期刊文献+
共找到1,779篇文章
< 1 2 89 >
每页显示 20 50 100
Chlorofullerene C_(60)Cl_(6) Enables Efficient and Stable Tin-Based Perovskite Solar Cells
1
作者 Jingfu Chen Chengbo Tian +8 位作者 Chao Sun Panpan Yang Wenjing Feng Lingfang Zheng Liu Yang Enlong Hou Jiefeng Luo Liqiang Xie Zhanhua Wei 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2024年第1期176-183,共8页
Tin-based perovskite solar cells(TPSCs)have received great attention due to their eco-friendly properties and high theoretical efficiencies.However,the fast crystallization feature of tin-based perovskites leads to po... Tin-based perovskite solar cells(TPSCs)have received great attention due to their eco-friendly properties and high theoretical efficiencies.However,the fast crystallization feature of tin-based perovskites leads to poor film quality and limits the corresponding device performance.Herein,a chlorofullerene,C_(60)Cl_(6),with six chlorine attached to the C_(60)cage,is applied to modulate the crystallization process and passivate grain boundary defects of the perovskite film.The chemical interactions between C_(60)Cl_(6)and perovskite components retard the transforming process of precursors to perovskite crystals and obtain a high-quality tin-based perovskite film.It is also revealed that the C_(60)Cl_(6)located at the surfaces and grain boundaries can not only passivate the defects but also offer a role in suturing grain boundaries to suppress the detrimental effects of water and oxygen on perovskite films,especially the oxidation of Sn^(2+)to Sn^(4+).As a result,the C_(60)Cl_(6)-based device yields a remarkably improved device efficiency from 10.03%to 13.30%with enhanced stability.This work provides a new strategy to regulate the film quality and stability of TPSCs using functional fullerene materials. 展开更多
关键词 crystallization regulation defect passivation fullerene derivative perovskites solar cell tin-based perovskite
下载PDF
Potassium thiocyanate additive for PEDOT:PSS layer to fabricate efficient tin-based perovskite solar cells
2
作者 Xu Zhao Shoudeng Zhong +2 位作者 Shuqi Wang Shaozhen Li Sujuan Wu 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2023年第12期2451-2458,共8页
The commercialized poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate)(PEDOT:PSS)is usually used as hole transport layers(HTLs)in tin-based perovskite solar cells(TPSCs).However,the further development has been re... The commercialized poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate)(PEDOT:PSS)is usually used as hole transport layers(HTLs)in tin-based perovskite solar cells(TPSCs).However,the further development has been restricted due to the acidity that could damage the stability of TPSCs.Although the PEDOT:PSS solution can be diluted by water to decrease acidity and reduce the cost of device fabrication,the electrical conductivity will decrease obviously in diluted PEDOT:PSS solution.Herein,potassium thiocyanate(KSCN)is selected to regulate the properties of PEDOT:PSS HTLs from the diluted PEDOT:PSS aqueous solution by water with a volume ratio of 1:1 to prepare efficient TPSCs.The effect of KSCN addition on the structure and photoelectrical properties of PEDOT:PSS HTLs and TPSCs have been systematically studied.At the optimal KSCN concentration,the TPSCs based on KSCN-doped PEDOT:PSS HTLs(KSCN-PSCs)demonstrate the champion power conversion efficiency(PCE)of 8.39%,while the reference TPSCs only show a champioan PCE of 6.70%.The further analysis demonstrates that the KSCN additive increases the electrical conductivity of HTLs prepared by the diluted PEDOT:PSS solution,improves the microstructure of perovskite film,and inhibits carrier recombination in TPSCs,leading to the reduced hysteresis effect and enhanced PCE in KSCN-PSCs.This work gives a low-cost and practical strategy to develop a high-quality PEDOT:PSS HTLs from diluted PEDOT:PSS aqueous solution for efficient TPSCs. 展开更多
关键词 potassium thiocyanate diluted PEDOT:PSS solution tin-based perovskite solar cells photovoltaic performance
下载PDF
Ligand Engineering in Tin-Based Perovskite Solar Cells
3
作者 Peizhou Li Xiangrong Cao +9 位作者 Jingrui Li Bo Jiao Xun Hou Feng Hao Zhijun Ning Zuqiang Bian Jun Xi Liming Ding Zhaoxin Wu Hua Dong 《Nano-Micro Letters》 SCIE EI CAS CSCD 2023年第10期112-150,共39页
