and SEM. Solid solution hardening results in a hardness increase from 24 GPa for TiN to 31.2 GPa for TiAlN. The higher hardness values of 36.7 GPa for TiSiN and 42.4 GPa for TiAlSiN are obtained by the incorporation of Si into TiN (TiAlN) coatings due to the formation of special three-dimensional net structure consisting of nanocrystalline (nc) TiN (TiAlN) encapsulated in an amorphous (a) Si3N4 matrix phase. Furthermore,the nc-TiAlN/a-Si3N4 coating shows the best machining performance.
基金Science foundation of Shanxi province, China (20041065)
文摘With advantages of high specific strength, low elastic module, good damping property et al., the magnesium alloys exhibit great potential applications in aerospace. But poor wear behavior results in limited use of magnesium alloy to static components. In this study, a 2 μm thick coating with 12 sub-layers of CrN and TiN is deposited alternately on the surface of magnesium alloy AZ91 by a novel method of arc-glow plasma depositing to improve its wear resistance. The composition and microstructure of the coating layer are analyzed by means of SEM, XRD and GDS. The friction coefficient is measured by ball on disc rubbing test, and the wear rates are also calculated. The results indicate that the friction coefficient is increased, but the wear rate is dropped sharply as compared with bare metal. The surface hardness is about HK0.01 1400.