With the objective of producing a full-scale tiny-oil ignition burner, identical to the burner used in an 800 MWe utility boiler, numerical simulations were performed using Fluent 6.3.26 to study the progress of ignit...With the objective of producing a full-scale tiny-oil ignition burner, identical to the burner used in an 800 MWe utility boiler, numerical simulations were performed using Fluent 6.3.26 to study the progress of ignition for four coal concentration settings covering sub- operation conditions prevailing during the experiments performed with the burner. The numerical simulations conformed to the experimental results, demonstrating the suitability of the model used in the calculations. Simula- tions for a coal concentration of 0.40 kg/kg corresponding to a single burner operating at its rated output were also conducted, which indicated that gas temperatures along the burner centerline were high. As gas flowed to the burner nozzle, the high-temperature region expanded, ensuring a successful pulverized-coal ignition. With increasing coal concentration (0.08-0.40 kg/kg), the gas temperature along the burner centerline and at the first and second combustion chamber exits decreased at the equivalent radial points. At the center of the second combustion chamber exit, the O2 concentrations were almost depleted for the five coal concentrations, while the CO concentrations peaked.展开更多
The progression of ignition was numerically simulated with the aim of realizing a full-scale tiny-oil ignition burner that is identical to the burner used in an 800 MWe utility boiler. The numerical simulations were c...The progression of ignition was numerically simulated with the aim of realizing a full-scale tiny-oil ignition burner that is identical to the burner used in an 800 MWe utility boiler. The numerical simulations were conducted for four excess air ratios, 0.56, 0.75, 0.98 and 1.14 (corresponding to primary air velocities of 17, 23, 30 and 35 m/s, respectively), which were chosen because they had been used previously in practical experiments. The numerical simulations agreed well with the experimental results, which demonstrate the suitability of the model used in the calculations. The gas temperatures were high along the center line of the burner for the four excess air ratios. The flame spread to the bumer wall and the high- temperature region was enlarged in the radial direction along the primary air flow direction. The O2 concentrations for the four excess air ratios were 0.5%, 1.1%, 0.9% and 3.0% at the exit of the second combustion chamber. The CO peak concentration was very high with values of 7.9%, 9.9%, 11.3% and 10.6% for the four excess air ratios at the exit of the second combustion chamber.展开更多
To reduce oil consumption during firing-up and partial-load operation, a tiny-oil ignition burner has been recommended. Through reacting-flow experiments performed on a full-scale experimental setup, the influence of ...To reduce oil consumption during firing-up and partial-load operation, a tiny-oil ignition burner has been recommended. Through reacting-flow experiments performed on a full-scale experimental setup, the influence of different oil flow rates on bituminous coal combustion as well as flow rates without coal feed was analyzed. The ignition burner is identical to that normally used in an 800 MWe utility boiler. Under operating conditions with flow rates of 50, 100, and 150kg/h, gas temperature distribu- tions were measured in the burner. At the equivalent measuring points at the exits of the first and second combustion chambers, these distributions remained almost unchanged under a constant coal feed rate of 4t/h. However on the burner centerline, distributions increased slightly with increasing flow rate. Different gas concentrations were measured at the center of the burner exit. For instance, the 02 concentration at the burner exit varied from 0.01% to 0.31% whereas CO concentrations were more than 10000 ppm. At the same coal feed rate of 4 t/h, burner resistances are 480, 600, and 740 Pa for oil flow rates of 50, 100, and 150 kg/h, respectively.展开更多
基金sponsored by the Hi-Tech Research and Development Program of China (863 program) (Grant No. 2006AA05Z321) and supported by the Foundation for Innovative Research Groups of the National Natural Science Foundation of China (Grant No. 51121004).
文摘With the objective of producing a full-scale tiny-oil ignition burner, identical to the burner used in an 800 MWe utility boiler, numerical simulations were performed using Fluent 6.3.26 to study the progress of ignition for four coal concentration settings covering sub- operation conditions prevailing during the experiments performed with the burner. The numerical simulations conformed to the experimental results, demonstrating the suitability of the model used in the calculations. Simula- tions for a coal concentration of 0.40 kg/kg corresponding to a single burner operating at its rated output were also conducted, which indicated that gas temperatures along the burner centerline were high. As gas flowed to the burner nozzle, the high-temperature region expanded, ensuring a successful pulverized-coal ignition. With increasing coal concentration (0.08-0.40 kg/kg), the gas temperature along the burner centerline and at the first and second combustion chamber exits decreased at the equivalent radial points. At the center of the second combustion chamber exit, the O2 concentrations were almost depleted for the five coal concentrations, while the CO concentrations peaked.
文摘The progression of ignition was numerically simulated with the aim of realizing a full-scale tiny-oil ignition burner that is identical to the burner used in an 800 MWe utility boiler. The numerical simulations were conducted for four excess air ratios, 0.56, 0.75, 0.98 and 1.14 (corresponding to primary air velocities of 17, 23, 30 and 35 m/s, respectively), which were chosen because they had been used previously in practical experiments. The numerical simulations agreed well with the experimental results, which demonstrate the suitability of the model used in the calculations. The gas temperatures were high along the center line of the burner for the four excess air ratios. The flame spread to the bumer wall and the high- temperature region was enlarged in the radial direction along the primary air flow direction. The O2 concentrations for the four excess air ratios were 0.5%, 1.1%, 0.9% and 3.0% at the exit of the second combustion chamber. The CO peak concentration was very high with values of 7.9%, 9.9%, 11.3% and 10.6% for the four excess air ratios at the exit of the second combustion chamber.
基金This work was supported by Foundation for Innovative Research Groups of the National Natural Science Foundation of China (Grant No. 51121004).
文摘To reduce oil consumption during firing-up and partial-load operation, a tiny-oil ignition burner has been recommended. Through reacting-flow experiments performed on a full-scale experimental setup, the influence of different oil flow rates on bituminous coal combustion as well as flow rates without coal feed was analyzed. The ignition burner is identical to that normally used in an 800 MWe utility boiler. Under operating conditions with flow rates of 50, 100, and 150kg/h, gas temperature distribu- tions were measured in the burner. At the equivalent measuring points at the exits of the first and second combustion chambers, these distributions remained almost unchanged under a constant coal feed rate of 4t/h. However on the burner centerline, distributions increased slightly with increasing flow rate. Different gas concentrations were measured at the center of the burner exit. For instance, the 02 concentration at the burner exit varied from 0.01% to 0.31% whereas CO concentrations were more than 10000 ppm. At the same coal feed rate of 4 t/h, burner resistances are 480, 600, and 740 Pa for oil flow rates of 50, 100, and 150 kg/h, respectively.