Perovskite solar cells(PSCs)have attracted aggressive attention in the photovoltaic field in light of the rapid increasing power conversion efficiency.However,their large-scale application and commercialization are li... Perovskite solar cells(PSCs)have attracted aggressive attention in the photovoltaic field in light of the rapid increasing power conversion efficiency.However,their large-scale application and commercialization are limited by the toxicity issue of lead(Pb).Among all the lead-free perovskites,tin(Sn)-based perovskites have shown potential due to their low toxicity,ideal bandgap structure,high carrier mobility,and long hot carrier lifetime.Great progress of Sn-based PSCs has been realized in recent years,and the certified efficiency has now reached over 14%.Nevertheless,this record still falls far behind the theoretical calculations.This is likely due to the uncontrolled nucleation states and pronounced Sn(Ⅳ)vacancies.With insights into the methodologies resolving both issues,ligand engineering-assisted perovskite film fabrication dictates the state-of-the-art Sn-based PSCs.Herein,we summarize the role of ligand engineering during each state of film fabrication,ranging from the starting precursors to the ending fabricated bulks.The incorporation of ligands to suppress Sn~(2+)oxidation,passivate bulk defects,optimize crystal orientation,and improve stability is discussed,respectively.Finally,the remained challenges and perspectives toward advancing the performance of Sn-based PSCs are presented.We expect this review can draw a clear roadmap to facilitate Sn-based PSCs via ligand engineering. 展开更多
关键词 perovskite solar cells LEAD-FREE Ligand engineering DEFECTS Stability
下载PDF
Interfacial engineering in lead-free tin-based perovskite solar cells
4
作者 Zhenxi Wan Huagui Lai +9 位作者 Shengqiang Ren Rui He Yiting Jiang Jincheng Luo Qiyu Chen Xia Hao Ye Wang Jingquan Zhang Lili Wu Dewei Zhao 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2021年第6期147-168,I0005,共23页
Lead(Pb)-free Tin(Sn)-based perovskite solar cells(PSCs)have been favored by the community due to their low toxicity,preferable bandgaps,and great potential to achieve high power conversion efficiencies(PCEs).Interfac... Lead(Pb)-free Tin(Sn)-based perovskite solar cells(PSCs)have been favored by the community due to their low toxicity,preferable bandgaps,and great potential to achieve high power conversion efficiencies(PCEs).Interfaces engineering plays important roles in developing highly efficient Sn-based PSCs via passivation of trap defects,alignment of energy levels,and incorporation of low-dimensional Sn-based perovskites.In this review,we summarize the development of Pb-free Sn-based perovskites and their applications in devices,especially the strategies of improving the interfaces.We also provide perspectives for future research.Our aim is to help the development of new and advanced approaches to achieving high-performance environment-friendly Pb-free Sn-based PSCs. 展开更多
关键词 tin-based perovskites perovskite solar cells Interfacial engineering Environment-friendly Energy level alignment
下载PDF
Chiral cation promoted interfacial charge extraction for efficient tin-based perovskite solar cells
5
作者 Weiyin Gao He Dong +12 位作者 Nan Sun Lingfeng Chao Wei Hui Qi Wei Hai Li Yingdong Xia Xingyu Gao Guichuan Xing Zhongbin Wu Lin Song Peter Müller-Buschbaum Chenxin Ran Yonghua Chen 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2022年第5期789-796,共8页
Pb-free Sn-based perovskite solar cells(PSCs) have recently made inspiring progress, and power conversion efficiency(PCE) of 14.8% has been achieved. However, due to the energy-level mismatch and poor interfacial cont... Pb-free Sn-based perovskite solar cells(PSCs) have recently made inspiring progress, and power conversion efficiency(PCE) of 14.8% has been achieved. However, due to the energy-level mismatch and poor interfacial contact between commonly used hole transport layer(i.e., poly(3,4-ethylenedioxythio phene):poly(styrene sulfonate), PEDOT:PSS) and FASnI_(3) film, it is still challenging to effectively extract holes at the interface. Owing to the p-type nature of Sn-based perovskites, the efficient hole extraction is of particular significance to improve the PCE of their solar cells. In this work, for the first time, the role of chiral cations, a-methylbenzylamine(S-/R-/rac-MBA), in promoting hole transportation of FASnI_(3)-based PSCs is demonstrated. The introduction of MBAs is found to form 2D/3D film with lowdimensional structures locating at PEDOT:PSS/FASnI_(3) interface, which facilitates the energy level alignment and efficient charge transfer at the interface. Importantly, chiral-induced spin selectivity(CISS)effect of R-MBA_(2)SnI_(4)induced by chiral R-MBA cation is found to further assist the specific interfacial transport of accumulated holes. As a result, R-MBA-based PSCs achieve decent PCE of 10.73% with much suppressed hysteresis and enhanced device stability. This work opens up a new strategy to efficiently promote the interfacial extraction of accumulated charges in working PSCs. 展开更多
关键词 Tin perovskite Chiral cation 2D/3D structure Interfacial charge extraction solar cells
下载PDF
Recent progress in all-inorganic tin-based perovskite solar cells:a review
6
作者 Minghao Wang Yu Shi 《Science China Chemistry》 SCIE EI CAS CSCD 2024年第4期1117-1136,共20页
Recently,power conversion efficiency(PCE)of organic-inorganic hybrid perovskite solar cells(PSCs)has been improved to26.1%.However,the toxicity issue of lead still hinders the large-scale commercial production and app... Recently,power conversion efficiency(PCE)of organic-inorganic hybrid perovskite solar cells(PSCs)has been improved to26.1%.However,the toxicity issue of lead still hinders the large-scale commercial production and application of lead(Pb)-based halide perovskites.Fortunately,environmentally friendly tin(Sn)-based perovskites have recently shown excellent performance.Among them,the all-inorganic Sn-based perovskites,including CsSnX_(3) and Cs_(2)SnX_(6),have better stability,more suitable bandgap,and higher charge mobility,which have attracted more attention from researchers than organic-inorganic Sn-based hybrid perovskites.Herein,we review recent research progress on all-inorganic Sn-based perovskite materials and corresponding solar cell devices.Finally,we also summarize the current challenges and future research directions for this type of PSCs. 展开更多
关键词 solar cells perovskite all-inorganic CsSnX_(3) Cs_(2)SnX_(6)
原文传递
Propylamine hydrobromide passivated tin-based perovskites to efficient solar cells 被引量:1
7
作者 Xiaomeng Li Pengcheng Jia +7 位作者 Fanwen Meng Xingyu Zhang Yang Tang Bo Song Chang Gao Liang Qin Feng Teng Yanbing Hou 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2023年第10期1965-1972,共8页
The development of tin-based devices with low toxicity is critical for the commercial viability of perovskite solar cells.However because tin halide is a stronger Lewis acid,its crystallization rate is extremely fast,... The development of tin-based devices with low toxicity is critical for the commercial viability of perovskite solar cells.However because tin halide is a stronger Lewis acid,its crystallization rate is extremely fast,resulting in the formation of numerous defects that affect the device performance of tin-based perovskite solar cells.Herein,propylamine hydrobromide(PABr)was added to the perovskite precursor solution as an additive to passivate defects and fabricate more uniform and dense perovskite films.Because propylamine cations are too large to enter the perovskite lattices,they only exist at the grain boundary to passivate surface defects and promote crystal growth in a preferred orientation.The PABr additive raises the average short-circuit current density from 19.45 to 25.47 mA·cm^(-2)by reducing carrier recombination induced by defects.Furthermore,the device’s long-term illumination stability is improved after optimization,and the hysteresis effect is negligible.The addition of PABr results in a power conversion efficiency of 9.35%. 展开更多
关键词 tin-based perovskite solar cells propylamine hydrobromide PASSIVATION crystallization
下载PDF
Non-destructive buffer enabling near-infrared-transparent inverted inorganic perovskite solar cells toward 1400 h light-soaking stable perovskite/Cu(In,Ga)Se_(2) tandem solar cells
8
作者 Yu Zhang Zhaoheng Tang +14 位作者 Zhongyang Zhang Jiahong Tang Minghua Li Siyuan Zhu Wenyan Tan Xi Jin Tongsheng Chen Jinsong Hu Chao Zhou Chunlei Yang Qijie Liang Xugang Guo Weimin Li Weiqiang Chen Yan Jiang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第10期622-629,I0013,共9页
Near-infrared(NIR)transparent inverted all-inorganic perovskite solar cells(PSCs)are excellent top cell candidates in tandem applications.An essential challenge is the replacement of metal contacts with transparent co... Near-infrared(NIR)transparent inverted all-inorganic perovskite solar cells(PSCs)are excellent top cell candidates in tandem applications.An essential challenge is the replacement of metal contacts with transparent conductive oxide(TCO)electrodes,which requires the introduction of a buffer layer to prevent sputtering damage.In this study,we show that the conventional buffers(i.e.,small organic molecules and atomic layer deposited metal oxides)used for organic-inorganic hybrid perovskites are not applicable to all-inorganic perovskites,due to non-uniform coverage of the vulnerable layers underneath,deterioration upon ion bombardment and moisture induced perovskite phase transition,A thin film of metal oxide nanoparticles by the spin-coating method serves as a non-destructive buffer layer for inorganic PSCs.All-inorganic inverted near-infrared-transparent PSCs deliver a PCE of 17.46%and an average transmittance of 73.7%between 780 and 1200 nm.In combination with an 18.56%Cu(In,Ga)Se_(2) bottom cell,we further demonstrate the first all-inorganic perovskite/CIGS 4-T tandem solar cell with a PCE of 24.75%,which exhibits excellent illumination stability by maintaining 86.7%of its initial efficiency after 1400 h.The non-destructive buffer lays the foundation for efficient and stable NIR-transparent inverted inorganic perovskite solar cells and perovskite-based tandems. 展开更多
关键词 CsPbI_(3)perovskite Inverted perovskite solar cells Tandem solar cells Buffer layer Stability
下载PDF
Constructing low-dimensional perovskite network to assist efficient and stable perovskite solar cells
9
作者 Jinwen Gu Xianggang Sun +5 位作者 Pok Fung Chan Xinhui Lu Peng Zeng Jue Gong Faming Li Mingzhen Liu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第9期625-632,共8页
The use of low-dimensional(LD)perovskite materials is crucial for achieving high-performance perovskite solar cells(PSCs).However,LD perovskite films fabricated by conventional approaches give rise to full coverage of... The use of low-dimensional(LD)perovskite materials is crucial for achieving high-performance perovskite solar cells(PSCs).However,LD perovskite films fabricated by conventional approaches give rise to full coverage of the underlying 3D perovskite films,which inevitably hinders the transport of charge carriers at the interface of PSCs.Here,we designed and fabricated LD perovskite structure that forms net-like morphology on top of the underlying three-dimensional(3D)perovskite bulk film.The net-like LD perovskite not only reduced the surface defects of 3D perovskite film,but also provided channels for the vertical transport of charge carriers,effectively enhancing the interfacial charge transfer at the LD/3D hetero-interface.The net-like morphological design comprising LD perovskite effectively resolves the contradiction between interfacial defect passivation and carrier extraction across the hetero-interfaces.Furthermore,the net-like LD perovskite morphology can enhance the stability of the underlying 3D perovskite film,which is attributed to the hydrophobic nature of LD perovskite.As a result,the net-like LD perovskite film morphology assists PSCs in achieving an excellent power conversion efficiency of up to 24.6%with over 1000 h long-term operational stability. 展开更多
关键词 Low-dimensional perovskite NETWORK Carrier transport perovskite solar cell Stability
下载PDF
A short overview of the lead iodide residue impact and regulation strategies in perovskite solar cells
10
作者 Eng Liang Lim Zhanhua Wei 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第3期504-510,I0012,共8页
Lead iodide(PbI2) is a vital raw material for preparing perovskite solar cells(PSCs),and it not only takes part in forming the light absorption layer but also remains in the grain boundary as a passivator.In other wor... Lead iodide(PbI2) is a vital raw material for preparing perovskite solar cells(PSCs),and it not only takes part in forming the light absorption layer but also remains in the grain boundary as a passivator.In other words,the PbI2 content in the precursor and as formed film will affect the efficiency and stability of the PSCs.With moderate residual PbI2,it passivates the bulk/surface defects of perovskite,reduces the interfacial recombination,promotes the perovskite stability,minimizes the device hysteresis,and so on.Deficient PbI2 residue will reduce the interfacial passivation effect and device performance.In addition to facilitating the non-radiative recombination,over PbI2 residue can also lead to electronic insulation in the grain boundary and deteriorate the device performance.However,the impact and regulation of PbI2 residue on the device performance and stability is still not fully understood.Herein,a comprehensive and detailed review is presented by discussing the PbI2 residue impact and its regulation strategies(i.e., elimination,facilitation and conversion of the residue PbI2) to manipulate the PbI2 content,distribution and forms.Finally,we also show future outlooks in this field,with an aim to help further the progression of high-efficiency and stable PSCs. 展开更多
关键词 Lead iodide RESIDUE REGULATION perovskite solar cells Efficiency Stability
下载PDF
Modeling the performance of perovskite solar cells with inserting porous insulating alumina nanoplates
11
作者 潘赵耀 杨金彭 沈小双 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第3期668-671,共4页
Peng et al.[Science 379683(2023)]reported an effective method to improve the performance of perovskite solar cells by using thicker porous insulator contact(PIC)-alumina nanoplates.This method overcomes the trade-off ... Peng et al.[Science 379683(2023)]reported an effective method to improve the performance of perovskite solar cells by using thicker porous insulator contact(PIC)-alumina nanoplates.This method overcomes the trade-off between the open-circuit voltage and the fill factor through two mechanisms:reduced surface recombination velocity and increased bulk recombination lifetime due to better perovskite crystallinity.From arguments of drift-diffusion simulations,we find that an increase in mobility and carrier recombination lifetime in bulk are the key factors for minimizing the resistance-effect from thicker PICs and achieving a maximum power conversion efficiency(PCE)at approximately 25%reduced contact area.Furthermore,the partially replacement of perovskite films with thicker PICs would result in a reduction in short-current density,but the relative low refractive index of the PICs imbedded into the high refractive index perovskite creates light trapping structures that compensate for this loss. 展开更多
关键词 perovskite solar cells NANOSTRUCTURE CRYSTALLINE mobility
下载PDF
Stabilizing perovskite precursors with the reductive natural amino acid for printable mesoscopic perovskite solar cells
12
作者 Wenjing Hu Jian Yang +9 位作者 Chuang Yang Xufeng Xiao Chaoyang Wang Zhaozhen Cui Qiaojiao Gao Jianhang Qi Minghao Xia Yaqiong Su Anyi Mei Hongwei Han 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第3期32-39,I0003,共9页
Solution processability significantly advances the development of highly-efficient perovskite solar cells.However,the precursor solution tends to undergo irreversible degradation reactions,impairing the device perform... Solution processability significantly advances the development of highly-efficient perovskite solar cells.However,the precursor solution tends to undergo irreversible degradation reactions,impairing the device performance and reproducibility.Here,we utilize a reductive natural amino acid,Nacetylcysteine(NALC),to stabilize the precursor solution for printable carbon-based hole-conductorfree mesoscopic perovskite solar cells.We find that I_(2) can be generated in the aged solution containing methylammonium iodide(MI) in an inert atmosphere and speed up the MA-FA^(+)(formamidinium) reaction which produces large-size cations and hinders the formation of perovskite phase.NALC effectively stabilizes the precursor via its sulfhydryl group which reduces I_(2) back to I^(-)and provides H^(+).The NALC-stabilized precursor which is aged for 1440 h leads to devices with a power conversion efficiency equivalent to 98% of that for devices prepared with the fresh precursor.Furthermore,NALC improves the device power conversion efficiency from 16.16% to 18.41% along with enhanced stability under atmospheric conditions by modifying grain boundaries in perovskite films and reducing associated defects. 展开更多
关键词 perovskite solar cells perovskite precursor Degradation STABILIZATION Reductive natural amino acid
下载PDF
Defect mediated losses and degradation of perovskite solar cells:Origin impacts and reliable characterization techniques
13
作者 Himangshu Baishy Ramkrishna Das Adhikari +5 位作者 Mayur Jagdishbhai Patel Deepak Yadav Tapashi Sarmah Mizanur Alam Manab Kalita Parameswar Krishnan lyer 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第7期217-253,共37页
The rapid advancement of halide-based hybrid perovskite materials has garnered significant research attention,particularly in the domain of photovoltaic technology.Owing to their exceptional optoelec-tronic properties... The rapid advancement of halide-based hybrid perovskite materials has garnered significant research attention,particularly in the domain of photovoltaic technology.Owing to their exceptional optoelec-tronic properties,they demonstrated power conversion efficiency(PcE)of over 25%in single junction solar cells.Despite the notable progress in PCE over the past decade,the inherent high defect density pre-senting in perovskite materials gives rise to several loss mechanisms and associated ion migration in per-ovskite solar cells(PsCs)during operational conditions.These factors collectively contribute to a significant stability challenge in PsCs,placing their longevity far behind for commercialization.While numerous reports have explored defects,ion migration,and their impacts on device performance,a com-prehensive correlation between the types of defects and the degradation kinetics of perovskite materials and PsCs has been lacking.In this context,this review aims to provide a comprehensive overview of the origins of defects and ion migration,emphasizing their correlation with the degradation kinetics of per-ovskite materials and PsCs,leveraging reliable characterization techniques.Furthermore,these charac-terization techniques are intended to comprehend loss mechanisms by different passivation approaches to enhance the durability and PCE of PSCs. 展开更多
关键词 perovskite solar cells Defects lon migration DEGRADATION Stability
下载PDF
Seed-assisted growth for high-performance perovskite solar cells:A review
14
作者 Zhimin Fang Ting Nie +1 位作者 Jianning Ding Shengzhong(Frank)Liu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第9期588-610,共23页
The rapid increase in the power conversion efficiency(PCE)of perovskite solar cells(PSCs)is closely related to the development of deposition techinique for perovskite layer.The high-quality perovskite film enables eff... The rapid increase in the power conversion efficiency(PCE)of perovskite solar cells(PSCs)is closely related to the development of deposition techinique for perovskite layer.The high-quality perovskite film enables efficient charge transportation and less trap states,which are eventually translated into enhanced device performance.Seed-assisted growth(SAG)is a potential technique for depositing highly-crystallized perovskite films with preferential crystal orientation among the numerous approaches related to crystallization modulation.In this review,we summarize the recent advances in the SAG technique for both one-step and two-step processed perovskite films.Additionally,seeding at the buried interface and on the top surface are also introduced.We present different seeds and their corresponding seeding mechanism in detail,such as inorganic nanomaterials,organic ammoniums,alkali metal halides,and perovskite seeds.Finally,challenges and perspectives are proposed to investigate the potential expansion of seeding engineering in high-performance PSCs,particularly large-area devices. 展开更多
关键词 perovskite solar cell SEED CRYSTALLIZATION Efficiency
下载PDF
Surface-functionalized hole-selective monolayer for high efficiency single-junction wide-bandgap and monolithic tandem perovskite solar cells
15
作者 Devthade Vidyasagar Yeonghun Yun +13 位作者 Jae Yu Cho Hyemin Lee Kyung Won Kim Yong Tae Kim Sung Woong Yang Jina Jung Won Chang Choi Seonu Kim Rajendra Kumar Gunasekaran Seok Beom Kang Kwang Heo Dong Hoe Kim Jaeyeong Heo Sangwook Lee 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第1期317-326,I0008,共11页
Carbazole moiety-based 2PACz([2-(9H-carbazol-9-yl)ethyl]phosphonic acid)self-assembled monolayers(SAMs)are excellent hole-selective contact(HSC)materials with abilities to excel the charge-transferdynamics of perovski... Carbazole moiety-based 2PACz([2-(9H-carbazol-9-yl)ethyl]phosphonic acid)self-assembled monolayers(SAMs)are excellent hole-selective contact(HSC)materials with abilities to excel the charge-transferdynamics of perovskite solar cells(PSCs).Herein,we report a facile but powerful method to functionalize the surface of 2PACz-SAM,by which reproducible,highly stable,high-efficiency wide-bandgap PSCs can be obtained.The 2PACz surface treatment with various donor number solvents improves assembly of 2PACz-SAM and leave residual surface-bound solvent molecules on 2PACz-SAM,which increases perovskite grain size,retards halide segregation,and accelerates hole extraction.The surface functionalization achieves a high power conversion efficiency(PCE)of 17.62%for a single-junction wide-bandgap(~1.77 e V)PSC.We also demonstrate a monolithic all-perovskite tandem solar cell using surfaceengineered HSC,showing high PCE of 24.66%with large open-circuit voltage of 2.008 V and high fillfactor of 81.45%.Our results suggest this simple approach can further improve the tandem device,when coupled with a high-performance narrow-bandgap sub-cell. 展开更多
关键词 perovskite solar cells 2PACz Monolithic tandem solar cells Wide bandgap
下载PDF
Boosting MA-based two-dimensional Ruddlesden-Popper perovskite solar cells by incorporating a binary spacer
16
作者 Xue Dong Yinhao Tang +10 位作者 Yiqun Li Xin Li Yuzhen Zhao Wenqi Song Fangmin Wang Shudong Xu Yipeng Zhou Chenxin Ran Zongcheng Miao Lin Song Zhongbin Wu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第8期348-356,I0008,共10页
Two-dimensional Ruddlesden-Popper(2DRP)perovskite exhibits excellent stability in perovskite solar cells(PSCs)due to introducing hydrophobic long-chain organic spacers.However,the poor charge transporting property of ... Two-dimensional Ruddlesden-Popper(2DRP)perovskite exhibits excellent stability in perovskite solar cells(PSCs)due to introducing hydrophobic long-chain organic spacers.However,the poor charge transporting property of bulky organic cation spacers limits the performance of 2DRP PSCs.Inspired by the Asite cation alloying strategy in 3D perovskites,2DRP perovskites with a binary spacer can promote charge transporting compared to the unary spacer counterparts.Herein,the superior MA-based 2DRP perovskite films with a binary spacer,including 3-guanidinopropanoic acid(GPA)and 4-fluorophenethylamine(FPEA)are realized.These films(GPA_(0.85)FPEA_(0.15))_(2)MA_(4)Pb_5I_(16)show good morphology,large grain size,decreased trap state density,and preferential orientation of the as-prepared film.Accordingly,the present 2DRP-based PSC with the binary spacer achieves a remarkable efficiency of 18.37%with a V_(OC)of1.15 V,a J_(SC)of 20.13 mA cm^(-2),and an FF of 79.23%.To our knowledge,the PCE value should be the highest for binary spacer MA-based 2DRP(n≤5)PSCs to date.Importantly,owing to the hydrophobic fluorine group of FPEA and the enhanced interlayer interaction by FPEA,the unencapsulated 2DRP PSCs based on binary spacers exhibit much excellent humidity stability and thermal stability than the unary spacer counterparts. 展开更多
关键词 perovskite solar cells Two-dimensional Ruddlesden-Popper perovskite Binary spacers Stability
下载PDF
Enhanced performance of solution-processed carbon nanotube transparent electrodes in foldable perovskite solar cells through vertical separation of binders by using eco-friendly parylene substrate
17
作者 Unsoo Kim Jeong-Seok Nam +3 位作者 Jungjin Yoon Jiye Han Mansoo Choi Il Jeon 《Carbon Energy》 SCIE EI CAS CSCD 2024年第7期83-93,共11页
The successful utilization of an eco-friendly and biocompatible parylene-C substrate for high-performance solution-processed double-walled carbon nanotube(CNT)electrode-based perovskite solar cells(PSCs)was demonstrat... The successful utilization of an eco-friendly and biocompatible parylene-C substrate for high-performance solution-processed double-walled carbon nanotube(CNT)electrode-based perovskite solar cells(PSCs)was demonstrated.Through the use of a novel inversion transfer technique,vertical separation of the binders from the CNTs was induced,rendering a stronger p-doping effect and thereby a higher conductivity of the CNTs.The resulting foldable devices exhibited a power conversion efficiency of 18.11%,which is the highest reported among CNT transparent electrode-based PSCs to date,and withstood more than 10,000 folding cycles at a radius of 0.5 mm,demonstrating unprecedented mechanical stability.Furthermore,solar modules were fabricated using entirely laser scribing processes to assess the potential of the solution-processable nanocarbon electrode.Notably,this is the only one to be processed entirely by the laser scribing process and to be biocompatible as well as eco-friendly among the previously reported nonindium tin oxide-based perovskite solar modules. 展开更多
关键词 double-walled carbon nanotubes parylene substrates perovskite modules perovskite solar cells solution-processable electrodes surfactant removal
下载PDF
Dimethylamine oxalate manipulating CsPbI_(3) perovskite film crystallization process for high efficiency carbon electrode based perovskite solar cells
18
作者 Wenran Wang Xin Peng +7 位作者 Jianxin Zhang Jiage Lin Rong Huang Guizhi Zhang Huishi Guo Zhenxiao Pan Xinhua Zhong Huashang Rao 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第6期221-228,I0006,共9页
Crystallization process determines the quality of perovskite films and the performances of resultant perovskite solar cells(PSCs).Dimethylamine oxalate has been proven as a multifunctional modulator,and is explored as... Crystallization process determines the quality of perovskite films and the performances of resultant perovskite solar cells(PSCs).Dimethylamine oxalate has been proven as a multifunctional modulator,and is explored as an efficient additive in manipulating the crystallization process of CsPbI_(3) perovskite films.On one hand,oxalate serves as the precipitator that facilitates the nucleation process of intermediate.The larger size of intermediate is conductive to the larger size and smaller grain boundaries of resultant perovskite.On the other hand,in subsequent annealing process,the phase conversion and growth process of transient perovskite can be decelerated due to the strong interactions of oxalate with both dimethylamine cation(DMA^(+))and Pb^(2+).Due to the optimized crystallization kinetics,the morphology and quality of CsPbI_(3) perovskite films are comprehensively improved with lower defect concentrations,and charge recombination loss is effectively suppressed.Benefiting from the optimized crystal quality of perovskite films,the carbon electrode-based CsPbI_(3) PSCs exhibit a champion efficiency of 18.48%.This represents one of the highest levels among all hole transport layer-free inorganic perovskite solar cells. 展开更多
关键词 solar cells perovskite CsPbI_(3) Carbon electrodes OXALATE
下载PDF
Manipulating Crystal Growth and Secondary Phase PbI_(2)to Enable Efficient and Stable Perovskite Solar Cells with Natural Additives
19
作者 Yirong Wang Yaohui Cheng +5 位作者 Chunchun Yin Jinming Zhang Jingxuan You Jizheng Wang Jinfeng Wang Jun Zhang 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第9期432-448,共17页
In perovskite solar cells(PSCs),the inherent defects of perovskite film and the random distribution of excess lead iodide(PbI_(2))prevent the improvement of efficiency and stability.Herein,natural cellulose is used as... In perovskite solar cells(PSCs),the inherent defects of perovskite film and the random distribution of excess lead iodide(PbI_(2))prevent the improvement of efficiency and stability.Herein,natural cellulose is used as the raw material to design a series of cellulose derivatives for perovskite crystallization engineering.The cationic cellulose derivative C-Im-CN with cyano-imidazolium(Im-CN)cation and chloride anion prominently promotes the crystallization process,grain growth,and directional orientation of perovskite.Meanwhile,excess PbI_(2)is transferred to the surface of perovskite grains or formed plate-like crystallites in local domains.These effects result in suppressing defect formation,decreasing grain boundaries,enhancing carrier extraction,inhibiting non-radiative recombination,and dramatically prolonging carrier lifetimes.Thus,the PSCs exhibit a high power conversion efficiency of 24.71%.Moreover,C-Im-CN has multiple interaction sites and polymer skeleton,so the unencapsulated PSCs maintain above 91.3%of their initial efficiencies after 3000 h of continuous operation in a conventional air atmosphere and have good stability under high humidity conditions.The utilization of biopolymers with excellent structure-designability to manage the perovskite opens a state-of-the-art avenue for manufacturing and improving PSCs. 展开更多
关键词 perovskite solar cells Defect passivation Biomass additives Crystal orientation
下载PDF
Interfacial modification using the cross-linkable tannic acid for highly-efficient perovskite solar cells with excellent stability
20
作者 Xing Gao Lirong Rong +6 位作者 Fei Wu Yen-Hung Lin Ye Zeng Junhong Tan Rongxing He Cheng Zhong Linna Zhu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第4期236-244,共9页
Although the performance of perovskite solar cells(PSCs)has been dramatically increased in recent years,stability is still the main obstacle preventing the PSCs from being commercial.PSC device instability can be caus... Although the performance of perovskite solar cells(PSCs)has been dramatically increased in recent years,stability is still the main obstacle preventing the PSCs from being commercial.PSC device instability can be caused by a variety of reasons,including ions diffusion,surface and grain boundary defects,etc.In this work,the cross-linkable tannic acid(TA)is introduced to modify perovskite film through post-treatment method.The numerous organic functional groups(–OH and C=O)in TA can interact with the uncoordinated Pb^(2+)and I^(-)ions in perovskite,thus passivating defects and inhibiting ions diffusion.In addition,the formed TA network can absorb a small amount of the residual moisture inside the device to protect the perovskite layer.Furthermore,TA modification regulates the energy level of perovskite,and reduces interfacial charge recombination.Ultimately,following TA treatment,the device efficiency is increased significantly from 21.31%to 23.11%,with a decreased hysteresis effect.Notably,the treated device shows excellent air,thermal,and operational stability.In light of this,the readily available,inexpensive TA has the potential to operate as a multipurpose interfacial modifier to increase device efficiency while also enhancing device stability. 展开更多
关键词 Tannic acid Defect passivation lons diffusion HYDROPHILIC STABILITY perovskite solar cells
下载PDF
上一页 1 2 89 下一页 到第
使用帮助 返回顶部